CN111478168A - 一种发射波长228nm全固态激光装置 - Google Patents

一种发射波长228nm全固态激光装置 Download PDF

Info

Publication number
CN111478168A
CN111478168A CN202010444819.2A CN202010444819A CN111478168A CN 111478168 A CN111478168 A CN 111478168A CN 202010444819 A CN202010444819 A CN 202010444819A CN 111478168 A CN111478168 A CN 111478168A
Authority
CN
China
Prior art keywords
laser
crystal
mirror
mgf
hfo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010444819.2A
Other languages
English (en)
Inventor
李再金
曲轶
李林
乔忠良
赵志斌
曾丽娜
彭鸿雁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Normal University
Original Assignee
Hainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Normal University filed Critical Hainan Normal University
Priority to CN202010444819.2A priority Critical patent/CN111478168A/zh
Publication of CN111478168A publication Critical patent/CN111478168A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/0933Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of a semiconductor, e.g. light emitting diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种发射波长228nm全固态激光装置,包括808nm半导体激光器;808nm聚焦镜;Nd:YVO4激光晶体;平面镜;LBO晶体;平凹镜A;BBO晶体;平凹镜B;228nm滤光片。808nm半导体激光器发射的808nm激光通过808nm聚焦镜将808nm激光聚焦到Nd:YVO4激光晶体中,Nd:YVO4激光晶体通过808nm激光泵浦发射914nm激光;914nm激光通过平面镜,再通过LBO倍频晶体倍频产生457nm激光;457nm激光通过平凹镜A反射,再通过BBO倍频晶体产生228nm激光;228nm激光通过平凹镜B反射,再依次通过BBO倍频晶体和平凹镜A,最后通过228nm滤光片发射228nm全固态激光。

Description

一种发射波长228nm全固态激光装置
技术领域
本发明涉及全固态激光技术领域,特别涉及一种发射波长228nm全固态激光装置。
背景技术
原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法,因为其谱线简单、检出限低、重复性高、线性范围宽等优点受到广大研究者的青睐并获得广泛使用。原子荧光光谱法采用的光源通常为空心阴极灯或氙弧灯,其存在很多缺点,寿命短、不稳定,同时存在荧光猝灭效应和散射光的干扰等,光源的缺点导致检测精度偏高。原子的荧光强度在一定条件下和原子荧光激发光源的强度成正比,通过提高激发光源强度则可进一步提高仪器的检出限,提高检测的稳定性。用激光替代传统激发光源,能提高原子光谱检测精度。针对环境重金属污染,228nm全固态激光是一种高强度光源,可作为原子荧光光谱检测的激发光源的替代光源,从而提高原子荧光光谱仪器的检出限和检测的稳定性。
发明内容
本发明的目的在于提出一种发射波长228nm全固态激光装置。
一种发射波长228nm全固态激光装置,包括1-808nm半导体激光器、2-808nm聚焦镜、3-Nd:YVO4激光晶体、4-平面镜、5-LBO晶体、6-平凹镜A、7-BBO晶体、8-平凹镜B和9-228nm滤光片。
其特征在于:
1-808nm半导体激光器输出波长范围为808±3nm,连续输出最小功率为4W。
2-808nm聚焦镜前后表面镀有181.7nm TiO2/96.7nm SiO2/156.9 nm TiO2/94.1nmSiO2的光学膜。
3-Nd:YVO4激光晶体前表面镀有108.1nm TiO2/144.9nm SiO2/29.8nm TiO2/280.7nm SiO2/260.8nm TiO2/232.1nm SiO2/62.1nm TiO2/157.2nm SiO2/101.5nm TiO2/156.2nm SiO2/97.7nm TiO2/477.3nm SiO2/105.7nm TiO2/165.3nm SiO2/90.8nm TiO2/96.8nm SiO2/92.8nm TiO2/267.2nm SiO2/256.4nm TiO2/的光学膜,后表面镀有31.4nmSiO2/51.9nm TiO2/206.8nm SiO2的光学膜。
4-平面镜前表面镀有46.8nm TiO2/76.7nm SiO2/76.9nm TiO2/214.1nm SiO2的光学膜,后表面镀有44.3nm TiO2/67.8nm SiO2/52.9nm TiO2/75.5nm SiO2/39.8nm TiO2/87.4nm SiO2/44.6nm TiO2/66.6nm SiO2/53.9nm TiO2/73.6nm SiO2/39.9nm TiO2/87.7nmSiO2/41.9nm TiO2/76.7nm SiO2/58.5nm TiO2/38.2nm SiO2/51.4nm TiO2/126.8nm SiO2/17.3nm TiO2的光学膜。
5-LBO倍频晶体前后表面镀有149.1nm SiO2/112.7nm TiO2/16.1nm SiO2/47.8nmTiO2/75.3nm SiO2的光学膜。
6-平凹镜A凹面镀有180.8nm HfO2/64.5nm MgF2/180.7nm HfO2/78.2nm MgF2/182.1nm HfO2/36.2nm MgF2/202.2nm HfO2/101.1nm MgF2/431.3nm HfO2/57.5nm MgF2/177.7nm HfO2/82.9nm MgF2/179.4nm HfO2/80.6nm MgF2/180.1nm HfO2/79.1nm MgF2/180.7nm HfO2/78.4nm MgF2/180.7nm HfO2/78.2nm MgF2/180.6nm HfO2/78.4nm MgF2/180.5nm HfO2/181.2nm MgF2/104.8nm HfO2/189.3nm MgF2/124.1nm HfO2的光学膜,平面镀有47.6nm HfO2/31.7nm MgF2的光学膜。
7-BBO倍频晶体前后表面镀有104.2nm HfO2/72.38nm MgF2/12.6nm HfO2/120.5nmMgF2的光学膜。
8-平凹镜B凹面镀有155.2nm HfO2/115.4nm MgF2/156.9nm HfO2/113.7nm MgF2/157.8nm HfO2/112.9nm MgF2/158.3nm HfO2/112.9nm MgF2/48.1nm HfO2/33.2nm MgF2/84.4nm HfO2/113.1nm MgF2/45.6nm HfO2/37.8nm MgF2/83.2nm HfO2/113.2nm MgF2/43.2nm HfO2/41.9nm MgF2/82.5nm HfO2/112.9nm MgF2/41.2nm HfO2/46.4nm MgF2/81.5nmHfO2/112.1nm MgF2/159.1nm HfO2/219.0nm MgF2/81.0nm HfO2/218.3nm MgF2/81.1nmHfO2/112.3nm MgF2/158.6nm HfO2/217.8nm MgF2/82.0nm HfO2/216.2nm MgF2/83.1nmHfO2/213.9nm MgF2/84.8nm HfO2的光学膜,平面镀不镀光学膜。
9-228nm滤光片中心波长为228nm±5nm、半高全宽为35nm±10nm、峰值透过率大于30%、截止带为350nm到1150nm。
附图说明
图1是本发明具体实施方式的装置图。
具体实施方式
下面结合图1对本发明进一步详细说明。
本发明公开了一种发射波长228nm全固态激光装置,包括1-808nm半导体激光器;2-808nm聚焦镜;3-Nd:YVO4激光晶体;4-平面镜;5-LBO晶体;6-平凹镜A;7-BBO晶体;8-平凹镜B;9-228nm滤光片。
将1-808nm半导体激光器输出的808nm的激光通过2-808nm聚焦镜会聚到3-Nd:YVO4激光晶体中,3-Nd:YVO4激光晶体产生波长为914nm的激光。
从3-Nd:YVO4激光晶体发射的914nm激光通过4-平面镜,再通过5-LBO倍频晶体,进行倍频,产生波长为457nm的激光。
457nm激光通过6-平凹镜A反射,457nm激光再通过7-BBO倍频晶体,进行倍频,产生波长为228nm的激光。
228nm激光通过8-平凹镜B反射,依次通过7-BBO倍频晶体和6-平凹镜A,最后通过9-228nm滤光片发射228nm全固态激光。

Claims (1)

1.一种发射波长228nm全固态激光装置,其特征在于,包括:808nm半导体激光器;808nm聚焦镜;Nd:YVO4激光晶体;平面镜;LBO晶体;平凹镜A;BBO晶体;平凹镜B;228nm滤光片,808nm半导体激光器发射的808nm激光通过808nm聚焦镜将808nm激光聚焦到Nd:YVO4激光晶体中,Nd:YVO4激光晶体通过808nm激光泵浦发射914nm激光;914nm激光通过平面镜,再通过LBO倍频晶体产生457nm激光;457nm激光通过平凹镜A反射,再通过BBO倍频晶体倍频产生228nm激光;228nm激光通过平凹镜B反射,再依次通过BBO倍频晶体和平凹镜A,最后通过228nm滤光片发射228nm全固态激光。
CN202010444819.2A 2020-05-23 2020-05-23 一种发射波长228nm全固态激光装置 Pending CN111478168A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010444819.2A CN111478168A (zh) 2020-05-23 2020-05-23 一种发射波长228nm全固态激光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010444819.2A CN111478168A (zh) 2020-05-23 2020-05-23 一种发射波长228nm全固态激光装置

Publications (1)

Publication Number Publication Date
CN111478168A true CN111478168A (zh) 2020-07-31

Family

ID=71760432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010444819.2A Pending CN111478168A (zh) 2020-05-23 2020-05-23 一种发射波长228nm全固态激光装置

Country Status (1)

Country Link
CN (1) CN111478168A (zh)

Similar Documents

Publication Publication Date Title
Cavalieri et al. Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua
Patterson et al. Design and performance of a multiterawatt, subpicosecond neodymium: glass laser
US9723703B2 (en) System and method for transverse pumping of laser-sustained plasma
JP2016534398A (ja) レーザ持続プラズマ照明出力により試料を撮像するためのシステム及び方法
KR20000069013A (ko) 광원장치
KR102228496B1 (ko) 레이저-지속 플라즈마 소스의 vuv 방사선 방출을 저해하는 시스템 및 방법
JP2017187465A5 (zh)
CN112366504A (zh) 一种对偏振不敏感的径向偏振光光参量放大器及放大方法
CN211859142U (zh) 一种发射波长228nm全固态激光装置
KR100505081B1 (ko) 노광용 에이알에프 엑시머 레이저 장치
CN111478168A (zh) 一种发射波长228nm全固态激光装置
JP2014035307A (ja) 欠陥検査装置、及び欠陥検査方法
US11209717B2 (en) Two-color wave mixing upconversion in structured waveguides
CN1476131A (zh) 多波长固体谐波拉曼激光器
CN211859143U (zh) 一种深紫外波长激光发射装置
CN115954752A (zh) 一种基于光参量振荡器的可见光波段窄线宽激光装置及其工作方法
Doig et al. Continuously tuneable, quasi-continuous-wave source for ultraviolet resonance Raman spectroscopy
US5134626A (en) Solid laser generator
CN111478169A (zh) 一种深紫外波长激光发射装置
RU2607815C1 (ru) Составной резонатор эксимерного лазера
CN109142300A (zh) 一种Y型228nm激光发射装置
Endo et al. Optimization of high average power FEL beam for EUV lithography application
WO2007033432A1 (en) Solid state laser and resonator
CN2638296Y (zh) 多波长固体谐波拉曼激光器
CN112204703B (zh) 用于用频率转换照明源泵浦激光维持等离子体的系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination