CN111472832A - Coal bed gas self-circulation gas injection yield increasing method - Google Patents

Coal bed gas self-circulation gas injection yield increasing method Download PDF

Info

Publication number
CN111472832A
CN111472832A CN202010273790.6A CN202010273790A CN111472832A CN 111472832 A CN111472832 A CN 111472832A CN 202010273790 A CN202010273790 A CN 202010273790A CN 111472832 A CN111472832 A CN 111472832A
Authority
CN
China
Prior art keywords
gas
extraction
valve
gas extraction
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010273790.6A
Other languages
Chinese (zh)
Other versions
CN111472832B (en
Inventor
刘厅
林柏泉
赵洋
朱传杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202010273790.6A priority Critical patent/CN111472832B/en
Publication of CN111472832A publication Critical patent/CN111472832A/en
Application granted granted Critical
Publication of CN111472832B publication Critical patent/CN111472832B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • E21B43/168Injecting a gaseous medium

Abstract

The invention discloses a coal seam gas self-circulation gas injection yield-increasing method which is suitable for underground coal mine gas extraction.A gas injection drill hole and a gas extraction drill hole are constructed in a coal seam at first, then a gas extraction pipe and a gas injection pipe are respectively placed into the gas extraction drill hole and the gas injection drill hole and then sealed, and a coal seam gas self-circulation gas injection yield-increasing system is formed through the serial work of a gas extraction pump, a filtering device, a gas storage tank, a gas mixing chamber, a gas booster pump and a valve; the alternating reinforced gas extraction method is formed by combining the gas extraction systems connected in parallel, and is simple to operate, low in cost, high in safety, good in extraction effect and wide in application range.

Description

Coal bed gas self-circulation gas injection yield increasing method
Technical Field
The invention relates to the field of coal seam gas extraction, in particular to a coal seam gas self-circulation gas injection yield-increasing method.
Background
With the gradual exhaustion of shallow coal resources, the coal resource exploitation will gradually enter deep coal resources in the future. And the deep coal seam has the characteristics of high gas content, high pressure and the like, and seriously threatens the safe mining and generation of coal mines. Because coal bed gas is not only a clean energy source but also a strong greenhouse gas. According to statistics, the coal bed gas resource amount buried deep between 1000-2000 m in China accounts for 61.2% of the total coal bed gas resource amount in China, and the coal bed gas resource mining method has extremely high mining value. Therefore, the realization of the efficient exploitation of the coal bed gas has important significance for improving the coal mine safety exploitation, realizing the resource utilization and protecting the environment.
Most coal bed gas extraction modes in China at present mainly comprise: (1) directly connecting the coal ash into an extraction system for extraction through an extraction pump; (2) firstly, performing fracturing and permeability increasing on a coal seam through measures such as hydraulic fracturing, hydraulic slotting, loosening blasting and the like, and then pumping in a pumping system; (3) and injecting gases such as nitrogen, carbon dioxide and the like through a high-pressure pump to perform displacement extraction on the coal seam gas. However, the measures have the defects of high cost, low extraction efficiency, high construction risk and the like. Therefore, in order to improve the efficient extraction effect and the extraction concentration of the coal seam gas, a brand new extraction mode and method are urgently needed to meet the requirement of efficient extraction of the coal mine underground gas.
Disclosure of Invention
Aiming at the technical defects, the invention aims to provide a coal bed gas self-circulation gas injection yield increasing method which is simple to operate, low in cost, high in safety and good in extraction effect.
In order to solve the technical problems, the invention adopts the following technical scheme:
the invention provides a coal bed gas self-circulation gas injection production increasing method, which specifically comprises the following steps:
s1: firstly, respectively constructing two gas extraction drill holes and one gas injection drill hole from a roadway drill site to a coal seam, then respectively placing a gas extraction pipe I, a gas extraction pipe II and a gas injection pipe into the gas extraction drill holes and the gas injection drill holes, and then sealing the holes;
s2: connecting the first gas extraction pipe and the second gas extraction pipe with a gas suction port of a gas extraction pump through pipelines, and connecting a gas injection pipe with a gas outlet of a gas booster pump through a pipeline;
s3: the gas outlet of the gas extraction pump is divided into two paths, one path is connected with the gas extraction system, the other path is connected with the filtering device, a fourth valve and a first valve are respectively arranged on pipelines among the gas extraction system, the filtering device and the gas extraction pump, the gas outlet of the filtering device is sequentially connected with the gas storage tank, the gas mixing chamber and the gas booster pump through pipelines, and a second valve and a third valve are respectively arranged on pipelines among the gas storage tank, the gas booster pump and the gas mixing chamber;
s4: closing a valve IV, opening a gas extraction pump and a valve I, starting gas extraction of the coal seam, filtering waste residues and waste water generated in the extraction process of the extracted gas through a filtering device, then entering a gas storage tank, and then opening a valve II and controlling the opening degree of the valve II to enable the gas to enter a gas mixing chamber according to a certain flow;
s5: in the gas mixing chamber, firstly, the concentration of the inflowing gas is detected through the gas concentration detection function of the gas mixing chamber, and if the concentration of the gas is within the gas explosion limit, the concentration of the gas is reduced to be below the explosion limit through injecting dry air for mixing; then opening a valve III and a gas booster pump, and injecting the mixed gas into the coal bed through a gas injection pipe for displacement operation after the mixed gas is boosted to a set critical value through the gas booster pump;
s6: after the displacement is carried out for a certain time, closing the valve I, the valve II, the valve III and the gas booster pump;
s7: opening the valve IV, and connecting the gas extraction pipe I and the gas extraction pipe II into a gas extraction system through a gas extraction pump to perform extraction operation;
s8: and when the gas concentration in the gas extraction system is reduced to be below a set critical value, repeating the steps S4-S7 until the extraction operation is finished.
Preferably, in step S1, the gas injection borehole is located at a middle position between the two gas extraction boreholes.
Preferably, in step S8, the gas concentration critical value in the gas extraction system is set to 20%.
Preferably, in step S5, the critical value of the pressurization of the mixed gas by the gas booster pump is set to 10 Mpa.
Preferably, the displacement time is set to be hours in step S6.
The invention has the beneficial effects that: according to the self-displacement method for the coal bed gas, the self-displacement method for the coal bed gas is formed through the self-circulation system for the coal bed gas, so that a large amount of external gas is prevented from being mixed into the coal bed, the displacement cost is saved, and the displacement risk is reduced; meanwhile, the coal seam gas is circularly displaced by the extracted gas, so that the gas displacement effect is improved, and an alternating reinforced gas extraction method is formed by combining the gas extraction systems connected in parallel.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the drawings without creative efforts.
Fig. 1 is a diagram of a connection system of components in a coal bed gas self-circulation gas injection stimulation method according to an embodiment of the present invention.
Description of the drawings: 1-a drill site, 2-a gas injection pipe, 3-a gas extraction pipe I, 4-a gas extraction pipe II, 5-a coal bed, 6-a gas extraction pump, 7-a valve I, 8-a filtering device, 9-a gas storage tank, 10-a valve II, 11-a gas mixing chamber, 12-a valve III, 13-a gas booster pump, 14-a valve IV and 15-a gas extraction system.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
As shown in fig. 1, a coal bed gas self-circulation gas injection production increasing method specifically comprises the following steps:
s1: firstly, respectively constructing two gas extraction drill holes and a gas injection drill hole from a roadway drill site 1 to a coal seam 5, wherein the gas injection drill hole is positioned in the middle position between the two gas extraction drill holes, and then respectively placing a gas extraction pipe I3, a gas extraction pipe II 4 and a gas injection pipe 2 into the gas extraction drill hole and the gas injection drill hole, and then sealing the holes;
s2: connecting the first gas extraction pipe 3 and the second gas extraction pipe 4 with an air suction port of a gas extraction pump 6 through pipelines, and connecting the gas injection pipe 2 with a gas outlet of a gas booster pump 13 through a pipeline;
s3: the gas outlet of the gas extraction pump (6) is divided into two paths, one path is connected with the gas extraction system 15, the other path is connected with the filtering device 8, the pipelines among the gas extraction system 15, the filtering device 8 and the gas extraction pump 6 are respectively provided with a valve IV 14 and a valve I7, the gas outlet of the filtering device 8 is sequentially connected with the gas storage tank 9, the gas mixing chamber 11 and the gas booster pump 13 through pipelines, and the pipelines among the gas storage tank 9, the gas booster pump 13 and the gas mixing chamber 11 are respectively provided with a valve II 10 and a valve III 12;
s4: closing a fourth valve 14, opening a gas extraction pump 6 and a first valve 7, starting gas extraction of the coal seam 5, filtering waste residues and waste water generated in the extraction process by using an extracted gas through a filtering device 8, then entering a gas storage tank 9, and then opening a second valve 10 and controlling the opening degree of the second valve 10 to enable the gas to enter a gas mixing chamber 11 according to a certain flow rate;
s5: the concentration of the gas flowing in the gas mixing chamber 11 is detected through the gas concentration detection function of the gas mixing chamber, and if the concentration of the gas is within the gas explosion limit, the concentration of the gas is reduced to be below the explosion limit through injecting dry air for mixing; then opening a third valve 12 and a gas booster pump 13, boosting the mixed gas to 10Mpa by the gas booster pump 13, and injecting the gas into the coal seam 5 through a gas injection pipe 2 for displacement operation;
s6: after the displacement is carried out for 24 hours, closing the first valve 7, the second valve 10, the third valve 12 and the gas booster pump 13;
s7: opening a fourth valve 14, and connecting the first gas extraction pipe 3 and the second gas extraction pipe 4 into a gas extraction system 15 through a gas extraction pump 6 for extraction;
s8: and when the gas concentration in the gas extraction system 15 is reduced to be below 20%, repeating the steps S4-S7 until the extraction operation is finished.
It will be apparent to those skilled in the art that various changes and modifications may be made in the present invention without departing from the spirit and scope of the invention. Thus, if such modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include such modifications and variations.

Claims (5)

1. A coal bed gas self-circulation gas injection production increasing method is characterized by comprising the following steps:
s1: firstly, respectively constructing two gas extraction drill holes and a gas injection drill hole from a roadway drill site (1) to a coal seam (5), then respectively placing a gas extraction pipe I (3), a gas extraction pipe II (4) and a gas injection pipe (2) into the gas extraction drill holes and the gas injection drill holes, and then sealing the holes;
s2: connecting a first gas extraction pipe (3) and a second gas extraction pipe (4) with an air suction port of a gas extraction pump (6) through a pipeline, and connecting a gas injection pipe (2) with a gas outlet of a gas booster pump (13) through a pipeline;
s3: the gas outlet of the gas extraction pump (6) is divided into two paths, one path is connected with the gas extraction system (15), the other path is connected with the filtering device (8), pipelines among the gas extraction system (15), the filtering device (8) and the gas extraction pump (6) are respectively provided with a valve IV (14) and a valve I (7), the gas outlet of the filtering device (8) is sequentially connected with the gas storage tank (9), the gas mixing chamber (11) and the gas booster pump (13) through pipelines, and pipelines among the gas storage tank (9), the gas booster pump (13) and the gas mixing chamber (11) are respectively provided with a valve II (10) and a valve III (12);
s4: closing a fourth valve (14), opening a gas extraction pump (6) and a first valve (7), starting gas extraction of the coal seam (5), filtering waste residues and waste water generated in the extraction process by using the extracted gas through a filtering device (8), then entering a gas storage tank (9), and then opening a second valve (10) and controlling the opening degree of the second valve (10) to enable the gas to enter a gas mixing chamber (11) according to a certain flow rate;
s5: the concentration of the gas flowing in the gas mixing chamber (11) is detected through the gas concentration detection function of the gas mixing chamber, and if the concentration of the gas is within the gas explosion limit, the concentration of the gas is reduced to be below the explosion limit through injecting dry air for mixing; then opening a valve III (12) and a gas booster pump (13), and after the mixed gas is boosted to a set critical value through the gas booster pump (13), injecting the gas into the coal seam (5) through a gas injection pipe (2) for displacement operation;
s6: after a certain time of displacement, closing the valve I (7), the valve II (10), the valve III (12) and the gas booster pump (13);
s7: opening a fourth valve (14), and connecting the first gas extraction pipe (3) and the second gas extraction pipe (4) into a gas extraction system (15) through a gas extraction pump (6) to perform extraction operation;
s8: and when the gas concentration in the gas extraction system (15) is reduced to be below the set critical value, repeating the steps S4-S7 until the extraction operation is finished.
2. The coal seam gas self-circulation gas injection stimulation method of claim 1, wherein in the step S1, the gas injection drill hole is located in the middle position between the two gas extraction drill holes.
3. The coal seam gas self-circulation gas injection stimulation method as claimed in claim 1, wherein in the step S8, the gas concentration critical value in the gas extraction system (15) is set to be 20%.
4. The coal seam gas self-circulation gas injection production increasing method of claim 1, wherein in step S5, the critical value of the pressure increase of the mixed gas through the gas booster pump (13) is set to 10 Mpa.
5. The self-circulation gas injection stimulation method for coal bed gas as claimed in claim 1, wherein the displacement time is set to 24 hours in step S6.
CN202010273790.6A 2020-04-09 2020-04-09 Coal bed gas self-circulation gas injection yield increasing method Active CN111472832B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010273790.6A CN111472832B (en) 2020-04-09 2020-04-09 Coal bed gas self-circulation gas injection yield increasing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010273790.6A CN111472832B (en) 2020-04-09 2020-04-09 Coal bed gas self-circulation gas injection yield increasing method

Publications (2)

Publication Number Publication Date
CN111472832A true CN111472832A (en) 2020-07-31
CN111472832B CN111472832B (en) 2021-01-15

Family

ID=71751605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010273790.6A Active CN111472832B (en) 2020-04-09 2020-04-09 Coal bed gas self-circulation gas injection yield increasing method

Country Status (1)

Country Link
CN (1) CN111472832B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112696177A (en) * 2020-12-30 2021-04-23 太原理工大学 Coal bed gas pressure device and method based on compressed air system
CN112761586A (en) * 2021-01-22 2021-05-07 中国矿业大学 Drilling methane self-circulation blasting fracturing enhanced extraction method
CN113404471A (en) * 2021-07-06 2021-09-17 煤炭科学技术研究院有限公司 Gas injection displacement coal seam gas extraction promoting coal seam gas drilling arrangement method
CN113565470A (en) * 2021-06-18 2021-10-29 煤炭科学技术研究院有限公司 Gas injection displacement pneumatic pressurization system and method for promoting coal seam gas extraction
CN114320257A (en) * 2021-12-30 2022-04-12 中国矿业大学 Closed-loop system and method for enhanced extraction of heat injection coal seam after underground gas combustion of coal mine
WO2022183843A1 (en) * 2021-03-01 2022-09-09 柴兆喜 Gas extraction coal hole of pressure-equalizing cycle mine
WO2022193802A1 (en) * 2021-03-18 2022-09-22 柴兆喜 Wellbore for pure gas extraction

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085274A (en) * 1991-02-11 1992-02-04 Amoco Corporation Recovery of methane from solid carbonaceous subterranean of formations
US20010045291A1 (en) * 1998-06-23 2001-11-29 The University Of Wyoming Research Corporation, D/B/A Western Research Institute Enhanced coalbed gas production system
CN104234740A (en) * 2014-09-03 2014-12-24 太原理工大学 Low-medium pressure air displacement high-pressure coalbed gas system and method thereof
CN104481575A (en) * 2014-11-06 2015-04-01 中国矿业大学 Hot steam displacement gas method for improving gas extraction efficiency
US20150167439A1 (en) * 2013-12-13 2015-06-18 Chevron U.S.A. Inc. System and Methods for Controlled Fracturing in Formations
CN105443081A (en) * 2016-01-08 2016-03-30 中国矿业大学(北京) Gas extraction equipment and method based on alternation thought
CN205677660U (en) * 2016-06-12 2016-11-09 河南理工大学 System that a kind of hypotonic coal seam supercritical carbon dioxide is anti-reflection
CN106285604A (en) * 2016-11-01 2017-01-04 中国矿业大学 A kind of microwave-assisted supercritical carbon dioxide circulation frac system and method
CN107420126A (en) * 2017-07-26 2017-12-01 柴兆喜 Pressure circulation mine gas extraction system
CN109026128A (en) * 2018-06-22 2018-12-18 中国矿业大学 Multistage combustion shock wave fracturing coal body and heat injection alternation strengthen gas pumping method
CN109356640A (en) * 2018-10-25 2019-02-19 四川大学 A kind of broken coal permeability-increasing gas enhanced gas extraction system of the cold alternating of heat
CN109505565A (en) * 2018-12-18 2019-03-22 中国矿业大学 A method of water filling and gas injection alternation displacement draining coal seam gas
CN110792468A (en) * 2019-09-06 2020-02-14 西安科技大学 Underground coal mine cyclic pulse gas injection displacement gas extraction system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085274A (en) * 1991-02-11 1992-02-04 Amoco Corporation Recovery of methane from solid carbonaceous subterranean of formations
US20010045291A1 (en) * 1998-06-23 2001-11-29 The University Of Wyoming Research Corporation, D/B/A Western Research Institute Enhanced coalbed gas production system
US20150167439A1 (en) * 2013-12-13 2015-06-18 Chevron U.S.A. Inc. System and Methods for Controlled Fracturing in Formations
CN104234740A (en) * 2014-09-03 2014-12-24 太原理工大学 Low-medium pressure air displacement high-pressure coalbed gas system and method thereof
CN104481575A (en) * 2014-11-06 2015-04-01 中国矿业大学 Hot steam displacement gas method for improving gas extraction efficiency
CN105443081A (en) * 2016-01-08 2016-03-30 中国矿业大学(北京) Gas extraction equipment and method based on alternation thought
CN205677660U (en) * 2016-06-12 2016-11-09 河南理工大学 System that a kind of hypotonic coal seam supercritical carbon dioxide is anti-reflection
CN106285604A (en) * 2016-11-01 2017-01-04 中国矿业大学 A kind of microwave-assisted supercritical carbon dioxide circulation frac system and method
CN107420126A (en) * 2017-07-26 2017-12-01 柴兆喜 Pressure circulation mine gas extraction system
CN109026128A (en) * 2018-06-22 2018-12-18 中国矿业大学 Multistage combustion shock wave fracturing coal body and heat injection alternation strengthen gas pumping method
CN109356640A (en) * 2018-10-25 2019-02-19 四川大学 A kind of broken coal permeability-increasing gas enhanced gas extraction system of the cold alternating of heat
CN109505565A (en) * 2018-12-18 2019-03-22 中国矿业大学 A method of water filling and gas injection alternation displacement draining coal seam gas
CN110792468A (en) * 2019-09-06 2020-02-14 西安科技大学 Underground coal mine cyclic pulse gas injection displacement gas extraction system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
方志明等: "混合气体驱替煤层气技术的可行性研究", 《岩土力学》 *
郝定溢等: "我国注气驱替煤层瓦斯技术应用现状与展望", 《中国矿业》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112696177A (en) * 2020-12-30 2021-04-23 太原理工大学 Coal bed gas pressure device and method based on compressed air system
CN112696177B (en) * 2020-12-30 2022-04-01 太原理工大学 Application method of coal bed gas pressure device based on compressed air system
CN112761586A (en) * 2021-01-22 2021-05-07 中国矿业大学 Drilling methane self-circulation blasting fracturing enhanced extraction method
CN112761586B (en) * 2021-01-22 2022-04-12 中国矿业大学 Drilling methane self-circulation blasting fracturing enhanced extraction method
WO2022183843A1 (en) * 2021-03-01 2022-09-09 柴兆喜 Gas extraction coal hole of pressure-equalizing cycle mine
WO2022193802A1 (en) * 2021-03-18 2022-09-22 柴兆喜 Wellbore for pure gas extraction
CN113565470A (en) * 2021-06-18 2021-10-29 煤炭科学技术研究院有限公司 Gas injection displacement pneumatic pressurization system and method for promoting coal seam gas extraction
CN113404471A (en) * 2021-07-06 2021-09-17 煤炭科学技术研究院有限公司 Gas injection displacement coal seam gas extraction promoting coal seam gas drilling arrangement method
CN114320257A (en) * 2021-12-30 2022-04-12 中国矿业大学 Closed-loop system and method for enhanced extraction of heat injection coal seam after underground gas combustion of coal mine
CN114320257B (en) * 2021-12-30 2023-11-03 中国矿业大学 Closed loop system and method for enhanced extraction of coal seam after burning of underground coal mine gas

Also Published As

Publication number Publication date
CN111472832B (en) 2021-01-15

Similar Documents

Publication Publication Date Title
CN111472832B (en) Coal bed gas self-circulation gas injection yield increasing method
AU2014336858B2 (en) Method for enhanced fuel gas extraction by coal mine underground gas-liquid dual-phase alternating phase-driven fracturing of coal body
US11131172B2 (en) Method for extracting gas by fracturing coal seam through combination of hydraulic slotting and multi-stage combustion impact wave
CN108678802B (en) Coal mine drilling, punching and drawing integrated outburst prevention device and method
CN106988719B (en) Anti-reflection system and anti-reflection method for circularly injecting hot water and liquid nitrogen into coal seam
CN109162755B (en) Rock cross-cut coal uncovering method combining electric pulse and grouting reinforcement
CN202064905U (en) Gas lifting and liquid discharging device for vehicle natural gas compressor
CN104912585B (en) A kind of lossless liquid nitrogen system and method for administering coal-field fire
CN107575204A (en) A kind of underground coal mine slot pressurize is oriented to pressure break anti-reflection method
CN112761586B (en) Drilling methane self-circulation blasting fracturing enhanced extraction method
CN207761627U (en) A kind of oil well air water mixed water injection device
CN102518412A (en) Method for mining coal and gas by hydraulic jet grouting washout
CN104989356A (en) Underground coal mine coal seam drilling high-pressure gas fracturing and permeability increasing method and system
CN203531877U (en) Underground coal mine fracturing connecting device
CN112302612A (en) Functional slickwater temporary blocking and steering volume fracturing method for synchronously implanting oil displacement agent
CN110725700B (en) Coal seam spraying reinforcement and graded glue injection cooperative hole sealing method
CN115539130B (en) Coal seam gas exploitation and CO (carbon monoxide) enhancement of non-shearable layer 2 Sealing method
CN108661603A (en) Nitrogen injection induces coal seam and improves Methane Recovery Recovery method from transformation
CN110924900A (en) Method for hydraulic power-liquid nitrogen composite uniform fracturing of coal body
CN203488154U (en) Portable oil well casing gas recovery device
CN102889094A (en) Coal seam water injection system
CN105735958A (en) Method and system for increasing coal bed gas permeability based on water vapor injection
CN111219186A (en) Method for storing compressed gas energy by utilizing deep aquifer
CN115977603A (en) Gas-water CO-injection CO based on multistage fracturing 2 Hydrate sealing cover layer generation system and regulation and control method
CN207879373U (en) Inhibit coal and gas prominent device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant