CN111479501A - 用于体内监测的植入设备 - Google Patents

用于体内监测的植入设备 Download PDF

Info

Publication number
CN111479501A
CN111479501A CN201880080986.4A CN201880080986A CN111479501A CN 111479501 A CN111479501 A CN 111479501A CN 201880080986 A CN201880080986 A CN 201880080986A CN 111479501 A CN111479501 A CN 111479501A
Authority
CN
China
Prior art keywords
sensor
sensor actuator
flow
deployed position
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880080986.4A
Other languages
English (en)
Inventor
C·P·亨德里克斯
M·T·约翰逊
A·R·希尔格斯
F·J·G·哈肯斯
D·A·范登恩德
M·米勒
A·范德霍斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP17207607.7A external-priority patent/EP3498152A1/en
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of CN111479501A publication Critical patent/CN111479501A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/076Permanent implantations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6862Stents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/02Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Prostheses (AREA)

Abstract

一种监测系统包括:可植入的血管内支撑设备,其用于抵靠脉管壁定位;以及可植入的传感器致动器,其被安装到所述支撑设备。所述传感器致动器能在非部署位置与部署位置之间驱动,在所述非部署位置中,所述传感器致动器抵靠所述支撑设备,在所述部署位置中,所述传感器致动器远离所述支撑设备。当处于所述部署位置中时生成传感器信号。所述系统能够通过将所述传感器致动器朝向脉管的中心部署来监测远离所述脉管的边缘的流量。当不需要进行流量监测时,所述传感器致动器可以是非部署的使得其不会产生对所述流的阻塞。

Description

用于体内监测的植入设备
技术领域
本发明涉及用于体内监测的植入设备。
背景技术
存在对非干扰性健康感测系统的不断增长的需求。特别地,存在从传统的医院处置向以个人为中心的非干扰性生命体征传感器技术的转变,以提供有关对象的总体健康的更好信息。
这种生命体征监测系统有助于通过疾病预防来降低处置成本并增强生活质量。它们可以提供改善的生理数据以供医生在尝试诊断对象的总体健康状况时进行分析。生命体征监测通常包括监测以下物理参数中的一项或多项:心率、血压、呼吸率和核心体温。
举例来说,在美国,大约30%的成年人口患有高血压。该人群中只有约52%的状况得到了控制。高血压是一种常见的健康问题,其没有明显的症状并且可能最终导致死亡,因此通常被称为“无声杀手”。血压通常随着年龄的增长而上升,并且在以后的生活中变成高血压的风险相当大。65-74岁年龄段的人中约有66%患有高血压。持续性高血压是中风、心力衰竭和死亡率增加的关键危险因素之一。
通过生活方式改变、健康的饮食选择和药物可以改善高血压患者的状况。特别是对于高危患者,连续24小时血压监测非常重要,并且显然期望有一种不妨碍普通日常生活活动的系统。
已知提供用于监测诸如血压的生理参数的可植入传感器设备。虽然初始插入是一种侵入性流程,但是这一旦完成,传感器就将保持就位,以便长时间段进行非干扰性感测。因此,(从长期来看)植入式传感器技术也被认为是微创的。
可植入的设备实现对患有慢性疾病(例如心力衰竭、外周动脉疾病或高血压)的患者的非干扰性长期监测。监测的目的是提供保证或早期警告指标,但也减少或总体上控制用药。
本发明更具体地涉及例如在插入支架或其他血管植入物之后监测血管内血流。通常,需要在支架放置之后执行监测,以查看是否可能发生新的问题,并帮助做出有关新干预或药物使用的决定。
实际上,存在对血管内流量测量感兴趣的许多应用,并且下面讨论其中的一些应用。
支架通畅性是开放且非阻塞的状态。例如,即使利用药物洗脱支架,关于冠状动脉支架的常见问题也是“支架内再狭窄”(ISR)。处置之后的随访通常利用计算机断层扫描成像来实施。缺点是需要X射线剂量,需要去医院就诊,以及它只是时间上的点测量的事实。代替地,将期望连续地监测支架通畅性,并在必要时提供早期警告,或在可能时减少用药。
在冠状动脉旁路移植(CABG)手术期间,需要知道旁路中的血流是否足够。例如,这可以利用袖带状设备进行监测,该设备在手术期间围绕移植物放置。一般而言,恢复的前景良好:大约90%的患者在冠状动脉旁路移植手术后经历了明显的改善,并且对于大多数人来说,移植物保持开放约10-15年。然而,冠状动脉旁路手术不能防止冠状动脉疾病的复发。在5-10%的冠状动脉旁路移植手术中,旁路移植在一年内停止向旁路动脉供血。约40%的患者在手术后10年内具有新的阻塞,并需要二次旁路、药物的改变或介入流程。
为了提供保证、早期警告或光学(最小)药物,期望在手术后监测动脉旁路移植,以检查血流是否未下降至特定值以下,并在必要时及时干预。
监测还可以用于对无痛癌症的主动监督。癌症处置可能会产生负作用,例如前列腺癌。在这种情况下,可以考虑定期就诊来监测肿瘤,以及仅在肿瘤开始生长时进行处置。缓慢的前列腺生长可以允许这种策略。然而,如果在就诊之间的时间过多,则这可能给出未记录的转移。在这种情况下,连续监测流入和流出前列腺的血流可以提供肿瘤生长的指示。
“May Thurner综合征”(MTS)是左下肢常见静脉流出道的挤压可能导致不适、肿胀、疼痛或血块,称为深静脉血栓(DVT)。问题在于血液没有被输送回到上身。通常不清楚是否或者何时需要支架术。临时的或小型的非干扰传感器可以提供决策支持。这很重要,因为MTS经常会涉及年轻人,并且支架会终身存在。支架也可能导致该重要血管的损坏或变形。传感器还可以用于在行走期间进行诊断(而医院中的诊断处于躺卧位置中)。如果其可以防止大型支架的不必要植入,则可以使用小型的局部感测植入物。
在透析分流器中测量流量也是感兴趣的。分流器是在前臂中的动脉与静脉之间的人造环路(塑料管),具有到外部透析回路的入口。为了及时干预,期望知道或预测流量何时下降到特定水平以下。目前,在基于前置泵动脉压的透析期间,例如每周三次在外部对流量进行监测。在透析之间,分流器阻力可以由患者经过触觉方法(感知流经手臂的血液的振动)或由医生使用听诊器进行主观监测。然而,例如在睡眠期间凝结或分流器挤压可能是急性的,并且连续的定量流量监测将保护分流器。
因此,可植入的流量监测设备有许多可能的应用。
存在已知的可植入的血压传感器(来自CardiomemsTM公司)、以及再狭窄传感器(来自InstentTM公司,基于根据再狭窄对阻抗变化的测量)以及用于控制的药物输送的致动器,例如微型蠕动泵(来自MPS microsystems公司)。
通过进一步的示例,在基于表面声波流量传感器的US 2005/0277839A1和基于电极阻抗/电导率测量的WO 1998/029030A1中描述了具有血流传感器的支架。
如果许多传感器设计都过度生长有生物层(即使在非常有限的深度,例如100微米),则它们将不再起作用。这样的传感器通常还位于内腔壁附近,这削弱了感测能力。
将期望能够监测远离内腔壁的血流,但是这具有存在对血流的更大阻塞的缺点。这对于长期植入物尤其是个问题。
发明内容
本发明由权利要求书限定。
根据本发明的一方面的示例,提供了一种用于测量脉管中的流量的特定监测系统。所述系统包括用于(能够)生成表示所述脉管的含量的流量水平或与所述脉管的含量的流量水平有关的传感器信号的传感器致动器设备。所述系统能够通过开始能够朝向脉管的中心部署所述传感器致动器来监测远离所述脉管的边缘的流量。为此,所述传感器致动器设备被安装到所述支撑设备。当不需要进行流量监测时,所述传感器致动器设备可以是非部署的使得其不会产生对所述流的阻塞。
所述系统可以包括控制器(14),所述控制器用于控制对所述传感器致动器的致动并用于从所述传感器致动器接收传感器信号,所述控制器被配置为(适于):在非部署位置与部署位置之间操作所述传感器致动器设备;并且当所述传感器致动器设备处于部署位置中时接收传感器信号。
所述血管内支撑设备、所述传感器致动器设备优选是可植入设备。整个监测系统可以是可植入的。
所述支撑设备优选用于抵靠脉管壁定位。
所述血管内支撑设备例如具有长度方向,用于在使用中抵靠脉管壁定位,其长度方向与脉管方向对齐。“脉管方向”可以是指(例如,血液)脉管的长度方向,即脉管的轴向方向。
支撑设备例如包括支架。传感器可以是支架的集成部分,所述传感器可以与支架一起植入。
传感器致动器可以包括电活性聚合物传感器致动器。电活性聚合物传感器致动器可以例如包括包含电活性聚合物(EAP)材料的材料主体,所述材料可响应于电刺激而变形。举例来说,所述传感器致动器可以包括离子聚合物膜传感器致动器。这些是适合体内操作的低压设备。
电活性聚合物材料传感器致动器具有机械简单的结构和功能的优点。例如,这与机电或其他机电致动器或传感器形成对比。EAP还允许小形状因子,这对于在避免脉管的阻塞很重要的脉管(诸如血管)中的部署是理想的。它们还具有较长的使用寿命,从而限制了对更换设备的未来侵入式流程的需要。
传感器致动器可以包括梁,所述梁具有连接到所述支撑设备的第一固定端部和相反的第二自由端部。当部署时,所述自由端部伸入所述流中,并且感测到由所述流施加的抵靠所述梁的力。例如,这可以基于传感器致动器的电容的变化。
在一个示例中,在使用中,第二自由端部适于在第一端部的上游。以这种方式,所述流提升所述传感器致动器,然后其采用与所述流平衡的新位置。以这种方式,即使它具有处于非部署位置中的静止位置(没有任何外部影响流),也可能不需要在流中被连续致动一次。在另一示例中,在使用中,第二自由端部适于在第一端部的下游。以这种方式,流趋向于将传感器致动器移动到非部署位置。例如,其可以更快地被移动到非部署位置。
当处于非部署位置中时,梁可以与支撑设备的长度方向对齐。当部署时,自由端部然后可以从支撑设备径向枢转到流中。
传感器致动器可以具有双稳态致动。这节省了电力,因为一旦被驱动到其部署位置中的任一部署位置,传感器致动器就不再需要被供电。可以使用机械闩锁功能来实现这种双稳态。
所述系统通常包括用于提供电力以致动传感器致动器的电池。控制器可以适于监测电池寿命,并在电池到达其寿命结束之前提供到非部署位置的致动。因此,当植入物达到其寿命结束时,它被驱动到非部署位置,以产生对流的最小阻塞。
控制器可以适于通过使用相对较低频率的致动信号并叠加相对较高频率的感测信号来实施同时的致动和感测。这是一种同时实施感测和致动而不是执行时间顺序的致动和感测的方式。
在这种情况下,传感器致动器可以是电活性聚合物传感器致动器,或者在其他示例中,传感器致动器包括响应于电刺激的不同响应材料。为了避免疑问,相对表示相对于频率中的其他频率。
传感器致动器设备可以包括沿着支撑设备间隔开的至少两个压力传感器,每个压力传感器具有部署位置和非部署位置。这提供了一种导出流量测量结果的备选方式。
控制器可以适于致动传感器致动器以提供用于实施清洁功能的振动。这用于防止系统的阻塞。
可以提供查找表用于提供在传感器信号与流量水平之间的映射。该查找表可以由校准例程填充。备选地,代数函数可以用于在传感器读数与流量之间进行映射。查找表可以用于将测量出的传感器信号转换为对应的流量水平。
传感器致动器优选地在植入或插入脉管中之前和期间处于其非部署状态,特别是当其是可植入设备时。因此,在使用流程期间,该设备可以具有较小的形状因子,从而促进插入或植入。
控制器可以包括用于将接收到的传感器信号发送到能够接收所发送的信号的外部设备的发送设备。外部设备是位于脉管的外部(例如,脉管的周围)并且优选在包括脉管的(例如,动物或人类的)身体的外部的设备。
外部设备可以是但不必是监测系统的一部分。因此,具有发送设备的外部设备可以用于在没有有线连接的情况下取回传感器数据,因此防止对脉管中的孔的需要。
控制器和发送器可以用于以原始格式发送传感器信号,或者控制器可以被配置为能够将传感器数据处理成对应的流量水平数据,例如通过利用如本文中之前所描述的查找表。备选地,外部设备用于接收传感器数据,并且具有用于将传感器信号处理成流量水平数据的另一控制器。
传输系统可以是本地供电的系统,或可以是远程供电的系统。在提到的第一种情况中,支撑设备包括电池(固定的或可充电的)。这可以是用于从传感器致动器设备接收传感器数据并对传感器致动器设备的致动供电的相同的一个。在提到的第二种情况中,控制器被配置为能够在发送数据时从外部设备接收电力,并且还可能从传感器致动器设备接收数据。因此,这种外部电力也可以用来致动传感器致动器设备。
控制器或另一控制器中的一个或两者可以被配置为被连接到用于存储传感器数据和/或流量水平数据的存储器并且在适用时被连接到查找表。存储器可以是本地的或网络(诸如互联网(LAN、WAN或其他))的一部分。
外部设备可以具有用于将传感器信号或流量水平数据进一步发送到一个或多个其他设备的另一发送系统。为此目的,其可以具有互联网连接(有线或无线)。
外部设备可以具有用户接口,所述用户接口至少具有向用户提供传感器信号和/或流量水平数据的输出的单元,例如显示器(用于视觉表示)和/或扬声器(用于听觉表示)和/或显示器或其他触觉板(用于触觉表示)形式的单元。
外部设备可以由对象穿戴,并且其甚至可以可植入在对象的皮肤下。在这种情况下,其可以具有用于供电的电池(固定或可充电)。它也可以是连接到插座电源的半固定位置设备。这在家庭或医院环境中可以是有用的。
附图说明
现在将参考附图详细描述本发明的示例,在附图中:
图1示出了位于脉管中的可植入传感器致动器系统;并且
图2更详细地示出了控制电路。
具体实施方式
将参考附图描述本发明。
应当理解,详细描述和具体示例虽然指示了装置、系统和方法的示例性实施例,但是仅旨在用于说明的目的,而并不旨在限制本发明的范围。根据以下描述、所附权利要求和附图,将更好地理解本发明的装置、系统和方法的这些和其他特征、方面和优点。应当理解,附图仅是示意性的,并且未按比例绘制。还应当理解,在所有附图中使用相同的附图标记来指示相同或相似的部分。
本发明提供了一种监测系统,其包括优选用于抵靠血管壁定位的血管内支撑设备,以及安装到所述支撑设备的传感器致动器设备。两种设备都优选是可植入的。传感器致动器设备能在非部署位置与部署位置之间驱动,在所述非部署位置中,所述传感器致动器设备抵靠支撑设备,在所述部署位置中所述传感器致动器设备远离支撑设备移位。当处于部署位置中时,优选生成传感器信号。该系统能够通过将传感器致动器朝向脉管的中心部署来监测远离脉管的边缘的流量。当不需要进行流量监测时,其可以是非部署的使得其不会产生对流的阻塞。
术语“脉管”表示包括用于输送气体和/或流体含量的可能狭窄的管。优选地,所述脉管是诸如动物、人或植物的对象的身体的一部分。因此,例如脉管可以是植物中的(狭窄)输水管。更优选地,它是循环系统的一部分,并且用于将诸如血液或淋巴液(淋巴液)的体液输送通过对象的身体。因此,脉管可以是淋巴结构的一部分或血管。
图1示出了位于脉管10中的可植入的传感器致动器系统。传感器致动器系统包括传感器致动器部分12和控制器14。传感器致动器被附接到具有长度方向的血管内支撑设备16,其用于抵靠脉管壁定位,其长度方向与脉管方向对齐,如图所示。在这种情况下,支撑设备是支架、移植物或柔性塑料管。然而,它也可以是导管型系统的一部分。
传感器致动器12被安装到支撑设备16,而且具有延伸到脉管内的流中的一部分。
“传感器致动器设备”是指这样一种设备,该设备可以通过致动而物理地移动或变形,并且其还可以至少当处于一个致动位置处时感测外部力输入。可以存在单独的致动部件和感测部件,或者单个结构可以执行这两种功能。力输入可以归因于脉管中的含量的流动。
控制器14控制对传感器致动器的致动以及从传感器致动器对传感器信号的接收。
在下面描述的主要示例中,传感器致动器是生成信号的任何设备,该信号根据弯曲程度以可预测的方式变化,并且该设备还可以被致动以弯曲到特定状态。
传感器致动器设备的变形取决于血流速度,该血流速度随心动周期并跨血管而变化。例如,变形导致变化的电容,并且该电容用作待感测的信号。
传感器致动器12包括梁,该梁具有连接到支撑设备16的第一固定端部18和相反的第二自由端部20。在一个示例中,传感器致动器12是柔性无源电活性聚合物(EAP)传感器,特别是离子聚合物膜传感器(例如IPMC)。它在低电压下操作,并适合于在体内环境内进行感测和致动。它在两侧上都有柔性电极。将这种传感器用作流量传感器是已知的。然而,可以使用不同类型的可变形电容传感器,或者也可以使用压力传感器(如下文进一步讨论的)。
支架的直径通常根据应用(外周动脉疾病、冠状动脉疾病、腹主动脉瘤)从若干毫米到若干厘米变化。传感器致动器的长度可以相应地变化。传感器致动器的长度可以被选择以使得当被致动到所示的变形的弯曲位置中时,自由端部可以到达脉管的中心。
控制器用于在非部署位置与部署位置之间驱动传感器致动器,在非部署位置中,传感器致动器抵靠支撑设备16并因此沿着脉管壁定位,在部署位置中,传感器致动器远离支撑设备移位。传感器信号在部署位置中被接收并可能被处理。
图1示出了部署位置。如图所示,当部署时,自由端部20伸入流中,并且由流施加的抵靠梁的力被感测。
在一个示例中,第二自由端部20在使用中位于第一端部的上游。在该示例中,流处于由箭头22表示的方向上。
以这种方式,流22提升传感器致动器,并且其采用所示的位置,在该位置中,其与流处于平衡状态。即使传感器致动器在未致动时朝向非部署(平坦)位置偏置,一旦它已经被移动到部署位置,由于流施加的流体动力,它也可以停留在该位置中。
在未部署且未致动的默认位置中,传感器致动器可以平放定位在腔24中,或者其可以略微向下预弯曲,使得致动器的自由端部20面朝下(即,相对于脉管径向朝外),并且然后几乎没有液体渗入传感器致动器下并且不希望地将其向上提升的风险。
仅在期望进行传感器测量时才短暂地致动传感器致动器,直到达到最大偏转为止,此后致动功率将被移除,并且传感器致动器被短路。这使它处于最适合感测的状况。在这种配置中,基于校准信息,即Z=f(Q),监测电阻抗Z,其指示体积流率Q。
在感测完成时,用反向电压来致动传感器致动器,以使传感器致动器返回其默认位置。
这种布置具有短的致动时间,从而要求低能量消耗,并且其使用顺序致动,然后进行感测,然后致动,该致动使得能够使用简单的电子器件。
能够使用具有双稳态操作模式的传感器致动器。当致动器已经到达致动位置但是不需要流将传感器致动器维持在给定位置中时,驱动信号可以再次被去除。
能够通过避免对连续致动的需要而获得的功率节省使得致动器在需要时能够在较长时间段内进行测量。
一旦回到平整位置,传感器致动器的短振动就可以用于去除当传感器致动器处于其致动位置中时在腔24中可能收集的松散碎屑。
在另一示例中,第二自由端部20在使用中在第一端部的下游。在该示例中,流在由箭头26所表示的方向上。该流倾向于使传感器致动器移动到非部署位置。例如,其可以更快地被移动到非部署位置。
在致动之后返回默认位置所需的时间t与流率有关,t=f(Q)。
电阻抗可以再次是对变形的度量,因为所采用的形状将是流量的函数。然而,返回到非部署位置的时间t也可以用作感测的参数。为此,可以在腔24的端部放置导电垫,该导电垫用作用于测量接触的开关。然后,可以测量在致动结束与接触的检测之间的时间间隔,并且这可以再次使用校准信息被转换为流量。
传感器致动器的速度范围可以通过在致动之后施加不同的电气条件来扩展。对于低流速条件,传感器致动器能够被短路以提高恢复回平坦状态的速度。对于高流速条件,传感器致动器能够被保持在开路状态(或定义的阻抗值)下,以部分阻止传感器致动器的恢复并抵抗更强的流。
可能期望在植入物的寿命结束时(例如,当电池用尽时),确保传感器致动器采用非部署位置。如果传感器致动器长时间段处于部署状态中,则在寿命结束时存在其处于该状态中的几率,并且然后导致支架中的(部分)阻塞。为了防止这种情况,电池监测系统用于指示何时接近电池寿命的结束,并且然后使用剩余的电池电量在电池最终为空之前将致动器安全地返回到平行于支架壁的位置。
对于其中自由端部面向流(即流22)的示例,在寿命结束时可以使用比仅达到平坦端部位置稍微大的致动,使得即使在最后一次致动之后致动器稍微松弛,致动器的自由端部也面朝下,并且存在流体流将其提升的较小风险。由于没有剩余的电池电量可以进行任何校正,因此可能会对该额外的安全特征感兴趣。
可能存在同时的感测和致动。对于IMPC传感器致动器,这可以通过分别测量外部电极的阻抗与致动电压或将高频信号添加到准DC致动信号来实现。在WO 2017/036695中详细描述了将DC致动信号与高频叠加AC信号组合以进行感测的方法。虽然消耗更多的功率,但是使用这些方法可以改善流量测量的准确性,因为可以在零偏转(对应于脉管壁)到全偏转(例如,对应于脉管的中间)之间的任意点确定速度剖面。以这种方式,可以在不同的中间致动状态下执行感测,而不是完全致动到两个双稳态中的一个或另一个。然后可以跨脉管的直径获得速度剖面。以这种方式,额外测量特征也是可能的:例如,可以确定流量剖面中的不对称性。
该方法还意味着不依赖于流量本身来将传感器致动器维持在可操作位置中。因此,感测对于流速的显著变化是健壮的,因为流量不是传感器操作中必不可少的设计参数。
图2示出了控制器14的部件的一个示例。
传感器致动器12由处理器30控制(即,致动),该处理器也接收并处理传感器信号。控制器14具有内部电池32和存储器34。处理器能够通过无线连接向外部询问单元(未示出)提供传感器信息(例如,流率Q)。
对于被植入的数据存储和处理能力的量以及外部的量,存在各种选项。例如,植入的传感器致动器可以仅输出原始感测信号,诸如阻抗值,或者其可以生成流量值。对于植入多少能量存储能力以及通过无线能量传输接收多少,特别是对于提供用于提供致动的能量以及对于提供用于处理传感器信号的能量,也存在各种选项。
通过示例,第一选项是在植入的设备中连续收集和记录感测信息,以及提供用于致动的本地功率。在这种情况下,使用(可充电)电池来提供本地功率。然后可以使用无线供电来对电池充电,例如在夜间通过佩戴充电带进行。此外,如果没有为植入物提供主动发射功能,则可以使用无线耦合来读出所存储的数据。备选地,植入物可以具有本地供电的无线数据传输能力。
第二选项是仅根据需要测量(并可选地处理)传感器数据,例如,如果用户将包括无线供电的无线发射器(作为外部设备的一部分)放置在植入物上方。如果一天中仅需要几次定期检查,则这是合适的。
因此,能够具有植入的电源或无线地提供功率,以及在植入的设备中具有不同可能的数据处理和存储级别。
基本植入设备的一个示例将包括微控制器(包括存储器和软件),该微控制器控制传感器致动器的驱动器并也生成AC感测信号。感测信号可以被叠加到DC致动信号,或者从独立的AC振荡器提供。该设备额外地具有用于测量阻抗的单元,并且该阻抗用作传感器信号。这可以简单地是串联电阻,并且由微控制器测量压降和相移。
处理器30可以基于查找表36来确定流量Q。例如,从传感器致动器的变化的电容C(或其他阻抗测量结果)(C=f(v))获得流速。
查找表36因此提供了在传感器信号与流量水平之间的映射。对于不同的致动水平可以存在不同的子表,例如,当如上所述跨脉管区域的不同位置获得不同的流量测量结果时。该查找表可以由校准例程填充。备选地,可以使用代数函数在传感器读数与流量之间进行映射。
可以基于内腔的已知横截面面积和假定的流类型(例如层流、湍流)将局部流速转换为体积流率。备选地,更准确的体积流量可以基于在脉管的横截面区域的不同部分处的多个流量测量结果。
存储器34可以用于存储原始传感器值或流量信息。
在植入之前和期间,具有其集成传感器致动器的支架被折叠在输送导管中,其中,传感器致动器处于非部署位置中。
上面的示例示出了单个传感器。支架上也可以存在多个传感器,然后可以分析响应的差异。内皮过度生长将比斑块形成更均匀。通过监测差异,可以评估斑块积累与内皮过度生长。在圆周周围和/或在轴向方向上可以存在多个传感器。
存在用于无线连接到植入的传感器以提供通信信道的各种选项。无线连接也可以用于能量传输,例如为本地能量源(电池或电容器)充电或直接向传感器致动器提供功率。
通常,植入物(无论是无源的还是有源的)可以以许多方式供电(该电力用于致动和/或通信)。取决于植入物的功能和操作模式,对能量源存在不同的要求。
对于连续的主动功能(例如,为了生成输出信号而进行主动机械致动的要求),与被动的时间受限(例如,按需)功能(例如,对主动传感器的偶尔读出)相比,存在更高的能量要求。然而,在两种情况下,都需要与本地电源的有线连接或到功率发送器的无线耦合。
为医学植入物输送电力以供电或通信是文献中充分描述的话题。
在B.A.Achraf,A.B.Kouki和C.Hung的“Power Approaches for ImplantableMedical Devices”(sensors,no.28889-28914;doi:10.3390/s151128889,2015)、J.Lee,J.Jang和Y.K.Song的“A review on wireless powering schemes for implantablemicrosystems in neural engineering applications”(Biomed Eng Letters,no.DOI10.1007/s13534-016-0242-2,pp.6:205-215,2016)、A.Kim,M.Ochoa,R.Rahim和B.Ziaie的“New and Emerging Energy Sources for Implantable Wireless Microdevices”(IEEE:SPECIAL SECTION ON NANOBIOSENSORS,no.10.1109/ACCESS.2015.2406292,2014)、以及K.N.Bocan和E.Sejdi′c的“Adaptive Transcutaneous Power Transfer to ImplantableDevices:A State of theArt Review”(sensors,Vol.16,no.doi:10.3390/s16030393,p.393,2016)中给出了用于可植入的医学设备的功率方面的综合性综述。
这些解决方案中的任何一种都可以用于向植入物提供电力或通信信道,并且下面将讨论一些方法。
如上所述,第一种方法是提供有线电源作为植入物的一部分。有线电源可以是直接连接到植入物或其操作电子器件的普通电池(不可充电或可充电),诸如被示出为32。然而,由于植入物通常将长时间段穿戴,因此高容量和高能量密度的电池将是有益的。期望(可充电)电池的功率密度进一步提高,以使它们越来越适合于长期监测功能。
代替常规电池,生物燃料电池或核电池可以是适用的。与电池非常相似的另一种备选电源是超级电容器,该超级电容器是具有极高电容和极低自放电特性的电容器。
能量收集器可以替代地用于操作任何植入物。因此,发电机可以例如通过人体能量来操作,人体能量诸如肢体的运动但是还有内部器官的运动或者由流体流动(动脉中的血液)或气体(肺中的空气)产生的任何动力。发电机可以能够将能量存储在超级电容器或可充电电池中,和/或能够直接操作植入物。
能量收集器并不一定需要非常靠近植入物本身,而是也可以在空间上分离。它们之间可以使用有线连接。同样在能量收集器领域,人们正在努力使它们更小且更有效,以便使它们作为用于医学设备的内部(并且永久的)能量源更具吸引力。
可以根据物理耦合机制对无线能量传输系统进行分类,该物理耦合机制可以是电容的、电感的(磁性的)或电磁的。这三种机制都具有它们各自的利弊和首选应用。通常,每种方法的性能在很大程度上取决于特定的边界条件,例如发送器元件和接收器元件(其可以是板、电感器或天线)的尺寸以及两个元件之间的距离和介质,以及它们相对于彼此的取向。
所有无线功率系统的额外智能特征是在发送器与接收器之间的双向数据通信的固有能力。
在需要传输近距离的低能量水平的应用中,可以使用电容耦合。可以优选地经由电磁耦合来实现中至长距离的低至中功率水平。短距离的最高功率水平可以利用磁场经由感应耦合进行传输。
最基本的方法仅在存在外部控制器时才使得传感器数据能够被收集,特别是在使用无线功率传输来提供致动所需的能量的情况下。然而,使用这种无线供电技术将不一定暗示需要连续穿戴这种发送器来执行植入物的预期用途。例如,植入物可能仅需要在某些处置期间(例如在医院中)进行操作,或者其仅可能需要在预定义的时间点(例如早晨、下午、晚上)被激活。
备选用例将是在夜间使用这样的无线发送器以对植入的电源充电,该电源将用于在白天操作植入物。这是一种混合方法,其中存在本地能量供应,因此无需外部控制器就位就可以收集传感器数据并将其存储在存储器中,但是它具有较短的持续时间,因此需要定期充电。
植入的无线接收器单元和植入的传感器致动器可以在空间上与彼此分开。例如,接收元件(例如,接收器电感)可以直接位于皮肤下面,以便实现在发送器与接收器之间的强耦合,并且因此最大化能量传输效率,并最小化植入的电池的充电时间。当然,与将植入的元件完全集成到支架(或其他支撑结构)中的情况相比,这将需要更加复杂的植入流程。
还存在不依赖电能来实现无线能量传输系统(特别是利用光、超声或机械压力波)的选项。
上面的示例基于对具有偏转传感器功能的传感器致动器用于测量流量的使用。一种备选方案是使用压力传感器。例如,在支架之前和之后的压力传感器可以测量支架上的压降,这表明在理想条件下的流率。备选地,基于恒定的上游条件(压力和流率),在支架侧之后的压力指示血管中的下游流动阻力。因此,可以存在附接到EAP致动器的两个压力传感器,它们如上所述的进行操作。在这种情况下,传感器致动器具有用于传感器功能(压力传感器)和用于致动器功能(EAP致动器)的单独的物理部件。术语“传感器致动器”应当被相应地理解。
如上所述,控制器执行数据处理。可以用软件和/或硬件以多种方式来实施控制器,以执行所需的各种功能。处理器是控制器的一个示例,该控制器采用一个或多个微处理器,所述一个或多个微处理器可以使用软件(例如,微代码)进行编程以执行所需的功能。然而,可以在采用或不采用处理器的情况下实施控制器,并且还可以将控制器实施为执行某些功能的专用硬件与执行其他功能的处理器(例如,一个或多个编程的微处理器和相关联的电路)的组合。
可以在本公开的各种实施例中采用的控制器部件的示例包括但不限于常规微处理器、专用集成电路(ASIC)和现场可编程门阵列(FPGA)。
在各种实施方式中,处理器或控制器可以与一个或多个存储介质(例如易失性和非易失性计算机存储器,诸如RAM、PROM、EPROM和EEPROM)相关联。可以用一个或多个程序对存储介质进行编码,所述程序在一个或多个处理器和/或控制器上运行时执行所需的功能。各种存储介质可以被固定在处理器或控制器内,或者可以是可传输的,使得可以将存储于其上的一个或多个程序加载到处理器或控制器中。
如上所述,可以使用电活性聚合物(EAP)设备来实施传感器致动器。EAP是电响应材料领域中新兴的一类材料。EAP可以用作传感器或致动器,并且可以被轻松制造成各种形状,从而允许轻松集成到多种系统中。
已经开发出具有诸如致动应力和应变的特性的材料,这些特性在过去十年内已经得到显著改善。技术风险已经降低到产品开发可接受的水平,使得EAP在商业和技术上都越来越引起人们的兴趣。EAP的优势包括低功耗、小形状因子、灵活性、无噪声运行、准确性、高分辨率的可能性、快速响应时间、以及循环致动。
EAP材料的改善性能和特殊优势使其可适用于新应用。EAP设备可以被使用在期望部件或特征的少量移动的任何应用中,基于电致动或用于感测较小的移动。
与普通致动器相比,由于在较小的体积或薄的形状因子中的相对较大的变形与力的组合,使用EAP实现了之前不可能的功能,或者提供了比普通传感器和致动器解决方案更大的优势。EAP还给出无噪音运行、准确的电子控制、快速响应以及各种可能的致动频率,例如0–1MHz,最典型的是低于20kHz。
使用电活性聚合物的设备可以被细分为场驱动材料和离子驱动材料。
场驱动的EAP的示例包括压电聚合物、电致伸缩聚合物(例如基于PVDF的弛豫聚合物)和介电弹性体。其他示例包括电致伸缩接枝聚合物、电致伸缩纸、驻极体、电粘弹性弹性体和液晶弹性体。
离子驱动EAP的示例是共轭/导电聚合物、离子聚合物金属复合物(IPMC)和碳纳米管(CNT)。其他示例包括离子聚合物凝胶。
场驱动的EAP通过直接机电耦合由电场驱动。它们通常需要高电场(每米数十兆伏)但是低电流。聚合物层通常很薄,以保持驱动电压尽可能低。
离子EAP通过电感应的离子和/或溶剂的传输而被激活。它们通常需要低电压但高电流。它们需要液体/凝胶电解质介质(但是一些材料系统也可以使用固体电解质操作)。
EAP的两个类别都具有多个家族成员,每个成员具有自己的优缺点。
场驱动的EAP的第一个显著子类是压电和电致伸缩聚合物。虽然传统压电聚合物的机电性能受到限制,但是改善该性能的突破已经得到PVDF弛豫聚合物,其显示出自发电极化(场驱动的对齐)。可以对这些材料进行预应变,以改善其在应变方向上的性能(预应变导致更好的分子对齐)。通常,使用金属电极,因为应变通常处于中等范围(1-5%)内。也可以使用其他类型的电极(例如导电聚合物、基于炭黑的油、凝胶或弹性体等)。电极可以是连续的或分段的。
场驱动的EAP的另一个感兴趣的子类是介电弹性体。这种材料的薄膜可以夹在柔性电极之间,从而形成平行板状电容器。在介电弹性体的情况下,由施加的电场引起的麦克斯韦应力在薄膜上产生应力,从而导致其厚度收缩并且面积扩大。通常通过对弹性体进行预应变(需要框架来保持预应变)来增大应变性能。应变可以相当大(10-300%)。这也限制了可以使用的电极的类型:对于低应变和中等应变,可以考虑使用金属电极和导电聚合物电极;对于高应变范围,通常使用基于炭黑的油、凝胶或弹性体。
电极可以是连续的或分段的。
离子EAP的第一个显著子类是离子聚合物金属复合物(IPMC)。IPMC由层压在两个薄金属或碳基电极之间的溶剂溶胀的离子交换聚合物膜组成,并需要使用电解质。典型的电极材料是Pt、Gd、CNT、CP、Pd。典型的电解质是Li+和Na+水性溶液。当施加电场时,阳离子通常与水一起行进到阴极侧。这导致亲水簇的重组和聚合物膨胀。阴极区域中的应变导致其余聚合物基体中的应力,从而导致朝向阳极弯曲。反转所施加的电压使弯曲反向。众所周知的聚合物膜是
Figure BDA0002539462430000171
Figure BDA0002539462430000172
离子聚合物的另一个显著子类是共轭/导电聚合物。共轭聚合物致动器通常由夹在共轭聚合物的两层之间的电解质组成。电解质用于改变氧化状态。当通过电解质向聚合物施加电势时,电子被添加到聚合物或从聚合物中去除,从而驱动氧化和还原。还原导致收缩,氧化导致膨胀。
在一些情况下,当聚合物本身缺乏足够的导电性(逐维度)时添加薄膜电极。电解质可以是液体、凝胶或固体材料(即,高分子量聚合物和金属盐的复合物)。最常见的共轭聚合物是聚吡咯(PPy)、聚苯胺(PANi)和聚噻吩(PTh)。
致动器还可以由悬浮在电解质中的碳纳米管(CNT)形成。电解质与纳米管形成双层,从而允许注入电荷。这种双层电荷注入被认为是CNT致动器中的主要机制。CNT用作电极电容器,其中,电荷被注入到CNT中,其然后被通过电解质到CNT表面的移动形成的双电层平衡。改变碳原子上的电荷导致C-C键长度的变化。结果,可以观察到单个CNT的膨胀和收缩。
对于感测功能,上面讨论了电容变化的使用,特别是结合离子聚合物设备。对于场驱动系统,电容变化也可以被直接测量,或通过测量电极电阻根据应变的变化来测量。
压电和电致伸缩聚合物传感器可以响应于所施加的机械应力而生成电荷(假定结晶度足够高以生成可检测的电荷)。共轭聚合物可以利用压电离子效应(机械应力导致对离子的施加)。CNT在暴露于应力时在CNT表面上经历电荷变化,其可以被测量。还已经表明,当与气态分子(例如,O2、NO2)接触时,CNT的电阻改变,从而使CNT可用作气体检测器。
感测还可以基于力测量和应变检测。例如,介电弹性体可以容易地通过外力拉伸。通过在传感器上施加低电压,可以根据电压来测量应变(电压是面积的函数)。
感兴趣的主要示例是在插入支架之后监测对象。支架放置可以在冠状动脉中,具有由于再狭窄或由于瘢痕组织的形成而导致支架再次变得阻塞的风险。支架放置可以代替地在小腿中,以打开由外周动脉疾病引起的阻塞动脉。然后,血流模式被扰乱,并且存在这样的风险:在所处置的动脉中,血流突然增加,这是由于另一条动脉突然接收较少的血流(“血管窃取”)。流量监测能够确定这一点。
然而,上面给出了感兴趣的流量监测的其他示例。例如,本发明可以应用于支架、支架移植物、心脏瓣膜、冠状动脉旁路移植物和分流器。
通过研究附图、说明书和所附权利要求书,本领域技术人员在实践所要求保护的发明时可以理解并实现对所公开的实施例的其他变型。在权利要求书中,词语“包括”不排除其他元件或步骤,并且词语“一”或“一个”不排除多个。在互不相同的从属权利要求中记载了某些措施的仅有事实并不指示不能有利地使用这些措施的组合。权利要求中的任何附图标记都不应被解释为限制范围。

Claims (17)

1.一种用于测量脉管中的流量的监测系统,包括:
血管内支撑设备,其用于定位在所述脉管内;
传感器致动器设备(12),其用于生成与所述流量有关的传感器信号,所述传感器致动器设备被安装到所述支撑设备(16)并且能在非部署位置与部署位置之间操作,在所述非部署位置中,所述传感器致动器设备抵靠所述支撑设备(16),在所述部署位置中,所述传感器致动器设备远离所述支撑设备。
2.根据权利要求1所述的监测系统,还包括控制器(14),所述控制器用于控制对所述传感器致动器的致动并用于从所述传感器致动器接收所述传感器信号,所述控制器被配置为:
在所述非部署位置与所述部署位置之间操作所述传感器致动器设备;并且
当所述传感器致动器设备处于所述部署位置中时接收所述传感器信号。
3.根据权利要求1或2所述的监测系统,其中,所述支撑设备用于抵靠脉管壁定位。
4.根据权利要求1、2或3所述的监测系统,其中,所述血管内支撑设备和所述传感器致动器设备是可植入设备。
5.根据任一前述权利要求所述的系统,其中,所述支撑设备(16)包括支架。
6.根据任一前述权利要求所述的系统,其中,所述传感器致动器设备(12)包括电活性聚合物传感器致动器。
7.根据任一前述权利要求所述的系统,其中,所述传感器致动器设备(12)包括梁,所述梁具有连接到所述支撑设备的第一固定端部(18)和相反的第二自由端部(20)。
8.根据权利要求7所述的系统,其适于:
被放置在所述脉管中,使得所述第二自由端部(20)在第一端部的上游;或者
被放置在所述脉管中,使得所述第二自由端部(20)在第一端部的下游。
9.根据任一前述权利要求所述的系统,其中,所述传感器致动器设备(12)具有双稳态致动。
10.根据权利要求2所述的系统,还包括电池(32),所述电池用于提供电力以致动所述传感器致动器设备,其中,所述控制器(14)适于监测电池寿命,并在所述电池到达其寿命结束之前提供到所述非部署位置的致动。
11.根据权利要求2所述的系统,其中,所述控制器(14)适于通过使用相对较低频率的致动信号并叠加相对较高频率的感测信号来实施同时的致动和感测。
12.根据任一前述权利要求所述的系统,其中,所述传感器致动器设备(12)包括沿着所述支撑设备间隔开的至少两个压力传感器,每个压力传感器具有部署位置和非部署位置。
13.根据任一前述权利要求所述的系统,其中,所述控制器适于致动所述传感器致动器设备,以提供用于实施清洁功能的振动。
14.根据权利要求2所述的监测系统,其中,所述控制器包括发送器并且还被配置为:
将接收到的传感器信号发送到用于接收所述传感器信号的外部设备;或者
处理表示流量水平的对应的数据信号中的接收到的传感器信号并将所述数据信号发送到用于接收所述数据信号的外部设备。
15.根据任一前述权利要求所述的系统,还包括用于提供在传感器信号与对应的流量水平之间的映射的查找表(36)。
16.根据权利要求14所述的系统,还包括所述外部设备。
17.根据权利要求16所述的系统,其中,所述外部设备还包括用于向用户提供所述传感器信号和/或所述流量水平的输出的用户接口。
CN201880080986.4A 2017-12-15 2018-12-14 用于体内监测的植入设备 Pending CN111479501A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP17207607.7 2017-12-15
EP17207607.7A EP3498152A1 (en) 2017-12-15 2017-12-15 Implant device for in-body monitoring
EP18193231 2018-09-07
EP18193231.0 2018-09-07
PCT/EP2018/085090 WO2019115819A1 (en) 2017-12-15 2018-12-14 Implant device for in-body monitoring

Publications (1)

Publication Number Publication Date
CN111479501A true CN111479501A (zh) 2020-07-31

Family

ID=64949248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880080986.4A Pending CN111479501A (zh) 2017-12-15 2018-12-14 用于体内监测的植入设备

Country Status (4)

Country Link
US (1) US11564582B2 (zh)
EP (1) EP3723586B1 (zh)
CN (1) CN111479501A (zh)
WO (1) WO2019115819A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113729670A (zh) * 2021-09-13 2021-12-03 东南大学 一种血管内柔性自供能流速传感器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5967986A (en) * 1997-11-25 1999-10-19 Vascusense, Inc. Endoluminal implant with fluid flow sensing capability
US20050277839A1 (en) * 2004-06-10 2005-12-15 Honeywell International, Inc. Wireless flow measurement in arterial stent
EP1847217A2 (en) * 1999-09-17 2007-10-24 Endoluminal Therapeutics, Inc. Sensing, interrogating, storing, telemetering and responding medical implants
US20080154141A1 (en) * 2006-12-26 2008-06-26 Cardiac Pacemakers, Inc. Intravascular Flow Sensor
US20090088651A1 (en) * 2007-09-28 2009-04-02 Allan Charles Shuros Method and apparatus to perform transvascular hemodynamic sensing
US20130053711A1 (en) * 2009-10-30 2013-02-28 Rama Krishna KOTLANKA Implantable Device for Detecting Variation in Fluid Flow Rate
CN106255457A (zh) * 2014-04-11 2016-12-21 皇家飞利浦有限公司 植入物递送系统以及植入物
CN106456026A (zh) * 2014-04-04 2017-02-22 圣犹达医疗系统公司 血管内压力和流量数据诊断系统、设备和方法
US20170086683A1 (en) * 2001-02-14 2017-03-30 Vactronix Scientific, Inc. In vivo sensor and method of making same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0904009B1 (en) 1997-01-03 2003-09-10 Biosense, Inc. Pressure-sensing stent
US6809462B2 (en) 2000-04-05 2004-10-26 Sri International Electroactive polymer sensors
US7181261B2 (en) 2000-05-15 2007-02-20 Silver James H Implantable, retrievable, thrombus minimizing sensors
US9107605B2 (en) 2000-11-17 2015-08-18 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Device for in vivo delivery of bioactive agents and method of manufacture thereof
US7572228B2 (en) 2004-01-13 2009-08-11 Remon Medical Technologies Ltd Devices for fixing a sensor in a lumen
WO2005117737A2 (en) * 2004-06-04 2005-12-15 The Regents Of The University Of Michigan Electromagnetic flow sensor device
IL185609A0 (en) * 2007-08-30 2008-01-06 Dan Furman Multi function senssor
US7901360B1 (en) 2007-05-17 2011-03-08 Pacesetter, Inc. Implantable sensor for measuring physiologic information
WO2017036695A1 (en) 2015-08-31 2017-03-09 Koninklijke Philips N.V. Actuator and sensor device based on electroactive polymer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5967986A (en) * 1997-11-25 1999-10-19 Vascusense, Inc. Endoluminal implant with fluid flow sensing capability
EP1847217A2 (en) * 1999-09-17 2007-10-24 Endoluminal Therapeutics, Inc. Sensing, interrogating, storing, telemetering and responding medical implants
US20170086683A1 (en) * 2001-02-14 2017-03-30 Vactronix Scientific, Inc. In vivo sensor and method of making same
US20050277839A1 (en) * 2004-06-10 2005-12-15 Honeywell International, Inc. Wireless flow measurement in arterial stent
US20080154141A1 (en) * 2006-12-26 2008-06-26 Cardiac Pacemakers, Inc. Intravascular Flow Sensor
US20090088651A1 (en) * 2007-09-28 2009-04-02 Allan Charles Shuros Method and apparatus to perform transvascular hemodynamic sensing
US20130053711A1 (en) * 2009-10-30 2013-02-28 Rama Krishna KOTLANKA Implantable Device for Detecting Variation in Fluid Flow Rate
CN106456026A (zh) * 2014-04-04 2017-02-22 圣犹达医疗系统公司 血管内压力和流量数据诊断系统、设备和方法
CN106255457A (zh) * 2014-04-11 2016-12-21 皇家飞利浦有限公司 植入物递送系统以及植入物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113729670A (zh) * 2021-09-13 2021-12-03 东南大学 一种血管内柔性自供能流速传感器

Also Published As

Publication number Publication date
WO2019115819A1 (en) 2019-06-20
EP3723586B1 (en) 2021-04-14
US11564582B2 (en) 2023-01-31
EP3723586A1 (en) 2020-10-21
US20200383583A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
EP3764872B1 (en) Device for intravascular monitoring
CA3015373C (en) Valve implant with integrated sensor and transmitter
US9364362B2 (en) Implantable device system
US20210045864A1 (en) Implant device for in-body blood flow control
US20100100010A1 (en) Implantable device system
AU2006325809A1 (en) Self-sensing stents, smart materials-based stents, drug delivery systems, other medical devices, and medical uses for piezo-electric materials
EP3713483B1 (en) Pulse wave velocity determination
US11564582B2 (en) Implant device for in-body monitoring
JP2021504000A5 (zh)
EP3498152A1 (en) Implant device for in-body monitoring
EP3520706A1 (en) Implant device for in-body ultrasound sensing
EP3524285A1 (en) Implant device for in-body blood flow control
EP3524284A1 (en) Implantable device and control method
Islam et al. 3D-Printable Self-Powered Piezoelectric Smart Stent for Wireless Endoleaks Sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200731

WD01 Invention patent application deemed withdrawn after publication