CN111471634A - Method for genetically modifying bacillus subtilis, strain obtained by method and application of strain - Google Patents

Method for genetically modifying bacillus subtilis, strain obtained by method and application of strain Download PDF

Info

Publication number
CN111471634A
CN111471634A CN202010178390.7A CN202010178390A CN111471634A CN 111471634 A CN111471634 A CN 111471634A CN 202010178390 A CN202010178390 A CN 202010178390A CN 111471634 A CN111471634 A CN 111471634A
Authority
CN
China
Prior art keywords
fragment
seq
dhbb
primer
glpk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010178390.7A
Other languages
Chinese (zh)
Inventor
宋浩
杨绍梅
张国银
蔡志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University Marine Technology Research Institute
Original Assignee
Tianjin University Marine Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University Marine Technology Research Institute filed Critical Tianjin University Marine Technology Research Institute
Priority to CN202010178390.7A priority Critical patent/CN111471634A/en
Publication of CN111471634A publication Critical patent/CN111471634A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/66Preparation of oxygen-containing organic compounds containing the quinoid structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01261Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1) sn-Glycerol-1-phosphate dehydrogenase (1.1.1.261)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/05Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
    • C12Y101/05003Glycerol-3-phosphate dehydrogenase (1.1.5.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/010071-Deoxy-D-xylulose-5-phosphate synthase (2.2.1.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/010741,4-Dihydroxy-2-naphthoate polyprenyltransferase (2.5.1.74)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/0103Glycerol kinase (2.7.1.30)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03003Methylglyoxal synthase (4.2.3.3)

Abstract

The invention discloses a method for genetically modifying bacillus subtilis, which comprises the following steps: starting strain MK3-MEP 123-deltadhbBConstructing; (II) overexpression of Glycerol kinase GeneglpKAnd glycerol-3-phosphate dehydrogenase geneglpD;(III) knocking out methylglyoxal synthase coding genemgsAAnd a gene encoding glycerol-1-phosphate dehydrogenasearaM。The invention is sequentially over-expressedglpKglpDIncreasing glycerol contentThe utilization rate is used for promoting the synthesis of dihydroxyacetone phosphate and further increasing the synthesis of MK-7; knock out in sequencemgsAaraMRespectively blocking the synthesis of pyruvaldehyde and glycerol 1-phosphate, reducing the consumption of dihydroxyacetone phosphate and promoting the synthesis of MK-7, fermenting the obtained recombinant strain BSMK _4 in a 500m L shake flask for 96 hours, wherein the yield of MK-7 is 70.3 mg/L, which is compared with that of a starter strain MK3-MEP 123-deltadhbB(55.6 mg/L) by 26.4%.

Description

Method for genetically modifying bacillus subtilis, strain obtained by method and application of strain
The technical field is as follows:
the invention relates to a method for genetically modifying bacillus subtilis, belonging to the field of biological genetic engineering.
Background art:
the natural fat-soluble vitamin K comprises plant-derived vitamin K1(also called phytoquinone, PK) and vitamin K derived from bacteria2(also known as menadione, MK). According to the number of isoprene units in the side chain, there are 14 kinds of menaquinones, which are marked as MK-n, and MK-4, MK-7 and the like are common. In prokaryotes, MK-n is involved in electron transport in the respiratory chain. For humans and other mammals, vitamin K, because it is an important cofactor for the translational conversion of glutamate residues of specific proteins in blood and bone to gamma-carboxyglutamic acid (Gla), serves to maintain calcium homeostasis, inhibit vascular wall calcification, support endothelial integrity, promote bone mineralization, and participate in tissue turnover and cell growth control. Common vitamin K-dependent proteins include coagulation factors (II, VII, IX, X and prothrombin), protein C and protein S, osteocalcin, Matrix Gla Protein (MGP), periostin, and the like. Studies have shown that, despite the high PK content in food, PK is less bioactive than MK-n (especially MK-7); long-chain MK-n, such as MK-7, has a more durable effect on normal coagulation than PK and MK-4. Therefore, MK-7 is more popular in the food, pharmaceutical and health industries due to its long half-life and good bioavailability, and is widely used as a dietary supplement or drug for the treatment of osteoporosis [8 ]]Arterial calcification, cardiovascular disease, cancer, parkinson's disease, and the like.
The traditional MK-7 production method comprises a chemical synthesis method and a microbial fermentation method, although the process for producing MK-7 by the chemical synthesis method is continuously innovated, the defects of low yield, more byproducts, organic solvent residue, production environment danger and environmental potential are not completely solved, and the production and application of MK-7 are restricted, the large-scale and high-density continuous submerged fermentation (mainly based on fermentation of Bacillus natto) of the microorganisms produces MK-7 which is more advantageous due to the characteristics of controllable quality, safety, greenness, nature and the like, Toshiro Sato and the like separates a strain B.subtilis from Japanese food natto, screens a menaquinone resistant strain by the traditional mutagenesis, can produce 35 mg/L MK-7 after fermenting for 4 days in a 7L tank, screens the screened diphenylamine resistant strain, can be fermented for 1 day at 37 ℃, can produce 60 mg/L MK-7 after fermenting for 5 days at 45 ℃, screens a 1-hydroxy-2-naphthoic acid resistant mutant strain B.subtilis and the strain B.7, the screened by a fermentation method for producing 1-hydroxy-2-naphthoic acid resistant mutant strain B.7, the strain A.7, the strain can be produced by fermentation for 4 days at 37 ℃ and the strain A, the strain A2 strain A, the strain A3, the strain A, the strain can be produced by the fermentation process of fermentation of the strain A, the strain A, the strain A3, the strain A, the strain B-7, the strain is produced by the strain A, the strain B.7, the strain is produced by the strain A, the fermentation, the strain A, the fermentation of the strain A, the strain is produced by the strain A, the fermentation of the strain is produced by the fermentation of the strain A, the strain is produced by the strain A, the fermentation of the strain is produced by the fermentation, the fermentation of the fermentation, the fermentation of the strain A, the fermentation of the strain A, the.
Until now, the traditional mutagenesis or fermentation optimization is basically adopted for producing MK-7 by using Bacillus natto, and the methods can improve the yield of MK-7, but cannot accurately modify a target gene, have higher secondary mutation probability and longer genetic breeding period.
Disclosure of Invention
The invention aims to solve the technical problem of providing a gene modification method, and particularly provides a gene modification method which takes MK3-MEP 123-delta dhbB derived from bacillus subtilis 168 as an initial strain, surveys the influence of the initial strain on MK-7 synthesis by promoting the synthesis of dihydroacetone phosphate and reducing the consumption of the dihydroacetone phosphate, and provides a foundation for constructing an MK-7 high-yield strain by genetically modifying bacillus natto in the future.
Glycerol has been shown to be the optimal carbon source for MK-7 synthesis. In bacillus subtilis, glycerol enters cells by a mode of promoting diffusion with the help of membrane channel protein, and is sequentially subjected to phosphorylation by glycerol kinase and oxidation by glycerol-3-phosphate dehydrogenase to generate dihydroxyacetone phosphate (DHAP). The enzymatic synthesis of glyceraldehyde-3-phosphate (G3P) from DHAP by triose phosphate isomerase, and the subsequent glycolysis process provides precursors for shikimic acid pathway and methylerythritol-4-phosphate pathway, respectively, to synthesize chorismate and heptaenylpyrophosphate, which are important precursors for the synthesis of menaquinone-7. In addition, DHAP can also be catalyzed by methylglyoxal synthase to generate methylglyoxal; catalyzing by glycerol-1-phosphate dehydrogenase to generate glycerol-1-phosphate for synthesizing phosphoglycerol glycolipid.
To date, no comprehensive systematic study of the de novo MK-7 biosynthetic pathway has been discovered. Bacillus subtilis is one of the best characterized model microorganisms, as it has many studies on biochemistry, genetics and molecular biology, its growth rate is fast and it is 'generally regarded as safe' (GRAS). And the complete genome sequence of the bacillus subtilis 168 is sequenced, which is beneficial to constructing industrial production strains by means of genetic engineering. Thus, the present invention selects Bacillus subtilis 168 as a underpant cell for a comprehensive systematic study of the overall synthetic pathway for MK-7 synthesis from glycerol.
The invention takes bacillus subtilis 168 as a starting bacterium, and constructs a recombinant strain MK3-MEP 123-delta dhbB by overexpressing 1, 4-dihydroxy-2-naphthoic acid heptanenyltransferase (MenA) of a menaquinone-7 pathway, 1-deoxyxylulose-5-phosphate synthase (Dxs) of a methylerythritol-4-phosphate pathway, 1-deoxyxylulose-5-phosphate reductoisomerase (Dxr), methylerythritol 4-phosphocytidylyltransferase (YacM) and methylerythritol 2, 4-cyclodiphosphate synthase (YacN) and knocking out dhbB gene (coding isochorismate lyase). FIG. 1 shows the biosynthesis pathway of MK-7 in Bacillus subtilis, which uses constructed MK3-MEP 123-delta dhbB as an initial strain, firstly overexpresses glycerol kinase (GlpK) and glycerol-3-phosphate dehydrogenase (GlpD), promotes the synthesis of DHAP, and examines the influence of the DHAP on the synthesis of MK-7; then, the mgsA gene (coding a methylglyoxal synthetase) and the araM gene (coding a glycerol-1-phosphate dehydrogenase) are knocked out, the consumption of DHAP is reduced, and the influence of the DHAP on MK-7 synthesis is examined; finally, the synthesis of DHAP can promote the synthesis of MK-7, namely DHAP is an important intermediate metabolite influencing the synthesis of MK-7, and theoretical basis is provided for industrially constructing the high-yield MK-7 strain of Bacillus natto by a metabolic engineering means in the future.
Description of the drawings:
FIG. 1 is the biosynthetic pathway for MK-7 in Bacillus subtilis.
Substance abbreviation: gly, glycerol; Gly-3P, glycerol-3-phosphate; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde-3-phosphate; MG, methylglyoxal; G1P, glyceraldehyde-1-phosphate; E4P, erythrose-4-phosphate; PEP, phosphoenolpyruvate; pyr, pyruvic acid; CHA, chorismic acid; HepPP, heptaenylpyrophosphoric acid; MK-7, menaquinone-7; SA, shikimic acid; MEP, methylerythritol-4-phosphate. Enzyme: GlpK, glycerol kinase; GlpD, glycerol-3-phosphate dehydrogenase; MgsA, methylglyoxal synthase; AraM, glycerol-1-phosphate dehydrogenase.
FIG. 2 is a diagram showing the growth of the starting bacteria MK3-MEP 123-. DELTA.dhbB and the recombinant bacteria BSMK _1 and BSMK _2 (FIG. 2A) and the yield of MK-7 (FIG. 2B); relative transcript level of the gene glpK in recombinant BSMK _1 compared to the starting strain MK3-MEP 123-. DELTA.dhbB (FIG. 2C); relative transcript level of the gene glpD in recombinant strain BSMK _2 compared to control strain BSMK _1 (fig. 2D). FIG. 3 is a graph showing the growth of cells (FIG. 3A) and the MK-7 production of control bacteria BSMK _2 and knockout bacteria BSMK _3 and BSMK _4 (FIG. 3B).
The specific implementation mode is as follows:
(A) Material
Strains, plasmids and media
All strains and plasmid information referred to in this example are detailed in table 1.
L B medium (peptone 10 g/L, yeast extract 5 g/L0, sodium chloride 10 g/L) was used for general culture of B.subtilis, solid medium was supplemented with 15 g/L agar powder, neomycin 16 μ g/m L, or chloramphenicol 8 μ g/m L, fermentation medium: glycerol 30m L/L, soybean peptone 60 g/L, yeast extract 5 g/L, K2HPO43g/L,MgSO4·7H2O0.5g/L,pH7.3。
Table 1 strains and plasmids involved in the experiment
Figure BDA0002411606950000031
Figure BDA0002411606950000041
Reagent and instrument
FastTaq enzyme, Hifi DNA polymerase and dNTP are all purchased from Beijing Quanjin Biotechnology Limited, bacterial total RNA extraction Kit TRIzol Reagent is purchased from Invitrogen, ReverTra Ace qPCR RT Kit, SYBRGreen Real-time PCR Master Mix Kit is purchased from TOYOBO, standard MK-7 is purchased from ChromaDex, and the rest biochemical reagents are imported or domestic analytical pure reagents.
Primers used for PCR are shown in Table 2.
TABLE 2PCR primer sequences
Figure BDA0002411606950000042
Figure BDA0002411606950000051
Method of producing a composite material
DNA manipulation
All DNA fragments were from PCR amplification; the DNA fragments used for transformation are spliced by adopting an overlapping PCR method. Preparation and transformation of the subtilis competent cells Using Spizisen method [23 ]]. Both gene overexpression and gene knockout on chromosomes employ label-free modification methods [24]I.e. using counter-selection boxes (P)araNeo) and selection cassette (cat-araR). Primer synthesis and DNA sequencing were both responsible for Jinweizhi Biotechnology, Inc. (Suzhou, China).
The method comprises the following specific steps:
construction of starting Strain MK3-MEP 123-. DELTA.dhbB
Overexpression of the menA gene at the yxlA locus on the chromosome of B.subtilis. Firstly, using chromosome of B.subtilis 168 as a template, and respectively amplifying fragments U (1115bp), A (1057bp), D (1053bp) and G (806bp) by using primers yxlA-menA-U1/yxlA-menA-U2q, yxlA-menA-1q/yxlA-menA-2, yxlA-menA-D1q/yxlA-menA-D2, yxlA-menA-G1 q/yxlA-menA-G2; the plasmid pUC57-1.8k-P1 was used as a template, and the promoter-containing P was amplified with primers yxlA-menA-P1/yxlA-menA-P2lapSFragment P of (442 bp); fragment CR (2069bp) was amplified using primer yxlA-menA-CR1q/CR2, using chromosome of BS168NUm as a template. Then, splicing the segment U, P and A into a segment UPA (2614bp) by using a primer yxlA-menA-U1/yxlA-menA-2 through an overlapping PCR method; then the fragment UPA and the fragment D are spliced into a fragment UPAD (3667bp) by using a primer yxlA-menA-U1/yxlA-menA-D2; finally, the fragment UPAD, the fragment CR and the fragment G are spliced into a fragment UPADCRG (6542bp) by using a primer yxlA-menA-U1/yxlA-menA-G2. And transforming the UPADCRG fragment into a competent cell of a recipient bacterium BS168NU, and finally obtaining a recombinant strain MK3 with menA gene integrated at a yxlA locus through two-step screening.
Overexpression of dxs Gene at the yjoB site on the B.subtilis chromosome. Firstly, using chromosome of B.subtilis 168 as a template, and respectively amplifying fragments U (1236bp), s (1947bp), D (808bp) and G (697bp) by using primers yjoB-dxs-U1/yjoB-dxs-U2q, yjoB-dxs-1q/yjoB-dxs-2, yjoB-dxs-D1q/yjoB-dxs-D2 and yjoB-dxs-G1 q/yjoB-dxs-G2; plasmid pUC57-1.8k-P2 was used as a template, and primer P was used431/P 432 amplification of a plasmid containing promoter P43Fragment P of (232 bp); fragment CR (2069bp) was amplified using primer yjoB-dxs-CR1q/CR2, using chromosome of BS168NUm as a template. Then, the primer yjoB-dxs-U1/yjoB-dxs-2 is used for splicing the segment U, P and s into a segment UPs (3415bp) by an overlapping PCR method; then splicing the fragment UPs and the fragment D into a fragment UPsD (4223bp) by using a primer yjoB-dxs-U1/yjoB-dxs-D2; finally, the fragment UPsD, the fragment CR and the fragment G were spliced into a fragment UPsDCRG (6989bp) by using the primer yjoB-dxs-U1/yjoB-dxs-G2. The UPsDCRG fragment is transformed into a competent cell of receptor bacterium MK3, and the recombinant strain MK3-MEP1 with dxs gene integrated at the yjoB locus is finally obtained through two-step screening.
On the basis of the strain MK3-MEP1, dxr and yacM-yacN are sequentially overexpressed to obtain a recombinant strain MK3-MEP 123. Using chromosome of B.subtilis 168 as template, respectively amplifying fragments U (1003bp), D (815bp) and G (605bp) by primers dhbB-U1/dhbB-U2, dhbB-D1q/dhbB-D2 and dhbB-G1 q/dhbB-G2; fragment CR (2069bp) carrying the selection cassette (cat-araR) was amplified with primer dhbB-CR1q/CR2 using chromosome of BS168NUm as template. Firstly, splicing the fragments U and D into UD (1818bp) by overlap PCR by using primers dhbB-U1/dhbB-D2; the three fragments UD, GR and G were then spliced into UDCRG (4492bp) by the overlap PCR method using primers dhbB-U1/dhbB-G2. And transforming the UDCRG fragment into a competent cell of a receptor bacterium MK3-MEP123, and finally screening to obtain a recombinant strain MK3-MEP 123-delta dhbB with a gene dhbB knocked out.
Patent publication No. CN108715824A, which discloses the sequence of primers and fragments for over-expressing menA.
(II) overexpression of the Glycerol kinase Gene glpK and the Glycerol-3-phosphate dehydrogenase Gene glpD
Construction of glpK overexpression strains. Firstly, using chromosome of starting bacterium B.subtilis MK3-MEP 123-delta dhbB as template, respectively using primers pksJ-glpK-U1/pksJ-glpK-U2q, pksJ-glpK-1q/pksJ-glpK-2, pksJ-glpK-D1q/pksJ-glpK-D2 and pksJ-glpK-G1 q/pksJ-glpKK-G2 to amplify fragment U (shown as SEQ ID No.36, 1164bp), K (shown as SEQ ID No.37, 1783bp), D (shown as SEQ ID No.38, 948bp) and G (shown as SEQ ID No.39, 990 bp); amplifying a fragment CR (2069bp shown as SEQ ID No. 40) by using a primer pksJ-glpK-CR1q/CR2 by using a chromosome of BS168NUm as a template; plasmid pUC57-1.8k-P1 was used as a template, and primer P was usedlapS1/PlapS2Amplification of a nucleic acid molecule containing promoter PlapSFragment P of the expression cassette (shown as SEQ ID No.41, 256 bp). Then, splicing the U, P fragment and the K fragment into a UPK fragment (3203bp) by using a primer pksJ-glpK-U1/pksJ-glpK-2 through an overlapping PCR method; splicing the fragment UPK and the fragment D into a fragment UPKD (4151bp) by using a primer pksJ-glpK-U1/pksJ-glpK-D2; finally, the fragment UPKD, the fragment CR and the fragment G were spliced into a fragment UPKDCRG (7210bp) using the primers pksJ-glpK-U1/pksJ-glpK-G2. And transforming the UPKDCRG fragment into competent cells of receptor bacteria MK3-MEP 123-delta dhbB, and finally obtaining a recombinant strain BSMK _1 with glpK genes integrated at a pksJ locus through two-step screening. UPKDCRG fragment sequence (shown as SEQ ID No. 42).
First, using chromosome of starting bacterium B.subtilis MK3-MEP 123-delta dhbB as template, respectively using primers pks L-glpD-U1/pks L-glpD-U2 q, pks L-glpD-1 q/pks L-glpD-2, pks L-glpD-D1 q/pks L-glpD-D2 and pks L-glpD-G1 q/pks L-glpD pUC-G2 to amplify fragment U (shown as SEQ ID No.43, 1118bp), D (shown as SEQ ID No.44, 1749bp), D (shown as SEQ ID No.45, 1004bp) and G (shown as SEQ ID No.46, SEQ ID No. 769bp), using chromosome of starting bacterium 168, pks 3-MEP 123-delta dhbB as template, using primers pks 1-glpD-1 q 11-glpD-9-pD 2 to amplify fragment U (shown as SEQ ID No.43, 1118, SEQ ID No.45, 9bp), using chromosome of primer, chromosome of chromosome 168, and PCR 3-2068, and plasmid of plasmid 1-1-369, 9, and plasmid of plasmidlapS1/PlapS2Amplification of a nucleic acid molecule containing promoter PlapSFragment P of the expression cassette (256 bp as shown in SEQ ID No. 41) then fragments U, P and D were spliced into fragment UPD (3123bp) by the overlap PCR method using primers pks L-glpD-U1/pks L-glpD-2, fragment UPD and fragment D were spliced into fragment UPDD (4127bp) using primers pks L-glpD-U1/pks L-glpD-D2, fragment UPDD (4127bp) was finally spliced into fragment UPDDRG (6965bp) using primers pks L-glpD-U1/pks L-glpD-G2, fragment UPCR and fragment G were finally transformed into competent cells of recipient bacterium BSMK _1, and through two steps, recombinant strain BSMK _ 2. UPMK sequence of the DDC integrated glpD gene at the site of pks L was finally obtained as shown in SEQ ID No. 47.
The invention promotes the synthesis of dihydroxyacetone phosphate (DHAP) by regulating glpK and glpD genes, and inspects the influence of the dihydroxyacetone phosphate on MK-7 synthesis. Within B.subtilis, glycerol kinase GlpK catalyzes the phosphorylation of glycerol to glycerol-3-phosphate (Gly-3P), which is oxidized by glycerol-3-phosphate dehydrogenase GlpD to DHAP. DHAP is catalyzed by triose phosphate isomerase to synthesize glyceraldehyde-3-phosphate (G3P), and then enters glycolysis process to provide precursors for shikimic acid pathway and methylerythritol-4-phosphate pathway, which are used for synthesizing chorismate and heptaene pyrophosphoric acid respectively, and the chorismate and heptaene pyrophosphoric acid are finally synthesized into MK-7 through MK-7 pathway. An MK-7 producing strain B.subtilis MK3-MEP 123-delta dhbB has been obtained in this laboratory. As the fermentation carbon source is glycerol, in order to further improve the yield of MK-7, MK3-MEP 123-delta dhbB is used as an initiating bacterium and P is utilizedlapSpksJ and pks of the expression cassette on its chromosomeL sites respectively over-express glpK and glpD genes, improve the glycerol utilization rate and obtain recombinant bacteria BSMK _1 and BSMK _2, and the thallus growth conditions of the two bacteria and the MK-7 yield of 96h after fermentation are obtained through shake flask fermentation.
Shake flask fermentation culture and determination of thallus growth
TABLE 3 fermentation media and fermentation conditions
Parameter(s) Range of
Glycerol 20~80mL/L
Soybean peptone
60~180g/L
Yeast extract
0~20g/L
K2HPO4 1~5g/L
MgSO4·7H2O 0.1~0.8g/L
pH 6.5~7.5
Amount of inoculation 1%~6%
Temperature of 35~45℃
Rotational speed 100~250r/min
Time of fermentation 72-144h
500m L shake flask fermentation, selecting newly activated plate single colony, inoculating into 250m L shake flask containing 30m L L B culture medium, shake culturing at 37 deg.C for 14h at 200r/min, transferring into 500m L conical flask containing 50m L fermentation culture medium (three parallel bottles) at 1% inoculum size, shake culturing at 37 deg.C and dark at 220r/min for 120 h.
Determination of biomass: sampling after fermenting for 6h, then sampling after 24h, taking a proper amount of fermentation liquor every 24h, centrifuging for 1min at 13000r/min to precipitate cells, washing, then re-suspending, diluting by proper times, and determining OD of the bacterial suspension600The value is obtained.
Real-time quantitative reverse transcription PCR analysis:
taking 1m L fermentation liquor of initial (24h) growth stable period of the thallus, centrifuging at 12000r/min for 1min to collect the thallus, extracting RNA by using a total RNA extraction Kit TRIzol Reagent, adding the extracted RNA into a reaction system according to ReverTra Ace qPCR RT Kit instruction for reverse transcription to obtain cDNA, and finally adding the cDNA into the reaction system according to SYBR Green Real-time PCR Master Mix instruction for fluorescent quantitative PCR to obtain CtValue according to formula 2-△△CtCalculating the relative expression amount of the gene to be detected (wherein, △△ C)t=[(Ct(target,test)-Ct(ref,test))-(Ct(target,calibrator)-Ct(ref,calibrator))](ii) a target: a target gene; ref: an internal reference gene, wherein ccpA is selected as the internal reference gene in the experiment; test: a sample to be tested; calibrator: reference sample).
Extraction and HP L C detection of MK-7:
taking a 96-hour fermentation liquid of 750 mu L, adding 1m L of isopropanol and 2m L of n-hexane into the fermentation liquid, carrying out vortex oscillation for 2min, centrifuging at 5000r/min and 4 ℃ for 6min, taking a supernatant of 1m L, carrying out vacuum centrifugal concentration, finally adding 750 mu L of methanol for dissolution, filtering by a 0.25 mu m filter membrane, taking a filtrate, carrying out HP L C detection, and avoiding light as much as possible in all processes.
Chromatographic conditions of a chromatographic column, a Shim-pack GIST C18 chromatographic column (250mm × 4.6.6 mm, 5 mu m), a detector, ShimadzuSPD-20A, a mobile phase, pure methanol, a column temperature of 50 ℃, a detection wavelength of 270nm and a flow rate of 1.0m L/min, wherein a standard solution of a standard substance MK-7 is measured by using the same chromatographic conditions, a concentration-peak area standard curve is drawn, and MK-7 is quantified.
As is clear from Table 4, the growth tendency of the recombinant bacteria was almost unchanged and the growth thereof was not significantly changed as compared with the growth of the initial bacteria. As is clear from Table 5, the promoter P was usedlapSThe mRNA expression level of glpK in the recombinant strain BSMK _1 obtained after the expression cassette overexpresses glpK is 2.2 times of that of the original strain MK3-MEP 123-delta dhbB; by PlapSThe expression level of mRNA of glpD in the recombinant strain BSMK _2 obtained after the expression of the glpD by the expression cassette is 1.5 times that of the recombinant strain BSMK _1, and the result shows that the expression level of the glpD is 1.5 times that of the recombinant strain BSMK _1lapSAs shown in Table 6, after 96h of fermentation, the MK-7 yield of the starting strain is 55.6 mg/L, the MK-7 yield of the recombinant strain BSMK _1 is 58.9 mg/L which is 5.9 percent higher than that of the starting strain, the MK-7 yield of the recombinant strain BSMK _2 is 61.1 mg/L which is 9.9 percent higher than that of the starting strain, and the results show that the synthesis of metabolite DHAP is promoted as glpK and glpD are sequentially overexpressed, and the MK-7 yield is gradually increased.
TABLE 4 growth of the cells
Figure BDA0002411606950000081
Note:*shows significant difference (P < 0.05) compared with the starting bacterium MK3-MEP 123-delta dhbB;#shows a very significant difference (P < 0.01) compared with the starting bacterium MK3-MEP 123-delta dhbB.
TABLE 5 relative transcript levels of glpK and glpD
Bacterial strains Relative transcriptional level of glpK Relative transcriptional levels of glpD
MK3-MEP123-ΔdhbB 1.0±0.1 --
BSMK_1 2.2#±0.3 1.0±0.1
BSMK_2 -- 1.5±0.1
Note:*shows significant difference (P < 0.05) compared with the starting bacterium MK3-MEP 123-delta dhbB;#shows a very significant difference (P < 0.01) compared with the starting bacterium MK3-MEP 123-delta dhbB.
TABLE 6MK-7 production
Figure BDA0002411606950000082
Figure BDA0002411606950000091
Note:*shows significant difference (P < 0.05) compared with the starting bacterium MK3-MEP 123-delta dhbB;#shows a very significant difference (P < 0.01) compared with the starting bacterium MK3-MEP 123-delta dhbB.
(III) knocking out methylglyoxal synthetase coding gene mgsA and glycerol-1-phosphate dehydrogenase coding gene araM
Using chromosome of starting bacterium B.subtilis MK3-MEP 123-delta dhbB as template, respectively amplifying fragment U (1382 bp shown as SEQ ID No. 48), D (1130 bp shown as SEQ ID No. 49) and G (813 bp shown as SEQ ID No. 50) by using primers mgsA-U1/mgsA-U2, mgsA-D1q/mgsA-D2 and mgsA-G1 q/mgsA-G2; fragment CR (2069bp, shown in SEQ ID No. 40) carrying the selection cassette (cat-araR) was amplified using the primer mgsA-CR1q/CR2, using chromosome BS168NUm as a template. Firstly, splicing the fragments U and D into UD (2512bp) by overlapping PCR by using primers mgsA-U1/mgsA-D2; the three fragments UD, GR and G were then spliced into UDCRG (5394bp) by overlap PCR using primers mgsA-U1/mgsA-G2. And transforming the UDCRG fragment into a competent cell of a recipient bacterium BSMK _2, and finally screening to obtain a recombinant strain BSMK _3 with the mgsA knocked out gene. UDCRG fragment sequence (shown as SEQ ID No. 51).
Using chromosome of starting bacterium B.subtilis MK3-MEP 123-delta dhbB as template, respectively amplifying fragment U (1487 bp shown by SEQ ID No. 52), D (1026 bp shown by SEQ ID No. 53) and G (682 bp shown by SEQ ID No. 54) by using primers araM-U1/araM-U2, araM-D1q/araM-D2 and araM-G1 q/araM-G2; fragment CR (shown as SEQ ID No.40, 2069bp) was amplified using primer araM-CR1q/CR2 with chromosome of BS168NUm as a template. Firstly, splicing fragments U and D into UD (2513bp) by overlapping PCR by using primers araM-U1/araM-D2; the three fragments UD, GR and G were then spliced into UDCRG (5264bp) by overlap PCR using primers araM-U1/araM-G2. And transforming the UDCRG fragment into a competent cell of a receptor strain BSMK _3, and finally screening to obtain a recombinant strain BSMK _4 with the knocked-out gene araM. UDCRG fragment sequence (shown as SEQ ID No. 55).
As can be seen from FIG. 1, dihydroxyacetone phosphate (DHAP) can provide a precursor for MK-7 synthesis in glycolysis, and can also be catalyzed by methylglyoxal synthase (MgsA) to form Methylglyoxal (MG); it can also be used for synthesis of phosphoglycerol glycolipid by catalyzing glycerol-1-phosphate dehydrogenase (AraM) to generate glycerol-1-phosphate (G1P). Therefore, the invention takes BSMK _2 as a starting bacterium to reduce the consumption of DHAP and make the DHAP as much as possibleThe influence of (2) on MK-7 synthesis was examined. The growth of the knockout strains is shown in Table 7, the growth of the strains is slightly changed, and the maximum OD is shown600As can be seen from Table 8, after 96h of fermentation, the bacterial strain BSMK _3 obtained by knocking out the gene mgsA encoding the methylglyoxal synthase has the MK-7 yield of 68.3 mg/L which is increased by 11.8 percent compared with the BSMK _1 of the original bacterium, and the bacterial strain BSMK _4 obtained by knocking out the gene mgsA encoding the methylglyoxal synthase and the gene araM encoding the glycerol-1-phosphate dehydrogenase sequentially has the MK-7 yield of 70.3 mg/L which is increased by 15 percent compared with the BSMK _1 of the original bacterium, which indicates that the consumption of DHAP is reduced, and the synthesis of MK-7 can be promoted, as shown in FIG. 3.
TABLE 7 growth of cells
Figure BDA0002411606950000092
Figure BDA0002411606950000101
Note:*shows significant difference (P < 0.05) compared with BSMK _ 2;#shows a very significant difference (P < 0.01) compared to BSMK _ 2.
TABLE 8MK-7 yields
Figure BDA0002411606950000102
Note:*shows significant difference (P < 0.05) compared with BSMK _ 2;#shows a very significant difference (P < 0.01) compared to BSMK _ 2.
The recombinant strain BSMK _4 is fermented in a 500m L shake flask for 96 hours, the yield of the MK-7 is 70.3 mg/L, and the yield of the MK-7 is improved by 26.4% compared with that of a starter MK3-MEP 123-delta dhbB (55.6 mg/L).
Sequence listing
<110> Qingdao ocean technology research institute of Tianjin university
<120> method for genetically modifying bacillus subtilis, strain obtained by method and application of strain
<160>55
<170>SIPOSequenceListing 1.0
<210>1
<211>18
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>1
ccttgtttct ggcattgg 18
<210>2
<211>40
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>2
cttcatcatc atattcttcg gctcctccta acggttctga 40
<210>3
<211>42
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>3
tagaggggag agaggacaaa tggaaactta catcttatct tt 42
<210>4
<211>19
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>4
cttagtgcga ccttcattc 19
<210>5
<211>37
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>5
gaatgaaggt cgcactaaga ggctggattg gattgat 37
<210>6
<211>18
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>6
ctggactgct tgctgtat 18
<210>7
<211>41
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>7
gcacgaaaac tgaatgaata accaagaaca ctgatgacaa t 41
<210>8
<211>18
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>8
gtaatcaccg ctggctta 18
<210>9
<211>39
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>9
gatacagcaa gcagtccagt cttcaactaa agcacccat 39
<210>10
<211>20
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>10
ttattcattc agttttcgtg 20
<210>11
<211>20
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>11
agagtcagga gcatttaacc 20
<210>12
<211>18
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>12
ttgtcctctc tcccctct 18
<210>13
<211>19
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>13
tgcctcctgt aatctctga 19
<210>14
<211>39
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>14
ggttaaatgc tcctgactct gccatctaag tgtccgtaa 39
<210>15
<211>41
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>15
agaggggaga gaggacaaat gatgaatcac caattttcta g 41
<210>16
<211>19
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>16
gcgtctgaca cttgataac 19
<210>17
<211>40
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>17
ggttatcaag tgtcagacgc ggcagacaac attgatgaat 40
<210>18
<211>21
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>18
ttgatttggc tgactctatt g 21
<210>19
<211>39
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>19
gcacgaaaac tgaatgaata aaggctgatt acgcaatgg 39
<210>20
<211>19
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>20
cttacctgct tccgctctt 19
<210>21
<211>41
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>21
caatagagtc agccaaatca atcttcaact aaagcaccca t 41
<210>22
<211>19
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>22
ttctccaagc atcacacaa 19
<210>23
<211>20
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>23
taggcagtcg taaattgaac 20
<210>24
<211>41
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>24
ggttcaattt acgactgcct acattccgat tctactcctc t 41
<210>25
<211>18
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>25
ccgaaacatc tccgacat 18
<210>26
<211>39
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>26
gcacgaaaac tgaatgaata aatgaggcga taggtcttc 39
<210>27
<211>18
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>27
gtaggcgatg aggctttg 18
<210>28
<211>39
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>28
gatgtcggag atgtttcggt cttcaactaa agcacccat 39
<210>29
<211>18
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>29
gccgatgact tggttgtt 18
<210>30
<211>20
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>30
tcccagacaa tgacaatatg 20
<210>31
<211>39
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>31
ttttgacgaa atccagccct cccagacaat gacaatatg 39
<210>32
<211>19
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>32
cggtctgatg gctatcttc 19
<210>33
<211>39
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>33
gcacgaaaac tgaatgaata acgaaacaac caacggatg 39
<210>34
<211>19
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>34
tgataagccg attggatgg 19
<210>35
<211>39
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>35
gaagatagcc atcagaccgt attcaactaa agcacccat 39
<210>36
<211>1164
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>36
ccttgtttct ggcattggcc agcacgatag accaagggag atttgatacg cctaaacgaa 60
ttggctgttt ttcctacgga tccggctgct gttctgaatt ttacagcgga attacaactc 120
cgcaaggcca ggagcgtcag cgaacatttg gtattgagaa gcatttggat cgccggtatc 180
agctctccat ggaagagtat gagctattgt ttaaggggag cgggatggtg cggtttggga 240
cgcgcaatgt aaagctggac tttgagatga taccgggcat catgcagtcc actcaagaga 300
agccgcgctt gtttttagaa gaaatttctg agtttcatcg gaagtacagg tggatctcgt 360
gacctatcaa acgataaagg tccgctttca agcatcggtt tgctatatta cctttcaccg 420
tcctgaagcg aataatacga ttaatgacac gctgatagaa gaatgcttgc aagtgttaaa 480
ccaatgtgaa acatcaacgg tgacggttgt cgttttagag gggcttcccg aggtgttttg 540
tttcggagcg gattttcaag aaatctatca ggaaatgaaa aggggcagaa aacaggcaag 600
ctcccaagag cctctctatg atttgtggat gaaattgcag accggccctt atgtcacgat 660
ttcgcatgtc aggggaaaag tgaatgccgg cggtcttgga tttgtatctg ccacagatat 720
tgccattgct gatcagacgg cgtcattcag tctctctgag ctgctattcg gcctgtaccc 780
tgcttgtgtt ttaccgtttc tgatccgccg tatcggccgg cagaaagcgc attatatgac 840
gcttatgaca aagccgattt ccgttcagga agccagtgaa tgggggttaa tagatgcttt 900
tgatgctgaa agtgacgtgc tgctgagaaa gcatttattg cgtttgcgga ggctgaataa 960
aaaaggaatc gcacattata aacagtttat gagctcactt gatcatcaag tcagtcgtgc 1020
gaaagccacc gctttaactg caaatcaaga catgttttct gatcctcaaa accaaatggg 1080
aatcatcagg tatgttgaaa caggacaatt cccatgggag gatcagtaac cgtttaaaaa 1140
tgacaatcag aaccgttagg agga 1164
<210>37
<211>1783
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>37
atggaaacgt acattttatc cttagatcag gggacgacaa gttcaagagc gattctgttt 60
aataaagaag gcaaaattgt ccactctgct caaaaggaat ttacacaata cttcccgcat 120
cctggctggg ttgagcataa tgccaatgaa atttggggct ctgtcctcgc ggttatcgcc 180
tcagtcatct ctgaatcagg aatcagcgct tctcaaattg ccggcatcgg catcacgaac 240
cagcgcgaga cgacggttgt gtgggataaa gatacaggaa gtcctgtcta taatgcaatc 300
gtttggcagt ccagacagac gtccggcatt tgtgaggaac ttcgtgaaaa aggatataat 360
gataaattca gagaaaaaac agggctttta atcgatcctt acttctccgg cacgaaggtg 420
aagtggattt tagacaatgt ggaaggcgca agagaaaaag cggaaaaagg cgagctgctg 480
tttggaacga ttgatacgtg gctcatttgg aaaatgtcag gcggaaaagc gcatgtgacc 540
gattactcca atgcctcaag aacactgatg tttaatattt acgatttaaa atgggacgat 600
caactgctcg acattctagg cgtaccgaaa tccatgctcc ctgaagtgaa gccgtcctct 660
catgtgtatg cggagactgt tgattatcac ttcttcggaa aaaatatccc gattgctgga 720
gcggcaggcg accagcagtc cgcattgttc ggccaggcat gctttgaaga aggcatgggg 780
aaaaacactt acggcacagg atgtttcatg ctgatgaata ccggggaaaa agcaattaag 840
tccgaacatg ggcttttgac aacaatcgct tggggcattg acggaaaagt gaactatgcg 900
ttagaaggga gcatttttgt cgcaggctct gccatccagt ggcttagaga cggtttgaga 960
atgttccagg attcatcgct aagcgaatct tatgcagaaa aagtggattc aactgacggc 1020
gtgtatgttg ttccagcatt tgtcggactg ggaacgcctt actgggacag cgatgtgcgc 1080
ggttcggttt tcggcctgac aagagggaca acaaaagagc actttatccg tgcgacactg 1140
gagtcattgg cttatcagac caaagatgtg cttgacgcaa tggaagcaga ttcaaacatt 1200
tcattaaaga cgctccgtgt agacggagga gctgtaaaaa acaatttcct aatgcagttc 1260
caaggagacc tgttgaatgt tcctgtggag cgcccggaaa ttaatgaaac gactgcactt 1320
ggcgcggctt atttggcggg tatcgctgtg ggattctgga aggaccgttc tgaaatcgcg 1380
aaccagtgga atctggataa acggtttgag cctgaattgg aagaagaaaa acgaaatgag 1440
ctgtataaag gctggcaaaa agccgtgaaa gcagctatgg cttttaaata aagtaatact 1500
atggtataat ggttacaagt taataagaac ggtcctgaga tgaggagaga ccacagcacc 1560
aaagtgtaag catgcacttt ggctgttgtg gtctcttttt ctatttaccg tgacaacaag 1620
gaggaaacgt aatgatgaat catcaatttt caagtcttga aagagatcgc atgctgacag 1680
acatgacgaa aaaaacatat gacctattta ttatcggagg aggaattaca ggagccggaa 1740
cagctcttga cgcggcatca aggggaatga aggtcgcact aag 1783
<210>38
<211>948
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>38
aggctggatt ggattgatca ttaccgagct tctgttacgt gggcgccgaa ttttgcgttt 60
ggtctggtta ctgattttgc agaagaaata aaagataaga aatgggatct gtcttcaatg 120
cgatacatgc tcaatggcgg tgaagcaatg gtagccaagg tagggcgtag aatacttgag 180
cttttagaac cacatggact gcctgctgac gccatccgac ctgcctgggg aatgtccgaa 240
acttcatcgg gcgttatttt ttctcatgaa tttacccggg ctggaacaag tgatgatgat 300
cattttgttg aaataggctc tccaatcccc ggcttctcta tgagaattgt gaatgaccat 360
aatgaattgg ttgaagaggg tgagatcggc cgttttcaag tctcgggtct ttctgttact 420
agcggttatt accagcggcc tgatttgaat gagagtgtgt ttacagaaga cggctggttt 480
gaaaccggag atcttggctt tttgcgaaac gggcgcttaa ccataacagg ccgtacgaaa 540
gatgcaatta tcattaacgg cattaattat tacagtcatg caattgagtc tgcagttgaa 600
gaattacctg aaattgaaac ttcttatact gctgcttgcg ctgtccgtct gggccagaat 660
tcaacagatc agctggctat cttctttgtt acttccgcaa aattaaatga tgagcagatg 720
tctcagcttc ttagaaacat acaatcccat gtctcacagg tgatcggagt caccccggaa 780
tatttgctgc ctgtacaaaa agaagagatt ccaaaaacgg ctatcggaaa gatccagcgc 840
acccagctaa aaacttcatt tgaaaatgga gagttcgacc acttgctaca taaacccaat 900
cggatgaacg atgcagtcca ggatgagggg atacagcaag cagtccag 948
<210>39
<211>990
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>39
ccaagaacac tgatgacaat ctttattctc tggcgctgga ttgcgagatt ccagttattg 60
cggcaatgca gggccatgga attggaggcg gctttgtcat ggggctcttt gctgacattg 120
tcattctgag cagagaaagc gtgtatacgg ctaattttat gaaatacgga tttacgcctg 180
gaatgggcgc tacctttatc gttcctaaaa aactgggttt cagcctggcc caggaaatat 240
tattgaatgc gggcagctac cgcggagctg atcttgaaaa aagaggggtt ccttttaagg 300
tgctgccccg tgcagaagtg ttagattatg aagtggagct ggcgcaagaa ctggcggaaa 360
agccgagaaa ctcactggtt acactgaaag atcatttggt tgccccgctt cgcgatcagc 420
tgccgcgcgt cattgaacag gaattgatga tgcatgagaa aacatttcat catgaagaag 480
tcaaaagtag aatcaaaggt ttatatggta attaactgaa aatatatata aattttgcag 540
gtgaaatgga ggcagcgtga tgagaaataa tgataatatc cgcatattaa ctaatccttc 600
tgtcagtcat ggggagcctt tacatatatc tgaaaagcag ccggcaacaa tacctgaagt 660
tttatacaga acggcgacgg agcttgggga tacaaaggga atcatttatt tgcagccgga 720
tggaactgaa gtttaccaat catacagacg attatgggat gatggattgc gcattgcgaa 780
ggggcttcgc caatcaggcc tgaaagcaaa acaaagctgg attttgcagc ttggtgacaa 840
ttcacagctt ctccctgcgt tctgggggtg tgtgttaaca ggggttgttc cggctccatt 900
agccgttccg ccaacgtatg ctgaatcgag cagcggcact caaaagctga aagacgcatg 960
gacgcttctt gataagccag cggtgattac 990
<210>40
<211>2069
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>40
tcttcaacta aagcacccat tagttcaaca aacgaaaatt ggataaagtg ggatattttt 60
aaaatatata tttatgttac agtaatattg acttttaaaa aaggattgat tctaatgaag 120
aaagcagaca agtaagcctc ctaaattcac tttagataaa aatttaggag gcatatcaaa 180
tgaactttaa taaaattgat ttagacaatt ggaagagaaa agagatattt aatcattatt 240
tgaaccaaca aacgactttt agtataacca cagaaattga tattagtgtt ttataccgaa 300
acataaaaca agaaggatat aaattttacc ctgcatttat tttcttagtg acaagggtga 360
taaactcaaa tacagctttt agaactggtt acaatagcga cggagagtta ggttattggg 420
ataagttaga gccactttat acaatttttg atggtgtatc taaaacattc tctggtattt 480
ggactcctgt aaagaatgac ttcaaagagt tttatgattt atacctttct gatgtagaga 540
aatataatgg ttcggggaaa ttgtttccca aaacacctat acctgaaaat gctttttctc 600
tttctattat tccatggact tcatttactg ggtttaactt aaatatcaat aataatagta 660
attaccttct acccattatt acagcaggaa aattcattaa taaaggtaat tcaatatatt 720
taccgctatc tttacaggta catcattctg tttgtgatgg ttatcatgca ggattgttta 780
tgaactctat tcaggaattg tcagataggc ctaatgactg gcttttataa tatgagataa 840
tgccgactgt actttttaca gtcggttttc taatgtcact aacctgcccc gttagttgaa 900
ggcattttct gtcaatgttt tcttacaaag aacgctgtga tatactgaaa tttgtccgta 960
tacattttgg aggaatggat atgttaccaa aatacgcgca agtaaaagaa gaaatcagtt 1020
cttggattaa tcaaggcaaa atactgcccg atcaaaaaat ccctaccgaa aacgaattaa 1080
tgcagcaatt cggcgtcagc cggcatacca tccgcaaagc gatcggagac ctcgtatcac 1140
aaggtctgct gtacagcgtg caaggcggag gcacctttgt cgcttcacgc tctgctaagt 1200
cagcgctgca ttccaataaa acgatcggtg ttttgacaac ttacatatca gactatattt 1260
tcccgagcat catcagagga atcgagtcct atttaagcga gcaggggtat tctatgcttt 1320
tgacaagcac aaacaacaac ccggacaatg aaagaagagg cttagaaaac ctgctgtccc 1380
agcatattga cggactcatc gtagaaccga caaaaagcgc ccttcaaacc ccaaacatcg 1440
gctattatct gaacttggag aaaaacggca ttccttttgc gatgattaac gcgtcatatg 1500
ccgagcttgc cgcgccaagt tttaccttgg atgatgtgaa aggcgggatg atggcggcgg 1560
agcatttgct ttctctcggc cacacgcata tgatgggtat ttttaaagct gatgacacac 1620
aaggcgtgaa acggatgaac ggatttatac aggcgcaccg ggagcgtgag ttgtttcctt 1680
ctccggatat gatcgtgaca tttacaacgg aagaaaaaga atcaaaactt ctggagaaag 1740
taaaagccac actggagaaa aacagcaagc acatgccgac agccattctt tgttataacg 1800
atgaaattgc gctgaaggtg attgatatgc tgagggagat ggatcttaaa gtgccggagg 1860
atatgtctat tgtcgggtac gatgattcac atttcgccca aatctcagaa gtgaaactaa 1920
cctctgtcaa acatccgaaa tcagtgcttg gaaaagcagc cgccaaatat gtcattgact 1980
gcttagagca taaaaagccg aagcaagagg atgtcatatt tgagcctgag ttgatcattc 2040
gccagtccgc acgaaaactg aatgaataa 2069
<210>41
<211>256
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>41
agagtcagga gcatttaacc taaaaaagca tgacatttca gcataatgaa catttactca 60
tgtctatttt cgttcttttc tgtatgaaaa tagttatttc gagtctctac ggaaatagcg 120
agagatgata caagaacgtc ctgatcttat tataatataa gcaaaaaact cataaaaagg 180
aaaagcattg acctgaaaac ttatcggtaa agtatgatat aatacaaaaa gaccgattag 240
aggggagaga ggacaa 256
<210>42
<211>7210
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>42
ccttgtttct ggcattggcc agcacgatag accaagggag atttgatacg cctaaacgaa 60
ttggctgttt ttcctacgga tccggctgct gttctgaatt ttacagcgga attacaactc 120
cgcaaggcca ggagcgtcag cgaacatttg gtattgagaa gcatttggat cgccggtatc 180
agctctccat ggaagagtat gagctattgt ttaaggggag cgggatggtg cggtttggga 240
cgcgcaatgt aaagctggac tttgagatga taccgggcat catgcagtcc actcaagaga 300
agccgcgctt gtttttagaa gaaatttctg agtttcatcg gaagtacagg tggatctcgt 360
gacctatcaa acgataaagg tccgctttca agcatcggtt tgctatatta cctttcaccg 420
tcctgaagcg aataatacga ttaatgacac gctgatagaa gaatgcttgc aagtgttaaa 480
ccaatgtgaa acatcaacgg tgacggttgt cgttttagag gggcttcccg aggtgttttg 540
tttcggagcg gattttcaag aaatctatca ggaaatgaaa aggggcagaa aacaggcaag 600
ctcccaagag cctctctatg atttgtggat gaaattgcag accggccctt atgtcacgat 660
ttcgcatgtc aggggaaaag tgaatgccgg cggtcttgga tttgtatctg ccacagatat 720
tgccattgct gatcagacgg cgtcattcag tctctctgag ctgctattcg gcctgtaccc 780
tgcttgtgtt ttaccgtttc tgatccgccg tatcggccgg cagaaagcgc attatatgac 840
gcttatgaca aagccgattt ccgttcagga agccagtgaa tgggggttaa tagatgcttt 900
tgatgctgaa agtgacgtgc tgctgagaaa gcatttattg cgtttgcgga ggctgaataa 960
aaaaggaatc gcacattata aacagtttat gagctcactt gatcatcaag tcagtcgtgc 1020
gaaagccacc gctttaactg caaatcaaga catgttttct gatcctcaaa accaaatggg 1080
aatcatcagg tatgttgaaa caggacaatt cccatgggag gatcagtaac cgtttaaaaa 1140
tgacaatcag aaccgttagg aggaagagtc aggagcattt aacctaaaaa agcatgacat 1200
ttcagcataa tgaacattta ctcatgtcta ttttcgttct tttctgtatg aaaatagtta 1260
tttcgagtct ctacggaaat agcgagagat gatacaagaa cgtcctgatc ttattataat 1320
ataagcaaaa aactcataaa aaggaaaagc attgacctga aaacttatcg gtaaagtatg 1380
atataataca aaaagaccga ttagagggga gagaggacaa atggaaacgt acattttatc 1440
cttagatcag gggacgacaa gttcaagagc gattctgttt aataaagaag gcaaaattgt 1500
ccactctgct caaaaggaat ttacacaata cttcccgcat cctggctggg ttgagcataa 1560
tgccaatgaa atttggggct ctgtcctcgc ggttatcgcc tcagtcatct ctgaatcagg 1620
aatcagcgct tctcaaattg ccggcatcgg catcacgaac cagcgcgaga cgacggttgt 1680
gtgggataaa gatacaggaa gtcctgtcta taatgcaatc gtttggcagt ccagacagac 1740
gtccggcatt tgtgaggaac ttcgtgaaaa aggatataat gataaattca gagaaaaaac 1800
agggctttta atcgatcctt acttctccgg cacgaaggtg aagtggattt tagacaatgt 1860
ggaaggcgca agagaaaaag cggaaaaagg cgagctgctg tttggaacga ttgatacgtg 1920
gctcatttgg aaaatgtcag gcggaaaagc gcatgtgacc gattactcca atgcctcaag 1980
aacactgatg tttaatattt acgatttaaa atgggacgat caactgctcg acattctagg 2040
cgtaccgaaa tccatgctcc ctgaagtgaa gccgtcctct catgtgtatg cggagactgt 2100
tgattatcac ttcttcggaa aaaatatccc gattgctgga gcggcaggcg accagcagtc 2160
cgcattgttc ggccaggcat gctttgaaga aggcatgggg aaaaacactt acggcacagg 2220
atgtttcatg ctgatgaata ccggggaaaa agcaattaag tccgaacatg ggcttttgac 2280
aacaatcgct tggggcattg acggaaaagt gaactatgcg ttagaaggga gcatttttgt 2340
cgcaggctct gccatccagt ggcttagaga cggtttgaga atgttccagg attcatcgct 2400
aagcgaatct tatgcagaaa aagtggattc aactgacggc gtgtatgttg ttccagcatt 2460
tgtcggactg ggaacgcctt actgggacag cgatgtgcgc ggttcggttt tcggcctgac 2520
aagagggaca acaaaagagc actttatccg tgcgacactg gagtcattgg cttatcagac 2580
caaagatgtg cttgacgcaa tggaagcaga ttcaaacatt tcattaaaga cgctccgtgt 2640
agacggagga gctgtaaaaa acaatttcct aatgcagttc caaggagacc tgttgaatgt 2700
tcctgtggag cgcccggaaa ttaatgaaac gactgcactt ggcgcggctt atttggcggg 2760
tatcgctgtg ggattctgga aggaccgttc tgaaatcgcg aaccagtgga atctggataa 2820
acggtttgag cctgaattgg aagaagaaaa acgaaatgag ctgtataaag gctggcaaaa 2880
agccgtgaaa gcagctatgg cttttaaata aagtaatact atggtataat ggttacaagt 2940
taataagaac ggtcctgaga tgaggagaga ccacagcacc aaagtgtaag catgcacttt 3000
ggctgttgtg gtctcttttt ctatttaccg tgacaacaag gaggaaacgt aatgatgaat 3060
catcaatttt caagtcttga aagagatcgc atgctgacag acatgacgaa aaaaacatat 3120
gacctattta ttatcggagg aggaattaca ggagccggaa cagctcttga cgcggcatca 3180
aggggaatga aggtcgcact aagaggctgg attggattga tcattaccga gcttctgtta 3240
cgtgggcgcc gaattttgcg tttggtctgg ttactgattt tgcagaagaa ataaaagata 3300
agaaatggga tctgtcttca atgcgataca tgctcaatgg cggtgaagca atggtagcca 3360
aggtagggcg tagaatactt gagcttttag aaccacatgg actgcctgct gacgccatcc 3420
gacctgcctg gggaatgtcc gaaacttcat cgggcgttattttttctcat gaatttaccc 3480
gggctggaac aagtgatgat gatcattttg ttgaaatagg ctctccaatc cccggcttct 3540
ctatgagaat tgtgaatgac cataatgaat tggttgaaga gggtgagatc ggccgttttc 3600
aagtctcggg tctttctgtt actagcggtt attaccagcg gcctgatttg aatgagagtg 3660
tgtttacaga agacggctgg tttgaaaccg gagatcttgg ctttttgcga aacgggcgct 3720
taaccataac aggccgtacg aaagatgcaa ttatcattaa cggcattaat tattacagtc 3780
atgcaattga gtctgcagtt gaagaattac ctgaaattga aacttcttat actgctgctt 3840
gcgctgtccg tctgggccag aattcaacag atcagctggc tatcttcttt gttacttccg 3900
caaaattaaa tgatgagcag atgtctcagc ttcttagaaa catacaatcc catgtctcac 3960
aggtgatcgg agtcaccccg gaatatttgc tgcctgtaca aaaagaagag attccaaaaa 4020
cggctatcgg aaagatccag cgcacccagc taaaaacttc atttgaaaat ggagagttcg 4080
accacttgct acataaaccc aatcggatga acgatgcagt ccaggatgag gggatacagc 4140
aagcagtcca gtcttcaact aaagcaccca ttagttcaac aaacgaaaat tggataaagt 4200
gggatatttt taaaatatat atttatgtta cagtaatatt gacttttaaa aaaggattga 4260
ttctaatgaa gaaagcagac aagtaagcct cctaaattca ctttagataa aaatttagga 4320
ggcatatcaa atgaacttta ataaaattga tttagacaat tggaagagaa aagagatatt 4380
taatcattat ttgaaccaac aaacgacttt tagtataacc acagaaattg atattagtgt 4440
tttataccga aacataaaac aagaaggata taaattttac cctgcattta ttttcttagt 4500
gacaagggtg ataaactcaa atacagcttt tagaactggt tacaatagcg acggagagtt 4560
aggttattgg gataagttag agccacttta tacaattttt gatggtgtat ctaaaacatt 4620
ctctggtatt tggactcctg taaagaatga cttcaaagag ttttatgatt tatacctttc 4680
tgatgtagag aaatataatg gttcggggaa attgtttccc aaaacaccta tacctgaaaa 4740
tgctttttct ctttctatta ttccatggac ttcatttact gggtttaact taaatatcaa 4800
taataatagt aattaccttc tacccattat tacagcagga aaattcatta ataaaggtaa 4860
ttcaatatat ttaccgctat ctttacaggt acatcattct gtttgtgatg gttatcatgc 4920
aggattgttt atgaactcta ttcaggaatt gtcagatagg cctaatgact ggcttttata 4980
atatgagata atgccgactg tactttttac agtcggtttt ctaatgtcac taacctgccc 5040
cgttagttga aggcattttc tgtcaatgtt ttcttacaaa gaacgctgtg atatactgaa 5100
atttgtccgt atacattttg gaggaatgga tatgttacca aaatacgcgc aagtaaaaga 5160
agaaatcagt tcttggatta atcaaggcaa aatactgccc gatcaaaaaa tccctaccga 5220
aaacgaatta atgcagcaat tcggcgtcag ccggcatacc atccgcaaag cgatcggaga 5280
cctcgtatca caaggtctgc tgtacagcgt gcaaggcgga ggcacctttg tcgcttcacg 5340
ctctgctaag tcagcgctgc attccaataa aacgatcggt gttttgacaa cttacatatc 5400
agactatatt ttcccgagca tcatcagagg aatcgagtcc tatttaagcg agcaggggta 5460
ttctatgctt ttgacaagca caaacaacaa cccggacaat gaaagaagag gcttagaaaa 5520
cctgctgtcc cagcatattg acggactcat cgtagaaccg acaaaaagcg cccttcaaac 5580
cccaaacatc ggctattatc tgaacttgga gaaaaacggc attccttttg cgatgattaa 5640
cgcgtcatat gccgagcttg ccgcgccaag ttttaccttg gatgatgtga aaggcgggat 5700
gatggcggcg gagcatttgc tttctctcgg ccacacgcat atgatgggta tttttaaagc 5760
tgatgacaca caaggcgtga aacggatgaa cggatttata caggcgcacc gggagcgtga 5820
gttgtttcct tctccggata tgatcgtgac atttacaacg gaagaaaaag aatcaaaact 5880
tctggagaaa gtaaaagcca cactggagaa aaacagcaag cacatgccga cagccattct 5940
ttgttataac gatgaaattg cgctgaaggt gattgatatg ctgagggaga tggatcttaa 6000
agtgccggag gatatgtcta ttgtcgggta cgatgattca catttcgccc aaatctcaga 6060
agtgaaacta acctctgtca aacatccgaa atcagtgctt ggaaaagcag ccgccaaata 6120
tgtcattgac tgcttagagc ataaaaagcc gaagcaagag gatgtcatat ttgagcctga 6180
gttgatcatt cgccagtccg cacgaaaact gaatgaataa ccaagaacac tgatgacaat 6240
ctttattctc tggcgctgga ttgcgagatt ccagttattg cggcaatgca gggccatgga 6300
attggaggcg gctttgtcat ggggctcttt gctgacattg tcattctgag cagagaaagc 6360
gtgtatacgg ctaattttat gaaatacgga tttacgcctg gaatgggcgc tacctttatc 6420
gttcctaaaa aactgggttt cagcctggcc caggaaatat tattgaatgc gggcagctac 6480
cgcggagctg atcttgaaaa aagaggggtt ccttttaagg tgctgccccg tgcagaagtg 6540
ttagattatg aagtggagct ggcgcaagaa ctggcggaaa agccgagaaa ctcactggtt 6600
acactgaaag atcatttggt tgccccgctt cgcgatcagc tgccgcgcgt cattgaacag 6660
gaattgatga tgcatgagaa aacatttcat catgaagaag tcaaaagtag aatcaaaggt 6720
ttatatggta attaactgaa aatatatata aattttgcag gtgaaatgga ggcagcgtga 6780
tgagaaataa tgataatatc cgcatattaa ctaatccttc tgtcagtcat ggggagcctt 6840
tacatatatc tgaaaagcag ccggcaacaa tacctgaagt tttatacaga acggcgacgg 6900
agcttgggga tacaaaggga atcatttatt tgcagccgga tggaactgaa gtttaccaat 6960
catacagacg attatgggat gatggattgc gcattgcgaa ggggcttcgc caatcaggcc 7020
tgaaagcaaa acaaagctgg attttgcagc ttggtgacaa ttcacagctt ctccctgcgt 7080
tctgggggtg tgtgttaaca ggggttgttc cggctccatt agccgttccg ccaacgtatg 7140
ctgaatcgag cagcggcact caaaagctga aagacgcatg gacgcttctt gataagccag 7200
cggtgattac 7210
<210>43
<211>6458
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>43
ccttgtttct ggcattggcc agcacgatag accaagggag atttgatacg cctaaacgaa 60
ttggctgttt ttcctacgga tccggctgct gttctgaatt ttacagcgga attacaactc 120
cgcaaggcca ggagcgtcag cgaacatttg gtattgagaa gcatttggat cgccggtatc 180
agctctccat ggaagagtat gagctattgt ttaaggggag cgggatggtg cggtttggga 240
cgcgcaatgt aaagctggac tttgagatga taccgggcat catgcagtcc actcaagaga 300
agccgcgctt gtttttagaa gaaatttctg agtttcatcg gaagtacagg tggatctcgt 360
gacctatcaa acgataaagg tccgctttca agcatcggtt tgctatatta cctttcaccg 420
tcctgaagcg aataatacga ttaatgacac gctgatagaa gaatgcttgc aagtgttaaa 480
ccaatgtgaa acatcaacgg tgacggttgt cgttttagag gggcttcccg aggtgttttg 540
tttcggagcg gattttcaag aaatctatca ggaaatgaaa aggggcagaa aacaggcaag 600
ctcccaagag cctctctatg atttgtggat gaaattgcag accggccctt atgtcacgat 660
ttcgcatgtc aggggaaaag tgaatgccgg cggtcttgga tttgtatctg ccacagatat 720
tgccattgct gatcagacgg cgtcattcag tctctctgag ctgctattcg gcctgtaccc 780
tgcttgtgtt ttaccgtttc tgatccgccg tatcggccgg cagaaagcgc attatatgac 840
gcttatgaca aagccgattt ccgttcagga agccagtgaa tgggggttaa tagatgcttt 900
tgatgctgaa agtgacgtgc tgctgagaaa gcatttattg cgtttgcgga ggctgaataa 960
aaaaggaatc gcacattata aacagtttat gagctcactt gatcatcaag tcagtcgtgc 1020
gaaagccacc gctttaactg caaatcaaga catgttttct gatcctcaaa accaaatggg 1080
aatcatcagg tatgttgaaa caggacaatt cccatgggag gatcagtaac cgtttaaaaa 1140
tgacaatcag aaccgttagg aggaagagtc aggagcattt aacctaaaaa agcatgacat 1200
ttcagcataa tgaacattta ctcatgtcta ttttcgttct tttctgtatg aaaatagtta 1260
tttcgagtct ctacggaaat agcgagagat gatacaagaa cgtcctgatc ttattataat 1320
ataagcaaaa aactcataaa aaggaaaagc attgacctga aaacttatcg gtaaagtatg 1380
atataataca aaaagaccga ttagagggga gagaggacaa atggaaacgt acattttatc 1440
cttagatcag gggacgacaa gttcaagagc gattctgttt aataaagaag gcaaaattgt 1500
ccactctgct caaaaggaat ttacacaata cttcccgcat cctggctggg ttgagcataa 1560
tgccaatgaa atttggggct ctgtcctcgc ggttatcgcc tcagtcatct ctgaatcagg 1620
aatcagcgct tctcaaattg ccggcatcgg catcacgaac cagcgcgaga cgacggttgt 1680
gtgggataaa gatacaggaa gtcctgtcta taatgcaatc gtttggcagt ccagacagac 1740
gtccggcatt tgtgaggaac ttcgtgaaaa aggatataat gataaattca gagaaaaaac 1800
agggctttta atcgatcctt acttctccgg cacgaaggtg aagtggattt tagacaatgt 1860
ggaaggcgca agagaaaaag cggaaaaagg cgagctgctg tttggaacga ttgatacgtg 1920
gctcatttgg aaaatgtcag gcggaaaagc gcatgtgacc gattactcca atgcctcaag 1980
aacactgatg tttaatattt acgatttaaa atgggacgat caactgctcg acattctagg 2040
cgtaccgaaa tccatgctcc ctgaagtgaa gccgtcctct catgtgtatg cggagactgt 2100
tgattatcac ttcttcggaa aaaatatccc gattgctgga gcggcaggcg accagcagtc 2160
cgcattgttc ggccaggcat gctttgaaga aggcatgggg aaaaacactt acggcacagg 2220
atgtttcatg ctgatgaata ccggggaaaa agcaattaag tccgaacatg ggcttttgac 2280
aacaatcgct tggggcattg acggaaaagt gaactatgcg ttagaaggga gcatttttgt 2340
cgcaggctct gccatccagt ggcttagaga cggtttgaga atgttccagg attcatcgct 2400
aagcgaatct tatgcagaaa aagtggattc aactgacggc gtgtatgttg ttccagcatt 2460
tgtcggactg ggaacgcctt actgggacag cgatgtgcgc ggttcggttt tcggcctgac 2520
aagagggaca acaaaagagc actttatccg tgcgacactg gagtcattgg cttatcagac 2580
caaagatgtg cttgacgcaa tggaagcaga ttcaaacatt tcattaaaga cgctccgtgt 2640
agacggagga gctgtaaaaa acaatttcct aatgcagttc caaggagacc tgttgaatgt 2700
tcctgtggag cgcccggaaa ttaatgaaac gactgcactt ggcgcggctt atttggcggg 2760
tatcgctgtg ggattctgga aggaccgttc tgaaatcgcg aaccagtgga atctggataa 2820
acggtttgag cctgaattgg aagaagaaaa acgaaatgag ctgtataaag gctggcaaaa 2880
agccgtgaaa gcagctatgg cttttaaata aagtaatact atggtataat ggttacaagt 2940
taataagaac ggtcctgaga tgaggagaga ccacagcacc aaagtgtaag catgcacttt 3000
ggctgttgtg gtctcttttt ctatttaccg tgacaacaag gaggaaacgt aatgatgaat 3060
catcaatttt caagtcttga aagagatcgc atgctgacag acatgacgaa aaaaacatat 3120
gacctattta ttatcggagg aggaattaca ggagccggaa cagctcttga cgcggcatca 3180
aggggaatga aggtcgcact aagaggctgg attggattga tcattaccga gcttctgtta 3240
cgtgggcgcc gaattttgcg tttggtctgg ttactgattt tgcagaagaa ataaaagata 3300
agaaatggga tctgtcttca atgcgataca tgctcaatgg cggtgaagca atggtagcca 3360
aggtagggcg tagaatactt gagcttttag aaccacatgg actgcctgct gacgccatcc 3420
gacctgcctg gggaatgtcc gaaacttcat cgggcgttat tttttctcat gaatttaccc 3480
gggctggaac aagtgatgat gatcattttg ttgaaatagg ctctccaatc cccggcttct 3540
ctatgagaat tgtgaatgac cataatgaat tggttgaaga gggtgagatc ggccgttttc 3600
aagtctcggg tctttctgtt actagcggtt attaccagcg gcctgatttg aatgagagtg 3660
tgtttacaga agacggctgg tttgaaaccg gagatcttgg ctttttgcga aacgggcgct 3720
taaccataac aggccgtacg aaagatgcaa ttatcattaa cggcattaat tattacagtc 3780
atgcaattga gtctgcagtt gaagaattac ctgaaattga aacttcttat actgctgctt 3840
gcgctgtccg tctgggccag aattcaacag atcagctggc tatcttcttt gttacttccg 3900
caaaattaaa tgatgagcag atgtctcagc ttcttagaaa catacaatcc catgtctcac 3960
aggtgatcgg agtcaccccg gaatatttgc tgcctgtaca aaaagaagag attccaaaaa 4020
cggctatcgg aaagatccag cgcacccagc taaaaacttc atttgaaaat ggagagttcg 4080
accacttgct acataaaccc aatcggatga acgatgcagt ccaggatgag gggatacagc 4140
aagcagtcca gtcttcaact aaagcaccca ttagttcaac aaacgaaaat tggataaagt 4200
gggatatttt taaaatatat atttatgtta cagtaatatt gacttttaaa aaaggattga 4260
ttctaatgaa gaaagcagac aagtaagcct cctaaattca ctttagataa aaatttagga 4320
ggcatatcaa atgaacttta ataaaattga tttagacaat tggaagagaa aagagatatt 4380
taatcattat ttgaaccaac aaacgacttt tagtataacc acagaaattg atattagtgt 4440
tttataccga aacataaaac aagaaggata taaattttac cctgcattta ttttcttagt 4500
gacaagggtg ataaactcaa atacagcttt tagaactggt tacaatagcg acggagagtt 4560
aggttattgg gataagttag agccacttta tacaattttt gatggtgtat ctaaaacatt 4620
ctctggtatt tggactcctg taaagaatga cttcaaagag ttttatgatt tatacctttc 4680
tgatgtagag aaatataatg gttcggggaa attgtttccc aaaacaccta tacctgaaaa 4740
tgctttttct ctttctatta ttccatggac ttcatttact gggtttaact taaatatcaa 4800
taataatagt aattaccttc tacccattat tacagcagga aaattcatta ataaaggtaa 4860
ttcaatatat ttaccgctat ctttacaggt acatcattct gtttgtgatg gttatcatgc 4920
aggattgttt atgaactcta ttcaggaatt gtcagatagg cctaatgact ggcttttata 4980
atatgagata atgccgactg tactttttac agtcggtttt ctaatgtcac taacctgccc 5040
cgttagttga aggcattttc tgtcaatgtt ttcttacaaa gaacgctgtg atatactgaa 5100
atttgtccgt atacattttg gaggaatgga tatgttacca aaatacgcgc aagtaaaaga 5160
agaaatcagt tcttggatta atcaaggcaa aatactgccc gatcaaaaaa tccctaccga 5220
aaacgaatta atgcagcaat tcggcgtcag ccggcatacc atccgcaaag cgatcggaga 5280
cctcgtatca caaggtctgc tgtacagcgt gcaaggcgga ggcacctttg tcgcttcacg 5340
tgcctcctgt aatctctgat acagaagacc attatattct gcatccgagc atgatagatt 5400
cggcatttca agcatctatc ggtttgaggc tgggaggagc tacgagttta gaagacagaa 5460
aggcaatgct gccttttgcc atacaggatg tccgaatctt caaaggctgc gaggcatcta 5520
tgtgggcgcg gatcacatat agcgagggca gtacagctgg ggatcgtatg cagaagcttg 5580
atatcgattt atgcaatgaa gagggccagg tttgcgtgcg attgacgagc tattctgcaa 5640
gagtgttaga aacagatcaa gaaggtcctt ctgaagcgaa tgacacgcta ttgttcgaac 5700
atatttggga agaacgtgct gcagagaggc aagagctcat agagtacgac acgtataaag 5760
tcgttgtctg tgatgttgga gaacaaatgg aaagcctcca aaatcatctt gactgtacag 5820
ttctgcagca tgatacagag acaattgatg aacggtttga aggttatgcc atacagttat 5880
ttgaagaaat caaacagcta atgcactcaa aaacaggagg acatacattc attcaagtgg 5940
cggtgcctgc gttggacgag cctcagctat taagcggctt aactggattg ctcaaaacgg 6000
ctgaactgga aaatccaaaa ctgacaggac agttgatcga aatagaaacc gggatgtcag 6060
ctggtgagct attcgaaata ttggaggaaa acagacgcta tccgcgtgac acgcatatcc 6120
gccactggca agggaagcga tttgtaagca agtggaaaga agtgtctggt gagcacctaa 6180
gtgctgacat gccatggaag gataaaggcg tgtatctgat cacaggcggt gcgggcggtc 6240
tgggattcat ctttgcaact gaaatcgcaa accaaacgaa tgatgcggtt gtgatcctga 6300
caggacgctc tccgcttgat gaaaggaaga agaagaagct taaagcctta cagaaacttg 6360
gcatccaagc gatttacaga caagctgatc tggctgacaa acaaacggtt gatgccttat 6420
taaaagaaac ccaaaacgtt tacggacact tagatggc 6458
<210>44
<211>1749
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>44
atgatgaatc accaattttc tagtcttgaa agagatcgca tgctgacaga catgacgaaa 60
aaaacatatg acctatttat tatcggagga ggaattacag gagccggaac agctcttgac 120
gcggcatcaa ggggaatgaa ggtcgcacta agcgaaatgc aggactttgc ggcgggaaca 180
tcaagccgat caacgaagct ggtacatggc ggcttgcgct atttaaaaca atttgaagtg 240
aaaatggtcg ctgaggtagg aaaagagcgg gcgattgtgt atgaaaacgg cccgcatgtc 300
actacaccgg aatggatgct gcttccgttt cataaaggcg gcacattcgg ttcatttaca 360
acatctattg ggttaagggt ttatgacttc cttgcaggtg tgaaaaagtc agaacgaaga 420
agcatgcttt cagcaaaaga aacgctgcaa aaagagcctt tggtgaaaaa agacggctta 480
aaaggcggcg ggtactatgt ggaataccgc actgacgatg cgagactgac catcgaagtc 540
atgaaggaag cggttaaatt cggggcagag cctgtgaatt actccaaagt gaaggagctt 600
ctttacgaaa aaggcaaagc cgtcggcgta ttaattgaag atgtgctgac aaagaaagaa 660
tataaagtgt atgcgaaaaa aattgtcaat gctacaggcc cttgggtcga tcagctcaga 720
gaaaaagacc attcgaaaaa cggaaagcat ttgcagcata caaaaggcat tcaccttgta 780
tttgaccagt ctgtctttcc gctgaaacag gctgtatatt tcgatacacc tgatggccgg 840
atggtatttg cgattcctcg tgaaggcaaa acatacgtgg gaacaacaga cactgtttac 900
aaagaggcgc tggagcatcc gcggatgaca acggaggatc gtgattatgt catcaaatca 960
atcaattaca tgttcccgga actgaatatc actgcgaatg acatcgaatc cagctgggcg 1020
gggctgcgtc cgctgattca tgaagaaggc aaagatcctt ctgaaatttc acggaaagac 1080
gagatttgga catctgactc aggcctgatc accattgccg gcggaaaact gactggatac 1140
agaaaaatgg cggacgacat cgttgatctt gtccgtgatc gcttaaaaga agagggcgaa 1200
aaggattttg gaccatgtaa aacgaaaaac atgccaatct ctggcgggca cgtcggcggt 1260
tcgaaaaatc ttatgtcctt cgttaccgcg aaaacaaaag aaggaattgc agccggttta 1320
tcagaaaaag acgcaaaaca gcttgcgatc agatacggct ctaacgtaga tcgcgtcttt 1380
gaccgggtag aagcgctgaa agatgaggcc gcgaaacgca acattccggt tcatattctt 1440
gctgaggcag aatacagtat agaagaagag atgactgcaa cccctgctga cttctttgtc 1500
cgcagaacgg gacgtttatt ttttgatatc aattgggtaa gaacatataa agatgccgtt 1560
attgatttta tgagcgagcg attccaatgg gatgagcagg cgaaaaacaa acatacagaa 1620
aacctcaaca agcttttaca cgatgcggtc gtaccgcttg agcaataaat cataacgggc 1680
tgtctgcagc ccgttatttc tttttacgtg ccgaaagggg gagatctcag gttatcaagt 1740
gtcagacgc 1749
<210>45
<211>1004
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>45
ggcagacaac attgatgaat tatgggaaaa actgagggac gggcgagact gtattacgga 60
aattcctgca gaccgctggg atcacagtct ttattatgac gaagataaag acaagcctgg 120
aaaaacctac agcaagtggg gcggcttcat gaaggatgta gacaagtttg acccgcagtt 180
tttccatatt tcgccgcgtg aggcaaaatt aatggacccg caagagcgtt tatttttgca 240
gtgcgtgtat gaaacgatgg aagacgcagg ctatacaaga gagcacctcg gccgtaagcg 300
tgatgctgag cttggcggaa gcgtcggtgt ttacgtcggt gtcatgtacg aagaatatca 360
gctgtacggg gcacaagagc aggtgcgggg aaggtctctg gctttaacgg gaaatccatc 420
atccatcgcg aaccgggtat cttattattt tgattttcac ggaccgagta ttgctttaga 480
caccatgtgt tcttcttctt taacggctat ccacttggcc tgccaaagcc tgcagcgcgg 540
agaatgtgag gcggcattcg cgggcggcgt gaatgtgtca atccatccaa ataaatattt 600
gatgctcggg cagaacaaat ttatgtccag caaaggccga tgtgaaagct tcggacaggg 660
cggagacggc tatgtgccgg gggaaggcgt tggagcagtg cttttgaagc cattgtctaa 720
agcagttgaa gatggtgatc acatttatgg aatcattaag gggacagcca tcaaccacgg 780
gggaaaaaca aacgggtact cagtgcccaa tccgaatgcc caagcagatg tcatcaaaaa 840
ggcgtttgtg gaagcgaagg ttgatccgcg gacagtcagt tacatcgaag cccacggcac 900
gggaacctct ctcggtgatc ctattgaaat cacagggctg tccaaagtgt ttacgcaaga 960
aaccgatgac aaacaatttt gtgcaataga gtcagccaaa tcaa 1004
<210>46
<211>769
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>46
aggctgatta cgcaatggcc aatgcattta tgaatgcatt cagcgaatat cgaaatggcc 60
aagcagagct gcataagcgt tacggaaaaa ctctttcagt gtgctggccg ctgtggaaag 120
acgggggcat gcaaattgat gcggaaactg caaggatgct gaaaagagaa acaggcatgg 180
tggccatgga aacagatcgt gggattcagg cgctatatca tggctggacg tcaggaaagc 240
cgcaagtgtt agttgcttcc ggtgttactg atcggattcg tgcattttta catgaaacgg 300
gacatggcaa aggccaatct cacaatatca aaaaaagcag tctcaatcag gaggcagaaa 360
aagcagacat gatcggggaa attgatgaag agatactaag agaaaaagcg gagaactatt 420
ttaaacaggt gctttcttcg gtgattaagc tgccagctgg ccagattgat gctgaagctc 480
ctctcgagga ttacgggatc gattctatca tgatcatgca tgtaacgggt caattagaaa 540
aagtattcgg atctttgtcc aagacgctgt tctttgaata ccaggatatt cggtcattaa 600
cccggtattt tattgattcc cgcagagaaa aactgctgga catcttggga tttgaaacgg 660
gaaaaccttc tgttgaaaga aaatcagaac ctgaaaaaca agaaatccca gttatcccaa 720
gaaagtctgg atttcttcct ttgcaagata aagagcggaa gcaggtaag 769
<210>47
<211>6965
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>47
tgcctcctgt aatctctgat acagaagacc attatattct gcatccgagc atgatagatt 60
cggcatttca agcatctatc ggtttgaggc tgggaggagc tacgagttta gaagacagaa 120
aggcaatgct gccttttgcc atacaggatg tccgaatctt caaaggctgc gaggcatcta 180
tgtgggcgcg gatcacatat agcgagggca gtacagctgg ggatcgtatg cagaagcttg 240
atatcgattt atgcaatgaa gagggccagg tttgcgtgcg attgacgagc tattctgcaa 300
gagtgttaga aacagatcaa gaaggtcctt ctgaagcgaa tgacacgcta ttgttcgaac 360
atatttggga agaacgtgct gcagagaggc aagagctcat agagtacgac acgtataaag 420
tcgttgtctg tgatgttgga gaacaaatgg aaagcctcca aaatcatctt gactgtacag 480
ttctgcagca tgatacagag acaattgatg aacggtttga aggttatgcc atacagttat 540
ttgaagaaat caaacagcta atgcactcaa aaacaggagg acatacattc attcaagtgg 600
cggtgcctgcgttggacgag cctcagctat taagcggctt aactggattg ctcaaaacgg 660
ctgaactgga aaatccaaaa ctgacaggac agttgatcga aatagaaacc gggatgtcag 720
ctggtgagct attcgaaata ttggaggaaa acagacgcta tccgcgtgac acgcatatcc 780
gccactggca agggaagcga tttgtaagca agtggaaaga agtgtctggt gagcacctaa 840
gtgctgacat gccatggaag gataaaggcg tgtatctgat cacaggcggt gcgggcggtc 900
tgggattcat ctttgcaact gaaatcgcaa accaaacgaa tgatgcggtt gtgatcctga 960
caggacgctc tccgcttgat gaaaggaaga agaagaagct taaagcctta cagaaacttg 1020
gcatccaagc gatttacaga caagctgatc tggctgacaa acaaacggtt gatgccttat 1080
taaaagaaac ccaaaacgtt tacggacact tagatggcag agtcaggagc atttaaccta 1140
aaaaagcatg acatttcagc ataatgaaca tttactcatg tctattttcg ttcttttctg 1200
tatgaaaata gttatttcga gtctctacgg aaatagcgag agatgataca agaacgtcct 1260
gatcttatta taatataagc aaaaaactca taaaaaggaa aagcattgac ctgaaaactt 1320
atcggtaaag tatgatataa tacaaaaaga ccgattagag gggagagagg acaaatgatg 1380
aatcaccaat tttctagtct tgaaagagat cgcatgctga cagacatgac gaaaaaaaca 1440
tatgacctat ttattatcgg aggaggaatt acaggagccg gaacagctct tgacgcggca 1500
tcaaggggaa tgaaggtcgc actaagcgaa atgcaggact ttgcggcggg aacatcaagc 1560
cgatcaacga agctggtaca tggcggcttg cgctatttaa aacaatttga agtgaaaatg 1620
gtcgctgagg taggaaaaga gcgggcgatt gtgtatgaaa acggcccgca tgtcactaca 1680
ccggaatgga tgctgcttcc gtttcataaa ggcggcacat tcggttcatt tacaacatct 1740
attgggttaa gggtttatga cttccttgca ggtgtgaaaa agtcagaacg aagaagcatg 1800
ctttcagcaa aagaaacgct gcaaaaagag cctttggtga aaaaagacgg cttaaaaggc 1860
ggcgggtact atgtggaata ccgcactgac gatgcgagac tgaccatcga agtcatgaag 1920
gaagcggtta aattcggggc agagcctgtg aattactcca aagtgaagga gcttctttac 1980
gaaaaaggca aagccgtcgg cgtattaatt gaagatgtgc tgacaaagaa agaatataaa 2040
gtgtatgcga aaaaaattgt caatgctaca ggcccttggg tcgatcagct cagagaaaaa 2100
gaccattcga aaaacggaaa gcatttgcag catacaaaag gcattcacct tgtatttgac 2160
cagtctgtct ttccgctgaa acaggctgta tatttcgata cacctgatgg ccggatggta 2220
tttgcgattc ctcgtgaagg caaaacatac gtgggaacaa cagacactgt ttacaaagag 2280
gcgctggagc atccgcggat gacaacggag gatcgtgatt atgtcatcaa atcaatcaat 2340
tacatgttcc cggaactgaa tatcactgcg aatgacatcg aatccagctg ggcggggctg 2400
cgtccgctga ttcatgaaga aggcaaagat ccttctgaaa tttcacggaa agacgagatt 2460
tggacatctg actcaggcct gatcaccatt gccggcggaa aactgactgg atacagaaaa 2520
atggcggacg acatcgttga tcttgtccgt gatcgcttaa aagaagaggg cgaaaaggat 2580
tttggaccat gtaaaacgaa aaacatgcca atctctggcg ggcacgtcgg cggttcgaaa 2640
aatcttatgt ccttcgttac cgcgaaaaca aaagaaggaa ttgcagccgg tttatcagaa 2700
aaagacgcaa aacagcttgc gatcagatac ggctctaacg tagatcgcgt ctttgaccgg 2760
gtagaagcgc tgaaagatga ggccgcgaaa cgcaacattc cggttcatat tcttgctgag 2820
gcagaataca gtatagaaga agagatgact gcaacccctg ctgacttctt tgtccgcaga 2880
acgggacgtt tattttttga tatcaattgg gtaagaacat ataaagatgc cgttattgat 2940
tttatgagcg agcgattcca atgggatgag caggcgaaaa acaaacatac agaaaacctc 3000
aacaagcttt tacacgatgc ggtcgtaccg cttgagcaat aaatcataac gggctgtctg 3060
cagcccgtta tttcttttta cgtgccgaaa gggggagatc tcaggttatc aagtgtcaga 3120
cgcggcagac aacattgatg aattatggga aaaactgagg gacgggcgag actgtattac 3180
ggaaattcct gcagaccgct gggatcacag tctttattat gacgaagata aagacaagcc 3240
tggaaaaacc tacagcaagt ggggcggctt catgaaggat gtagacaagt ttgacccgca 3300
gtttttccat atttcgccgc gtgaggcaaa attaatggac ccgcaagagc gtttattttt 3360
gcagtgcgtg tatgaaacga tggaagacgc aggctataca agagagcacc tcggccgtaa 3420
gcgtgatgct gagcttggcg gaagcgtcgg tgtttacgtc ggtgtcatgt acgaagaata 3480
tcagctgtac ggggcacaag agcaggtgcg gggaaggtct ctggctttaa cgggaaatcc 3540
atcatccatc gcgaaccggg tatcttatta ttttgatttt cacggaccga gtattgcttt 3600
agacaccatg tgttcttctt ctttaacggc tatccacttg gcctgccaaa gcctgcagcg 3660
cggagaatgt gaggcggcat tcgcgggcgg cgtgaatgtg tcaatccatc caaataaata 3720
tttgatgctc gggcagaaca aatttatgtc cagcaaaggc cgatgtgaaa gcttcggaca 3780
gggcggagac ggctatgtgc cgggggaagg cgttggagca gtgcttttga agccattgtc 3840
taaagcagtt gaagatggtg atcacattta tggaatcatt aaggggacag ccatcaacca 3900
cgggggaaaa acaaacgggt actcagtgcc caatccgaat gcccaagcag atgtcatcaa 3960
aaaggcgttt gtggaagcga aggttgatcc gcggacagtc agttacatcg aagcccacgg 4020
cacgggaacc tctctcggtg atcctattga aatcacaggg ctgtccaaag tgtttacgca 4080
agaaaccgat gacaaacaat tttgtgcaat agagtcagcc aaatcaatct tcaactaaag 4140
cacccattag ttcaacaaac gaaaattgga taaagtggga tatttttaaa atatatattt 4200
atgttacagt aatattgact tttaaaaaag gattgattct aatgaagaaa gcagacaagt 4260
aagcctccta aattcacttt agataaaaat ttaggaggca tatcaaatga actttaataa 4320
aattgattta gacaattgga agagaaaaga gatatttaat cattatttga accaacaaac 4380
gacttttagt ataaccacag aaattgatat tagtgtttta taccgaaaca taaaacaaga 4440
aggatataaa ttttaccctg catttatttt cttagtgaca agggtgataa actcaaatac 4500
agcttttaga actggttaca atagcgacgg agagttaggt tattgggata agttagagcc 4560
actttataca atttttgatg gtgtatctaa aacattctct ggtatttgga ctcctgtaaa 4620
gaatgacttc aaagagtttt atgatttata cctttctgat gtagagaaat ataatggttc 4680
ggggaaattg tttcccaaaa cacctatacc tgaaaatgct ttttctcttt ctattattcc 4740
atggacttca tttactgggt ttaacttaaa tatcaataat aatagtaatt accttctacc 4800
cattattaca gcaggaaaat tcattaataa aggtaattca atatatttac cgctatcttt 4860
acaggtacat cattctgttt gtgatggtta tcatgcagga ttgtttatga actctattca 4920
ggaattgtca gataggccta atgactggct tttataatat gagataatgc cgactgtact 4980
ttttacagtc ggttttctaa tgtcactaac ctgccccgtt agttgaaggc attttctgtc 5040
aatgttttct tacaaagaac gctgtgatat actgaaattt gtccgtatac attttggagg 5100
aatggatatg ttaccaaaat acgcgcaagt aaaagaagaa atcagttctt ggattaatca 5160
aggcaaaata ctgcccgatc aaaaaatccc taccgaaaac gaattaatgc agcaattcgg 5220
cgtcagccgg cataccatcc gcaaagcgat cggagacctc gtatcacaag gtctgctgta 5280
cagcgtgcaa ggcggaggca cctttgtcgc ttcacgctct gctaagtcag cgctgcattc 5340
caataaaacg atcggtgttt tgacaactta catatcagac tatattttcc cgagcatcat 5400
cagaggaatc gagtcctatt taagcgagca ggggtattct atgcttttga caagcacaaa 5460
caacaacccg gacaatgaaa gaagaggctt agaaaacctg ctgtcccagc atattgacgg 5520
actcatcgta gaaccgacaa aaagcgccct tcaaacccca aacatcggct attatctgaa 5580
cttggagaaa aacggcattc cttttgcgat gattaacgcg tcatatgccg agcttgccgc 5640
gccaagtttt accttggatg atgtgaaagg cgggatgatg gcggcggagc atttgctttc 5700
tctcggccac acgcatatga tgggtatttt taaagctgat gacacacaag gcgtgaaacg 5760
gatgaacgga tttatacagg cgcaccggga gcgtgagttg tttccttctc cggatatgat 5820
cgtgacattt acaacggaag aaaaagaatc aaaacttctg gagaaagtaa aagccacact 5880
ggagaaaaac agcaagcaca tgccgacagc cattctttgt tataacgatg aaattgcgct 5940
gaaggtgatt gatatgctga gggagatgga tcttaaagtg ccggaggata tgtctattgt 6000
cgggtacgat gattcacatt tcgcccaaat ctcagaagtg aaactaacct ctgtcaaaca 6060
tccgaaatca gtgcttggaa aagcagccgc caaatatgtc attgactgct tagagcataa 6120
aaagccgaag caagaggatg tcatatttga gcctgagttg atcattcgcc agtccgcacg 6180
aaaactgaat gaataaaggc tgattacgca atggccaatg catttatgaa tgcattcagc 6240
gaatatcgaa atggccaagc agagctgcat aagcgttacg gaaaaactct ttcagtgtgc 6300
tggccgctgt ggaaagacgg gggcatgcaa attgatgcgg aaactgcaag gatgctgaaa 6360
agagaaacag gcatggtggc catggaaaca gatcgtggga ttcaggcgct atatcatggc 6420
tggacgtcag gaaagccgca agtgttagtt gcttccggtg ttactgatcg gattcgtgca 6480
tttttacatg aaacgggaca tggcaaaggc caatctcaca atatcaaaaa aagcagtctc 6540
aatcaggagg cagaaaaagc agacatgatc ggggaaattg atgaagagat actaagagaa 6600
aaagcggaga actattttaa acaggtgctt tcttcggtga ttaagctgcc agctggccag 6660
attgatgctg aagctcctct cgaggattac gggatcgatt ctatcatgat catgcatgta 6720
acgggtcaat tagaaaaagt attcggatct ttgtccaaga cgctgttctt tgaataccag 6780
gatattcggt cattaacccg gtattttatt gattcccgca gagaaaaact gctggacatc 6840
ttgggatttg aaacgggaaa accttctgtt gaaagaaaat cagaacctga aaaacaagaa 6900
atcccagtta tcccaagaaa gtctggattt cttcctttgc aagataaaga gcggaagcag 6960
gtaag 6965
<210>48
<211>1382
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>48
ttctccaagc atcacacaaa accccttttc cttccattag atagcgttta tattatagtg 60
gatgaaaaag aaaacagcaa acgtgcttaa acatttgtca aacgtatctg aattagctaa 120
catgtaagag gatgatagga ggtttcgttc agtgagtgat aaaacaatga aagacataca 180
ggctgaagta gaccgttaca taggccaatt taaagaagga tattttagcc cgctggccat 240
gatggcgagg ctgactgaag aactgggcga gcttgccaga gaagtgaatc accgttatgg 300
agaaaaacca aaaaaagcga ctgaagatga taaaagcatg gaagaggaaa taggcgatgt 360
gctatttgta ttggtttgtt tagccaactc tcttgatatc tctttagagg aagctcacga 420
ccgagtcatg cataaattta atacaagaga taaagatcgc tggaccagaa aagaagaagg 480
aaagtagagg agatcaagat gtcaaacgaa acaattaaat tagtcattgc gggaccgcgt 540
ggaagaatgg ggcaggaagc tgttaaattg gcagaacgaa caccacattt tgaccttgta 600
ggggccatag accatacata cgatcagcaa aaattatctg atgtgatgcc tgttgagtca 660
gatgctttca tttacacaga tatccatgcc tgttttacag aaacacaacc ggatgtcttg 720
attgatttaa caacgcccga aatcggaaaa gtacatacaa aaattgcatt agagcacgga 780
gtccgtccag ttgtcggaac aaccggtttc tcagaagctg atttaaaaga gctcacatct 840
ttaacagaag aaaaagggat cggagccatc atcgcgccaa attttgcgct cggtgcgata 900
ctgatgatga aattttcaaa aatggctgcc aactattttg aggatgttga gattattgag 960
cttcatcatg accagaagct tgacgcacca agcggaactg cgcttaaaac agcggaaatg 1020
atttcagaag tccgtaaaga aaagcagcaa ggacatccgg atgaaaaaga aattctccca 1080
ggagcaagag gagcggagca aaacggtatt cgcttgcaca gcgtccgtct tccgggactg 1140
atcgcgcatc aggaggtcat gttcggcatg gatggccaaa cgcttcagat acgccatgat 1200
tcttataacc gtgcttcttt catgtcaggc gttaaactgt cagtcgaaca agtcatgaag 1260
attgatcagc ttgtgtatgg tttagaaaat atcattgatt agacgggggg ataaacaatg 1320
aaaattgctt tgatcgcgca tgacaagaaa aaacaggata tggttcaatt tacgactgcc 1380
ta 1382
<210>49
<211>1130
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>49
cattccgatt ctactcctct gacgaatggg tatattgaaa tcgttgaagc gagagaaaag 60
ctttacggta aagaagcggg cgtggagtat gccgaagttt cttttccaaa cggatgctga 120
tgcttgatca tgatgtgctt gggggcgaac aatgagaaaa ctaaaaatag gaatcacatg 180
ctatccgagc gttggaggct caggtatcat tgcgacagaa ctggggaagc agcttgctga 240
aaagggacat gaaatccatt tcatcacatc aagcattccg tttagactga atacatatca 300
tcccaatatt cattttcatg aagttgaggt taatcaatat gctgttttta agtatcctcc 360
gtatgatttg acattggcaa gcaaaatcgc tgaggtggcg gaacgggaga atttagacat 420
tatccatgct cactatgctc tcccgcatgc cgtttgcgcc tatcttgcaa aacaaatgct 480
gaaacgcaat atcggcattg ttaccacttt gcatggcacg gatatcacgg tgttaggtta 540
tgatccgtct ctaaaagatc tgatccgttt tgctattgag tcatcagaca gggtgacggc 600
cgtctcctca gcgcttgcgg ctgaaacata cgatttaatt aaaccggaga aaaaaattga 660
aacgatttat aactttatag acgagcgcgt gtatctgaag aaaaacacag cggcaattaa 720
agagaaacat ggaattttac cagatgaaaa agtcgtcatc catgtgtcca acttcagaaa 780
agttaaacgc gtgcaggatg tcatccgtgt gttccgcaat atcgctggca aaacgaaagc 840
gaagctgctt ttagtcggag acggtccgga gaaatcgaca gcctgcgagc ttatcagaaa 900
atatggcttg gaagaccaag tcttaatgct tggaaatcaa gaccgtgttg aagatcttta 960
ttctattagc gatttgaagc tgctgctatc tgaaaaagaa agctttggcc ttgtcctgct 1020
tgaagcgatg gcttgcggag tgccttgtat tggaacaaac attggcggta tccctgaggt 1080
tataaaaaac aatgtgagcg gatttttggt ggatgtcgga gatgtttcgg 1130
<210>50
<211>813
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>50
atgaggcgat aggtcttcaa attgaacgtt ttcaatccgg ccctttaggg ggagaccagc 60
aaatcggtgc actgatcgct gccaatgcac tcgatcttgt catttttttg cgcgacccgc 120
tgaccgcgca gccgcatgaa ccggatgtct cggcattaat ccgtttatgt gatgtgtatt 180
ccattccgct cgccacaaat atgggtactg cggaaattct tgtgcgcaca cttgatgaag 240
gtgttttcga attccgtgac cttcttcggg gagaagagcc gaatgtataa tgctgacgtt 300
cttgcttttg gcgcccacag tgatgatgtc gagatcggaa tgggcggcac aatagcgaag 360
tttgtcaaac aggaaaaaaa agtaatgata tgcgatttga cagaagcgga actctcttct 420
aacggtacgg tcagtttgcg taaagaagaa gcagctgaag cagcccgcat attaggcgca 480
gataaaagaa ttcagctaac gcttccagac cgcggcctaa taatgagtga tcaggcaatt 540
cggtcaattg tcactgtcat cagaatctgt cggccaaaag cggtttttat gccgtataaa 600
aaggatcgcc atccggatca cggcaatgcg gctgcactgg tggaagaagc gatcttttcc 660
gccggaatcc ataaatataa agacgaaaaa agccttccgg cgcataaagt cagcaaggtt 720
tactattata tgataaatgg ttttcatcag ccggattttg ttattgatat ctcggataca 780
atagaggcaa agaaacaaag cctcatcgcc tac 813
<210>51
<211>5394
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>51
ttctccaagc atcacacaaa accccttttc cttccattag atagcgttta tattatagtg 60
gatgaaaaag aaaacagcaa acgtgcttaa acatttgtca aacgtatctg aattagctaa 120
catgtaagag gatgatagga ggtttcgttc agtgagtgat aaaacaatga aagacataca 180
ggctgaagta gaccgttaca taggccaatt taaagaagga tattttagcc cgctggccat 240
gatggcgagg ctgactgaag aactgggcga gcttgccaga gaagtgaatc accgttatgg 300
agaaaaacca aaaaaagcga ctgaagatga taaaagcatg gaagaggaaa taggcgatgt 360
gctatttgta ttggtttgtt tagccaactc tcttgatatc tctttagagg aagctcacga 420
ccgagtcatg cataaattta atacaagaga taaagatcgc tggaccagaa aagaagaagg 480
aaagtagagg agatcaagat gtcaaacgaa acaattaaat tagtcattgc gggaccgcgt 540
ggaagaatgg ggcaggaagc tgttaaattg gcagaacgaa caccacattt tgaccttgta 600
ggggccatag accatacata cgatcagcaa aaattatctg atgtgatgcc tgttgagtca 660
gatgctttca tttacacaga tatccatgcc tgttttacag aaacacaacc ggatgtcttg 720
attgatttaa caacgcccga aatcggaaaa gtacatacaa aaattgcatt agagcacgga 780
gtccgtccag ttgtcggaac aaccggtttc tcagaagctg atttaaaaga gctcacatct 840
ttaacagaag aaaaagggat cggagccatc atcgcgccaa attttgcgct cggtgcgata 900
ctgatgatga aattttcaaa aatggctgcc aactattttg aggatgttga gattattgag 960
cttcatcatg accagaagct tgacgcacca agcggaactg cgcttaaaac agcggaaatg 1020
atttcagaag tccgtaaaga aaagcagcaa ggacatccgg atgaaaaaga aattctccca 1080
ggagcaagag gagcggagca aaacggtatt cgcttgcaca gcgtccgtct tccgggactg 1140
atcgcgcatc aggaggtcat gttcggcatg gatggccaaa cgcttcagat acgccatgat 1200
tcttataacc gtgcttcttt catgtcaggc gttaaactgt cagtcgaaca agtcatgaag 1260
attgatcagc ttgtgtatgg tttagaaaat atcattgatt agacgggggg ataaacaatg 1320
aaaattgctt tgatcgcgca tgacaagaaa aaacaggata tggttcaatt tacgactgcc 1380
tacattccga ttctactcct ctgacgaatg ggtatattga aatcgttgaa gcgagagaaa 1440
agctttacgg taaagaagcg ggcgtggagt atgccgaagt ttcttttcca aacggatgct 1500
gatgcttgat catgatgtgc ttgggggcga acaatgagaa aactaaaaat aggaatcaca 1560
tgctatccga gcgttggagg ctcaggtatc attgcgacag aactggggaa gcagcttgct 1620
gaaaagggac atgaaatcca tttcatcaca tcaagcattc cgtttagact gaatacatat 1680
catcccaata ttcattttca tgaagttgag gttaatcaat atgctgtttt taagtatcct 1740
ccgtatgatt tgacattggc aagcaaaatc gctgaggtgg cggaacggga gaatttagac 1800
attatccatg ctcactatgc tctcccgcat gccgtttgcg cctatcttgc aaaacaaatg 1860
ctgaaacgca atatcggcat tgttaccact ttgcatggca cggatatcac ggtgttaggt 1920
tatgatccgt ctctaaaaga tctgatccgt tttgctattg agtcatcaga cagggtgacg 1980
gccgtctcct cagcgcttgc ggctgaaaca tacgatttaa ttaaaccgga gaaaaaaatt 2040
gaaacgattt ataactttat agacgagcgc gtgtatctga agaaaaacac agcggcaatt 2100
aaagagaaac atggaatttt accagatgaa aaagtcgtca tccatgtgtc caacttcaga 2160
aaagttaaac gcgtgcagga tgtcatccgt gtgttccgca atatcgctgg caaaacgaaa 2220
gcgaagctgc ttttagtcgg agacggtccg gagaaatcga cagcctgcga gcttatcaga 2280
aaatatggct tggaagacca agtcttaatg cttggaaatc aagaccgtgt tgaagatctt 2340
tattctatta gcgatttgaa gctgctgcta tctgaaaaag aaagctttgg ccttgtcctg 2400
cttgaagcga tggcttgcgg agtgccttgt attggaacaa acattggcgg tatccctgag 2460
gttataaaaa acaatgtgag cggatttttg gtggatgtcg gagatgtttc ggtcttcaac 2520
taaagcaccc attagttcaa caaacgaaaa ttggataaag tgggatattt ttaaaatata 2580
tatttatgtt acagtaatat tgacttttaa aaaaggattg attctaatga agaaagcaga 2640
caagtaagcc tcctaaattc actttagata aaaatttagg aggcatatca aatgaacttt 2700
aataaaattg atttagacaa ttggaagaga aaagagatat ttaatcatta tttgaaccaa 2760
caaacgactt ttagtataac cacagaaatt gatattagtg ttttataccg aaacataaaa 2820
caagaaggat ataaatttta ccctgcattt attttcttag tgacaagggt gataaactca 2880
aatacagctt ttagaactgg ttacaatagc gacggagagt taggttattg ggataagtta 2940
gagccacttt atacaatttt tgatggtgta tctaaaacat tctctggtat ttggactcct 3000
gtaaagaatg acttcaaaga gttttatgat ttataccttt ctgatgtaga gaaatataat 3060
ggttcgggga aattgtttcc caaaacacct atacctgaaa atgctttttc tctttctatt 3120
attccatgga cttcatttac tgggtttaac ttaaatatca ataataatag taattacctt 3180
ctacccatta ttacagcagg aaaattcatt aataaaggta attcaatata tttaccgcta 3240
tctttacagg tacatcattc tgtttgtgat ggttatcatg caggattgtt tatgaactct 3300
attcaggaat tgtcagatag gcctaatgac tggcttttat aatatgagat aatgccgact 3360
gtacttttta cagtcggttt tctaatgtca ctaacctgcc ccgttagttg aaggcatttt 3420
ctgtcaatgt tttcttacaa agaacgctgt gatatactga aatttgtccg tatacatttt 3480
ggaggaatgg atatgttacc aaaatacgcg caagtaaaag aagaaatcag ttcttggatt 3540
aatcaaggca aaatactgcc cgatcaaaaa atccctaccg aaaacgaatt aatgcagcaa 3600
ttcggcgtca gccggcatac catccgcaaa gcgatcggag acctcgtatc acaaggtctg 3660
ctgtacagcg tgcaaggcgg aggcaccttt gtcgcttcac gctctgctaa gtcagcgctg 3720
cattccaata aaacgatcgg tgttttgaca acttacatat cagactatat tttcccgagc 3780
atcatcagag gaatcgagtc ctatttaagc gagcaggggt attctatgct tttgacaagc 3840
acaaacaaca acccggacaa tgaaagaaga ggcttagaaa acctgctgtc ccagcatatt 3900
gacggactca tcgtagaacc gacaaaaagc gcccttcaaa ccccaaacat cggctattat 3960
ctgaacttgg agaaaaacgg cattcctttt gcgatgatta acgcgtcata tgccgagctt 4020
gccgcgccaa gttttacctt ggatgatgtg aaaggcggga tgatggcggc ggagcatttg 4080
ctttctctcg gccacacgca tatgatgggt atttttaaag ctgatgacac acaaggcgtg 4140
aaacggatga acggatttat acaggcgcac cgggagcgtg agttgtttcc ttctccggat 4200
atgatcgtga catttacaac ggaagaaaaa gaatcaaaac ttctggagaa agtaaaagcc 4260
acactggaga aaaacagcaa gcacatgccg acagccattc tttgttataa cgatgaaatt 4320
gcgctgaagg tgattgatat gctgagggag atggatctta aagtgccgga ggatatgtct 4380
attgtcgggt acgatgattc acatttcgcc caaatctcag aagtgaaact aacctctgtc 4440
aaacatccga aatcagtgct tggaaaagca gccgccaaat atgtcattga ctgcttagag 4500
cataaaaagc cgaagcaaga ggatgtcata tttgagcctg agttgatcat tcgccagtcc 4560
gcacgaaaac tgaatgaata aatgaggcga taggtcttca aattgaacgt tttcaatccg 4620
gccctttagg gggagaccag caaatcggtg cactgatcgc tgccaatgca ctcgatcttg 4680
tcattttttt gcgcgacccg ctgaccgcgc agccgcatga accggatgtc tcggcattaa 4740
tccgtttatg tgatgtgtat tccattccgc tcgccacaaa tatgggtact gcggaaattc 4800
ttgtgcgcac acttgatgaa ggtgttttcg aattccgtga ccttcttcgg ggagaagagc4860
cgaatgtata atgctgacgt tcttgctttt ggcgcccaca gtgatgatgt cgagatcgga 4920
atgggcggca caatagcgaa gtttgtcaaa caggaaaaaa aagtaatgat atgcgatttg 4980
acagaagcgg aactctcttc taacggtacg gtcagtttgc gtaaagaaga agcagctgaa 5040
gcagcccgca tattaggcgc agataaaaga attcagctaa cgcttccaga ccgcggccta 5100
ataatgagtg atcaggcaat tcggtcaatt gtcactgtca tcagaatctg tcggccaaaa 5160
gcggttttta tgccgtataa aaaggatcgc catccggatc acggcaatgc ggctgcactg 5220
gtggaagaag cgatcttttc cgccggaatc cataaatata aagacgaaaa aagccttccg 5280
gcgcataaag tcagcaaggt ttactattat atgataaatg gttttcatca gccggatttt 5340
gttattgata tctcggatac aatagaggca aagaaacaaa gcctcatcgc ctac 5394
<210>52
<211>1487
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>52
gccgatgact tggttgtttt gaaccttgat ggagaggtcg tcgaaggctc gcttaaacct 60
tcttcagata cacctaccca tgtttatcta tataaagcct ttccgaatat cgggggaatt 120
gtccataccc attctcaatg ggcgacaagc tgggcgcaat cgggcagaga catccctccg 180
ttaggcacga cccatgctga ttattttgac agtgcgattc catgtactcg agaaatgtac 240
gatgaagaaa tcattcatga ctacgaactg aatacaggaa aagtcatagc ggaaaccttt 300
cagcatcata attacgaaca ggtgccgggt gtgctcgtga ataatcacgg accgttctgc 360
tggggcactg acgccttaaa tgccattcat aacgcagttg tattagaaac ggttgccgaa 420
atggcctatc actccattat gctgaacaag gatgtaaccc caatcaatac agtcctgcat 480
gaaaagcatt tttatcgaaa acacggagca aatgcgtatt atggccagtc atgatacgcc 540
tgtgtcaccg gctggcattc tgattgactt ggacggtact gtattcagag gaaatgagtt 600
gatcgaagga gcaagagaag cgatcaaaac gcttaggaga atgggaaaga aaatcgtctt 660
tttaagcaac cgggggaata tctcccgtgc catgtgcaga aaaaaacttc ttggcgcggg 720
gattgaaacg gacgtaaacg acattgttct gtcatcaagc gtgacagcgg cttttctgaa 780
aaaacattat cgtttttcaa aggtatgggt gcttggggag caaggcttgg ttgacgagct 840
gaggctggcc ggtgtgcaga acgcgagcga accgaaggaa gcggattggc tcgtgatctc 900
ccttcatgaa acgctcacgt acgacgattt aaatcaagcc tttcaagcgg ctgccggcgg 960
cgctcgtatt atcgctacaa acaaagaccg ctcttttccg aacgaagacg gaaatgccat 1020
tgatgtggcc ggaatgatcg gggcaattga gacttctgca caagcgaaga ctgaacttgt 1080
tgtcggaaaa ccgtcatggc tgatggcgga ggctgcctgt acagcaatgg ggctgtccgc 1140
acatgaatgc atgattatag gagacagcat tgaatctgac attgcgatgg ggaagcttta 1200
tggcatgaaa agcgccttag tgctaactgg ttctgcgaaa cagggtgaac agcgtttgta 1260
cacgccggat tatgtgctgg attctattaa ggatgtaacc aaattggctg aggaggggat 1320
tctgatatga atcgtatcgc agctgacgtt cagcgtgctt ttgaaaacgc cggagaaaag 1380
acgttgccta taaaagttga agaaattgtt ctcggtaagc aagcagctga ttcgcttttg 1440
gattatgtaa aacgaaaaaa caatcaacat attgtcattg tctggga 1487
<210>53
<211>1026
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>53
gggctggatt tcgtcaaaaa tgccttcaga cacgcgcaca ccttaagaga ccgatgcacc 60
ggattaagaa tcatcaatga aaacaaaacg ctgatcaacc atggtctata tgaatagccc 120
gcacctcgaa tggaaggggt aacgcagatg aaaaaaatga ctgtctgttt tcttgtgctc 180
atgatgttgc tgacattagt cattgccggg tgttcagcag aaaaatcatc cggcaaatcg 240
ggtgaaactg agctgacctt ttggacattt agcgggcttc atgagcagtt ctatgtggaa 300
atggtgaagg aatggaacaa aaaatatcct gaccgcaaaa ttaagctgaa tacggtcgtt 360
tatccatatg gacaaatgca cgataactta tctatctccc taatagcggg agaaggcgtt 420
cctgatattg cagatgtcga attggcccgt ttttcaaact ttttgaaggg ctctgacata 480
ccgcttgccg acttgactcc gctgattgaa aaggatcgcg ataaattcgt tgaggcgcgg 540
ctgacattgt acagcaaaaa cggaaagctt tacggactcg atacacatgt agggacaacg 600
gtcatgtttt ataacatgga tgtgatgaaa aaagccggcg tcaatcctga cgatattaaa 660
acatgggatg attaccataa agccggacag aaagtgcgca aagtgaccgg gaagccgatg 720
ggaacggtgg aaacaaatga ttccgcaacg ttcttatcta tgatttcaca gcaaaactca 780
ggctattttg ataaaaacgg caagctgatc ctcaataatg acaccaacgt aaaaacactt 840
caatatttaa aagacatgat caatgataaa acgatgattc ctgcgccggg cggcgggcat 900
cacagtgaag aatactacgg ctttatgaac caaggaggag ctgcttcagt tctcatgccg 960
atttggtata tgggaagatt tatcgattat atgcctgatc tgaaagggaa gatagccatc 1020
agaccg 1026
<210>54
<211>682
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>54
cgaaacaacc aacggatgtc atgatcgcag tcggttcggg cacgattcat gatatcgtcc 60
gctttgcggc gtttcaaaga gatttgccgt ttatttctta tccgactgct ccatctgtag 120
acggttttac atcagccggt gcgccgatta ttttatacgg cacgaaaaca accattcaaa 180
cgaaggcccc atctgcgctg ttcgctgatc tggatctatt aaaagcggca ccgcagtcaa 240
tggtggcggc tggctttggt gacatgctcg gtaaaatcac gtctttagca gattgggaaa 300
tatcccggca tcttgccggt gagccttatt cgcctgcagg agctaagatc gttcaggagg 360
cgcttgctgc ctgcattgaa cacacagaag acattgcgat gaaaacggaa actggcatac 420
gggttttgat ggagtcttta cttgtatcgg ggcttgtcat gctggcatta gatcattccc 480
gaccggcatc aggcggcgag catcatattt cacattggat tgaaatggag ttaatggaga 540
aaaaacggcc tcagattctt catggggcaa aggtgggctg tgccgctgtt ttattaactg 600
acacatacag aaagctcgct caggatgacg ggctgaacga attttcacca agccgccggg 660
aagccatcca atcggcttat ca 682
<210>55
<211>5264
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>55
gccgatgact tggttgtttt gaaccttgat ggagaggtcg tcgaaggctc gcttaaacct 60
tcttcagata cacctaccca tgtttatcta tataaagcct ttccgaatat cgggggaatt 120
gtccataccc attctcaatg ggcgacaagc tgggcgcaat cgggcagaga catccctccg 180
ttaggcacga cccatgctga ttattttgac agtgcgattc catgtactcg agaaatgtac 240
gatgaagaaa tcattcatga ctacgaactg aatacaggaa aagtcatagc ggaaaccttt 300
cagcatcata attacgaaca ggtgccgggt gtgctcgtga ataatcacgg accgttctgc 360
tggggcactg acgccttaaa tgccattcat aacgcagttg tattagaaac ggttgccgaa 420
atggcctatc actccattat gctgaacaag gatgtaaccc caatcaatac agtcctgcat 480
gaaaagcatt tttatcgaaa acacggagca aatgcgtatt atggccagtc atgatacgcc 540
tgtgtcaccg gctggcattc tgattgactt ggacggtact gtattcagag gaaatgagtt 600
gatcgaagga gcaagagaag cgatcaaaac gcttaggaga atgggaaaga aaatcgtctt 660
tttaagcaac cgggggaata tctcccgtgc catgtgcaga aaaaaacttc ttggcgcggg 720
gattgaaacg gacgtaaacg acattgttct gtcatcaagc gtgacagcgg cttttctgaa 780
aaaacattat cgtttttcaa aggtatgggt gcttggggag caaggcttgg ttgacgagct 840
gaggctggcc ggtgtgcaga acgcgagcga accgaaggaa gcggattggc tcgtgatctc 900
ccttcatgaa acgctcacgt acgacgattt aaatcaagcc tttcaagcgg ctgccggcgg 960
cgctcgtatt atcgctacaa acaaagaccg ctcttttccg aacgaagacg gaaatgccat 1020
tgatgtggcc ggaatgatcg gggcaattga gacttctgca caagcgaaga ctgaacttgt 1080
tgtcggaaaa ccgtcatggc tgatggcgga ggctgcctgt acagcaatgg ggctgtccgc 1140
acatgaatgc atgattatag gagacagcat tgaatctgac attgcgatgg ggaagcttta 1200
tggcatgaaa agcgccttag tgctaactgg ttctgcgaaa cagggtgaac agcgtttgta 1260
cacgccggat tatgtgctgg attctattaa ggatgtaacc aaattggctg aggaggggat 1320
tctgatatga atcgtatcgc agctgacgtt cagcgtgctt ttgaaaacgc cggagaaaag 1380
acgttgccta taaaagttga agaaattgtt ctcggtaagc aagcagctga ttcgcttttg 1440
gattatgtaa aacgaaaaaa caatcaacat attgtcattg tctgggaggg ctggatttcg 1500
tcaaaaatgc cttcagacac gcgcacacct taagagaccg atgcaccgga ttaagaatca 1560
tcaatgaaaa caaaacgctg atcaaccatg gtctatatga atagcccgca cctcgaatgg 1620
aaggggtaac gcagatgaaa aaaatgactg tctgttttct tgtgctcatg atgttgctga 1680
cattagtcat tgccgggtgt tcagcagaaa aatcatccgg caaatcgggt gaaactgagc 1740
tgaccttttg gacatttagc gggcttcatg agcagttcta tgtggaaatg gtgaaggaat 1800
ggaacaaaaa atatcctgac cgcaaaatta agctgaatac ggtcgtttat ccatatggac 1860
aaatgcacga taacttatct atctccctaa tagcgggaga aggcgttcct gatattgcag 1920
atgtcgaatt ggcccgtttt tcaaactttt tgaagggctc tgacataccg cttgccgact 1980
tgactccgct gattgaaaag gatcgcgata aattcgttga ggcgcggctg acattgtaca 2040
gcaaaaacgg aaagctttac ggactcgata cacatgtagg gacaacggtc atgttttata 2100
acatggatgt gatgaaaaaa gccggcgtca atcctgacga tattaaaaca tgggatgatt 2160
accataaagc cggacagaaa gtgcgcaaag tgaccgggaa gccgatggga acggtggaaa 2220
caaatgattc cgcaacgttc ttatctatga tttcacagca aaactcaggc tattttgata 2280
aaaacggcaa gctgatcctc aataatgaca ccaacgtaaa aacacttcaa tatttaaaag 2340
acatgatcaa tgataaaacg atgattcctg cgccgggcgg cgggcatcac agtgaagaat 2400
actacggctt tatgaaccaa ggaggagctg cttcagttct catgccgatt tggtatatgg 2460
gaagatttat cgattatatg cctgatctga aagggaagat agccatcaga ccgtattcaa 2520
ctaaagcacc cattagttca acaaacgaaa attggataaa gtgggatatt tttaaaatat 2580
atatttatgt tacagtaata ttgactttta aaaaaggatt gattctaatg aagaaagcag 2640
acaagtaagc ctcctaaatt cactttagat aaaaatttag gaggcatatc aaatgaactt 2700
taataaaatt gatttagaca attggaagag aaaagagata tttaatcatt atttgaacca 2760
acaaacgact tttagtataa ccacagaaat tgatattagt gttttatacc gaaacataaa 2820
acaagaagga tataaatttt accctgcatt tattttctta gtgacaaggg tgataaactc 2880
aaatacagct tttagaactg gttacaatag cgacggagag ttaggttatt gggataagtt 2940
agagccactt tatacaattt ttgatggtgt atctaaaaca ttctctggta tttggactcc 3000
tgtaaagaat gacttcaaag agttttatga tttatacctt tctgatgtag agaaatataa 3060
tggttcgggg aaattgtttc ccaaaacacc tatacctgaa aatgcttttt ctctttctat 3120
tattccatgg acttcattta ctgggtttaa cttaaatatc aataataata gtaattacct 3180
tctacccatt attacagcag gaaaattcat taataaaggt aattcaatat atttaccgct 3240
atctttacag gtacatcatt ctgtttgtga tggttatcat gcaggattgt ttatgaactc 3300
tattcaggaa ttgtcagata ggcctaatga ctggctttta taatatgaga taatgccgac 3360
tgtacttttt acagtcggtt ttctaatgtc actaacctgc cccgttagtt gaaggcattt 3420
tctgtcaatg ttttcttaca aagaacgctg tgatatactg aaatttgtcc gtatacattt 3480
tggaggaatg gatatgttac caaaatacgc gcaagtaaaa gaagaaatca gttcttggat 3540
taatcaaggc aaaatactgc ccgatcaaaa aatccctacc gaaaacgaat taatgcagca 3600
attcggcgtc agccggcata ccatccgcaa agcgatcgga gacctcgtat cacaaggtct 3660
gctgtacagc gtgcaaggcg gaggcacctt tgtcgcttca cgctctgcta agtcagcgct 3720
gcattccaat aaaacgatcg gtgttttgac aacttacata tcagactata ttttcccgag 3780
catcatcaga ggaatcgagt cctatttaag cgagcagggg tattctatgc ttttgacaag 3840
cacaaacaac aacccggaca atgaaagaag aggcttagaa aacctgctgt cccagcatat 3900
tgacggactc atcgtagaac cgacaaaaag cgcccttcaa accccaaaca tcggctatta 3960
tctgaacttg gagaaaaacg gcattccttt tgcgatgatt aacgcgtcat atgccgagct 4020
tgccgcgcca agttttacct tggatgatgt gaaaggcggg atgatggcgg cggagcattt 4080
gctttctctc ggccacacgc atatgatggg tatttttaaa gctgatgaca cacaaggcgt 4140
gaaacggatg aacggattta tacaggcgca ccgggagcgt gagttgtttc cttctccgga 4200
tatgatcgtg acatttacaa cggaagaaaa agaatcaaaa cttctggaga aagtaaaagc 4260
cacactggag aaaaacagca agcacatgcc gacagccatt ctttgttata acgatgaaat 4320
tgcgctgaag gtgattgata tgctgaggga gatggatctt aaagtgccgg aggatatgtc 4380
tattgtcggg tacgatgatt cacatttcgc ccaaatctca gaagtgaaac taacctctgt 4440
caaacatccg aaatcagtgc ttggaaaagc agccgccaaa tatgtcattg actgcttaga 4500
gcataaaaag ccgaagcaag aggatgtcat atttgagcct gagttgatca ttcgccagtc 4560
cgcacgaaaa ctgaatgaat aacgaaacaa ccaacggatg tcatgatcgc agtcggttcg 4620
ggcacgattc atgatatcgt ccgctttgcg gcgtttcaaa gagatttgcc gtttatttct 4680
tatccgactg ctccatctgt agacggtttt acatcagccg gtgcgccgat tattttatac 4740
ggcacgaaaa caaccattca aacgaaggcc ccatctgcgc tgttcgctga tctggatcta 4800
ttaaaagcgg caccgcagtc aatggtggcg gctggctttg gtgacatgct cggtaaaatc 4860
acgtctttag cagattggga aatatcccgg catcttgccg gtgagcctta ttcgcctgca 4920
ggagctaaga tcgttcagga ggcgcttgct gcctgcattg aacacacaga agacattgcg 4980
atgaaaacgg aaactggcat acgggttttg atggagtctt tacttgtatc ggggcttgtc 5040
atgctggcat tagatcattc ccgaccggca tcaggcggcg agcatcatat ttcacattgg 5100
attgaaatgg agttaatgga gaaaaaacgg cctcagattc ttcatggggc aaaggtgggc 5160
tgtgccgctg ttttattaac tgacacatac agaaagctcg ctcaggatga cgggctgaac 5220
gaattttcac caagccgccg ggaagccatc caatcggctt atca 5264

Claims (2)

1. A method for genetically modifying Bacillus subtilis, comprising the steps of:
construction of starting Strain MK3-MEP 123-. DELTA.dhbB
(1) Overexpression of menA Gene at the yxlA site on the B.subtilis chromosome
Firstly, using chromosome of B.subtilis 168 as a template, and respectively amplifying fragments U (1115bp), A (1057bp), D (1053bp) and G (806bp) by using primers yxlA-menA-U1/yxlA-menA-U2q, yxlA-menA-1q/yxlA-menA-2, yxlA-menA-D1q/yxlA-menA-D2, yxlA-menA-G1 q/yxlA-menA-G2; plasmid pUC57-1.8k-P1 as template and use as primerThe product yxlA-menA-P1/yxlA-menA-P2 contains promoter PlapSFragment P of (442 bp); amplifying a fragment CR (2069bp) by using a primer yxlA-menA-CR1q/CR2 by using a chromosome of BS168NUm as a template; then, splicing the segment U, P and A into a segment UPA (2614bp) by using a primer yxlA-menA-U1/yxlA-menA-2 through an overlapping PCR method; then the fragment UPA and the fragment D are spliced into a fragment UPAD (3667bp) by using a primer yxlA-menA-U1/yxlA-menA-D2; finally, the fragment UPAD, the fragment CR and the fragment G are spliced into a fragment UPADCRG (6542bp) by using a primer yxlA-menA-U1/yxlA-menA-G2; transforming the UPADCRG fragment into a competent cell of a recipient bacterium BS168NU, and finally obtaining a recombinant strain MK3 with menA gene integrated at a yxlA locus through two-step screening;
(2) overexpression of dxs Gene at the yjoB site of the B.subtilis chromosome
Firstly, using chromosome of B.subtilis 168 as a template, and respectively amplifying fragments U (1236bp), s (1947bp), D (808bp) and G (697bp) by using primers yjoB-dxs-U1/yjoB-dxs-U2q, yjoB-dxs-1q/yjoB-dxs-2, yjoB-dxs-D1q/yjoB-dxs-D2 and yjoB-dxs-G1 q/yjoB-dxs-G2; plasmid pUC57-1.8k-P2 was used as a template, and primer P was used431/P432 amplification of a plasmid containing promoter P43Fragment P of (232 bp); amplifying a fragment CR (2069bp) by using a primer yjoB-dxs-CR1q/CR2 by using a chromosome of BS168NUm as a template; then, the primer yjoB-dxs-U1/yjoB-dxs-2 is used for splicing the segment U, P and s into a segment UPs (3415bp) by an overlapping PCR method; then splicing the fragment UPs and the fragment D into a fragment UPsD (4223bp) by using a primer yjoB-dxs-U1/yjoB-dxs-D2; finally, splicing the segment UPsD, the segment CR and the segment G into a segment UPsDCRG (6989bp) by using a primer yjoB-dxs-U1/yjoB-dxs-G2; transforming the UPsDCRG fragment into a competent cell of an acceptor bacterium MK3, and finally obtaining a recombinant strain MK3-MEP1 with dxs genes integrated at a yjoB locus through two-step screening;
on the basis of the strain MK3-MEP1, dxr and yacM-yacN are sequentially overexpressed to obtain a recombinant strain MK3-MEP 123; using chromosome of B.subtilis 168 as template, respectively amplifying fragments U (1003bp), D (815bp) and G (605bp) by primers dhbB-U1/dhbB-U2, dhbB-D1q/dhbB-D2 and dhbB-G1 q/dhbB-G2; amplifying a fragment CR (2069bp) with a selection box (cat-araR) by using a primer dhbB-CR1q/CR2 by using a chromosome of a midbody strain BS168NUm as a template; firstly, splicing the fragments U and D into UD (1818bp) by overlap PCR by using primers dhbB-U1/dhbB-D2; then, splicing the three fragments UD, GR and G into UDCRG (4492bp) by using a primer dhbB-U1/dhbB-G2 through an overlapping PCR method; transforming the UDCRG fragment into a competent cell of a receptor bacterium MK3-MEP123, and finally screening to obtain a recombinant strain MK3-MEP 123-delta dhbB with a gene dhbB knocked out;
(II) overexpression of the Glycerol kinase Gene glpK and the Glycerol-3-phosphate dehydrogenase Gene glpD
Constructing a glpK overexpression strain; firstly, using chromosome of starting bacterium B.subtilis MK3-MEP 123-delta dhbB as template, respectively using primers pksJ-glpK-U1/pksJ-glpK-U2q, pksJ-glpK-1q/pksJ-glpK-2, pksJ-glpK-D1q/pksJ-glpK-D2 and pksJ-glpK-G1q/pksJ-glpK-G2 to amplify fragment U, as shown in SEQ ID No.36, 1164bp, and amplified fragment K as shown in SEQ ID No.37 and 1783 bp; the amplified fragment D is shown as SEQ ID No.38 and is 948 bp; the amplified fragment G is shown as SEQ ID No.39 and 990 bp; using chromosome of BS168NUm as template, amplifying fragment CR with primer pksJ-glpK-CR1q/CR2, as shown in SEQ ID No.40, 2069 bp; plasmid pUC57-1.8k-P1 was used as a template, and primer P was usedlapS1/PlapS2Amplification of a nucleic acid molecule containing promoter PlapSThe fragment P of the expression cassette is shown as SEQ ID No.41, and is 256 bp; then, splicing the U, P fragment and the K fragment into a UPK fragment (3203bp) by using a primer pksJ-glpK-U1/pksJ-glpK-2 through an overlapping PCR method; splicing the fragment UPK and the fragment D into a fragment UPKD (4151bp) by using a primer pksJ-glpK-U1/pksJ-glpK-D2; finally, the fragment UPKD, the fragment CR and the fragment G are spliced into a fragment UPKDCRG (7210bp) by using a primer pksJ-glpK-U1/pksJ-glpK-G2; transforming UPKDCRG fragment into competent cells of receptor bacteria MK3-MEP 123-delta dhbB, and finally obtaining a recombinant strain BSMK _1 with glpK gene integrated at pksJ locus through two-step screening; the sequence of the UPKDCRG fragment is shown in SEQ ID No. 42;
firstly, using chromosome of starting bacterium B.subtilis MK3-MEP 123-delta dhbB as template, respectively using primers pks L-glpD-U1/pks L-glpD-U2 q, pks L-glpD-1 q/pks L-glpD-2, pks L-glpD-D1 q/pks L-glpD-D2 and pks L-glpD-G1 q/pks L-glpD-G2 to amplify fragment U, as shown in SEQ ID No.43 and 1118bp, and amplifying fragment D as shown in SEQ ID No.44 and 1749 bp;the amplified fragment D is 1004bp shown as SEQ ID No.45, the amplified fragment G is 769bp shown as SEQ ID No.46, the chromosome of BS168NUm is taken as a template, a primer pks L-glpD-CR 1q/CR2 is used for amplifying a fragment CR shown as SEQ ID No.40, 2069bp is used, a plasmid pUC57-1.8k-P1 is taken as a template, and a primer P is usedlapS1/PlapS2Amplification of a nucleic acid molecule containing promoter PlapS256bp of fragment P of the expression cassette as shown in SEQ ID No.41, splicing the fragments U, P and D into a fragment UPD (3123bp) by an overlapping PCR method by using primers pks L-glpD-U1/pks L-glpD-2, splicing the fragment UPD and the fragment D into a fragment UPDD (4127bp) by using primers pks L-glpD-U1/pks L-glpD-D2, splicing the fragment UPDD, the fragment CR and the fragment G into a fragment UPDDRG (6965bp) by using primers pks L-glpD-U1/pks L-glpD-G2, transforming the DDRG fragment into competent cells of recipient bacterium BSMK _1, and finally obtaining a DDC recombinant strain BSMK _2 with the glpppPD gene integrated at the pKs L site through two-step screening, wherein the sequence of the UPRG fragment is shown in SEQ ID No. 47;
(III) knocking out methylglyoxal synthetase coding gene mgsA and glycerol-1-phosphate dehydrogenase coding gene araM
Using chromosome of starting bacterium B.subtilis MK3-MEP 123-delta dhbB as template, respectively using primers mgsA-U1/mgsA-U2, mgsA-D1q/mgsA-D2 and mgsA-G1q/mgsA-G2 to amplify fragment U, as shown in SEQ ID No.48, 1382 bp; the amplified fragment D is shown as SEQ ID No.49 and is 1130 bp; the amplified fragment G is shown as SEQ ID No.50 and 813 bp; using chromosome of BS168NUm as template, amplifying fragment CR with selection box (cat-araR) by primer mgsA-CR1q/CR2, as shown in SEQ ID No.40, 2069 bp; firstly, splicing the fragments U and D into UD (2512bp) by overlapping PCR by using primers mgsA-U1/mgsA-D2; then, the three fragments UD, GR and G are spliced into UDCRG (5394bp) by an overlapping PCR method by using primers mgsA-U1/mgsA-G2; transforming the UDCRG fragment into a competent cell of a receptor bacterium BSMK _2, and finally screening to obtain a recombinant strain BSMK _3 with the gene mgsA being knocked out; the sequence of the UDCRG fragment is shown as SEQ ID No. 51;
using chromosome of starting bacterium B.subtilis MK3-MEP 123-delta dhbB as template, respectively using primers araM-U1/araM-U2, araM-D1q/araM-D2 and araM-G1q/araM-G2 to amplify fragment U, as shown in SEQ ID No.52, 1487 bp; the amplified fragment D is shown as SEQ ID No.53 and is 1026 bp; the amplified fragment G is shown as SEQ ID No.54, 682 bp; using chromosome of BS168NUm as template, amplifying fragment CR with primer araM-CR1q/CR2, as shown in SEQ ID No.40, 2069 bp; firstly, splicing fragments U and D into UD (2513bp) by overlapping PCR by using primers araM-U1/araM-D2; then, the three fragments UD, GR and G are spliced into UDCRG (5264bp) by an overlapping PCR method by using a primer araM-U1/araM-G2; transforming the UDCRG fragment into competent cells of receptor bacteria BSMK _3, and finally screening to obtain a recombinant strain BSMK _4 with the knocked-out gene araM; the sequence of the UDCRG fragment is shown as SEQ ID No. 55;
the primer sequences are as follows
Figure FDA0002411606940000031
Figure FDA0002411606940000041
2. Use of the strain obtained in claim 1 for the fermentative preparation of menaquinone-7.
CN202010178390.7A 2020-03-14 2020-03-14 Method for genetically modifying bacillus subtilis, strain obtained by method and application of strain Pending CN111471634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010178390.7A CN111471634A (en) 2020-03-14 2020-03-14 Method for genetically modifying bacillus subtilis, strain obtained by method and application of strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010178390.7A CN111471634A (en) 2020-03-14 2020-03-14 Method for genetically modifying bacillus subtilis, strain obtained by method and application of strain

Publications (1)

Publication Number Publication Date
CN111471634A true CN111471634A (en) 2020-07-31

Family

ID=71748319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010178390.7A Pending CN111471634A (en) 2020-03-14 2020-03-14 Method for genetically modifying bacillus subtilis, strain obtained by method and application of strain

Country Status (1)

Country Link
CN (1) CN111471634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116790466A (en) * 2023-07-19 2023-09-22 山东理工大学 Method for producing citicoline by engineering bacillus subtilis fermentation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168116A (en) * 2010-02-11 2011-08-31 瓦克化学股份公司 Method for fermentative production of menaquinone-7 using escherichia coli
CN105378079A (en) * 2013-07-12 2016-03-02 诺维信公司 Direct transfer of polynucleotides between genomes
CN108676766A (en) * 2018-06-01 2018-10-19 天津大学 The bacterial strain of application and its acquisition of genetic modification
CN108715825A (en) * 2018-06-01 2018-10-30 天津大学 Gene overexpression and the bacterial strain of acquisition, application
CN108913706A (en) * 2018-07-10 2018-11-30 郑州轻工业学院 A kind of bacillus subtilis glycerokinase mutated gene glpK and its application
CN110157749A (en) * 2019-06-06 2019-08-23 江南大学 Using the method for bacillus subtilis group response regulator control system synthesis MK-7
CN110229841A (en) * 2019-06-04 2019-09-13 江南大学 A method of increasing the yield that gene menA copy number improves MK-7
CN110229772A (en) * 2019-06-04 2019-09-13 南通励成生物工程有限公司 A kind of recombined bacillus subtilis of seven dilute menadione yield of raising and its application

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168116A (en) * 2010-02-11 2011-08-31 瓦克化学股份公司 Method for fermentative production of menaquinone-7 using escherichia coli
CN105378079A (en) * 2013-07-12 2016-03-02 诺维信公司 Direct transfer of polynucleotides between genomes
CN108676766A (en) * 2018-06-01 2018-10-19 天津大学 The bacterial strain of application and its acquisition of genetic modification
CN108715825A (en) * 2018-06-01 2018-10-30 天津大学 Gene overexpression and the bacterial strain of acquisition, application
CN108913706A (en) * 2018-07-10 2018-11-30 郑州轻工业学院 A kind of bacillus subtilis glycerokinase mutated gene glpK and its application
CN110229841A (en) * 2019-06-04 2019-09-13 江南大学 A method of increasing the yield that gene menA copy number improves MK-7
CN110229772A (en) * 2019-06-04 2019-09-13 南通励成生物工程有限公司 A kind of recombined bacillus subtilis of seven dilute menadione yield of raising and its application
CN110157749A (en) * 2019-06-06 2019-08-23 江南大学 Using the method for bacillus subtilis group response regulator control system synthesis MK-7

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
YANG S M等: "Metabolic engineering of Bacillus subtilis for high-titer production of menaquinone-7", 《AICHE JOURNAL》 *
YANG S M等: "Metabolic engineering of Bacillus subtilis for high-titer production of menaquinone-7", 《AICHE JOURNAL》, vol. 66, no. 1, 31 December 2019 (2019-12-31), pages 11 - 12 *
YANG SM: "Modular Pathway Engineering of Bacillus subtilis To Promote De Novo Biosynthesis of Menaquinone-", ACS SYNTH BIOL, vol. 8, no. 1, pages 70 - 81 *
余贤美等: "同源重组法构建枯草芽孢杆菌dhbC基因缺失突变株和回复株", 《热带作物学报》 *
余贤美等: "同源重组法构建枯草芽孢杆菌dhbC基因缺失突变株和回复株", 《热带作物学报》, no. 10, 25 October 2009 (2009-10-25) *
罗苗苗等: "微生物发酵法制备维生素K2研究进展", 《食品与发酵工业》, no. 10 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116790466A (en) * 2023-07-19 2023-09-22 山东理工大学 Method for producing citicoline by engineering bacillus subtilis fermentation
CN116790466B (en) * 2023-07-19 2023-11-03 山东理工大学 Method for producing citicoline by engineering bacillus subtilis fermentation

Similar Documents

Publication Publication Date Title
Baldwin et al. On oxygen limitation in a whole cell biocatalytic Baeyer–Villiger oxidation process
CN108676766B (en) Application of gene modification and strain obtained by using same
RU2745157C1 (en) Yeast producing ektoin
KR102023618B1 (en) Mutant microorganism having improved production ability of 1,4-BDO and method for preparing 1,4-BDO using the same
Lim et al. Generation of ionic liquid tolerant Pseudomonas putida KT2440 strains via adaptive laboratory evolution
CN105026548A (en) D-glucaric acid-producing bacterium, and method for manufacturing d-glucaric acid
CN105051181B (en) The preparation method of the increased recombinant microorganism of the generative capacity of 2,3-butanediol and the 2,3-butanediol using it
KR20210144816A (en) Methods for Construction of Chimeric Plasmid Libraries
KR20220021465A (en) Methanol utilization
CN114008197A (en) Metabolic engineering for simultaneous consumption of xylose and glucose to produce chemicals from second generation sugars
CN106609249B (en) Klebsiella pneumoniae mutant bacteria and its application for producing 1,3- propylene glycol
US20190071474A1 (en) Production of gibberellins in recombinant hosts
CN111560383A (en) Recombinant bacterium for promoting bacillus subtilis to synthesize menadione-7 and gene modification method thereof
CN112375723B (en) Engineering bacteria for producing maleic acid and construction method and application thereof
CN111471634A (en) Method for genetically modifying bacillus subtilis, strain obtained by method and application of strain
CN111118052A (en) Recombinant saccharomyces cerevisiae, construction method thereof and application of recombinant saccharomyces cerevisiae in production of hydroxy fatty acid
CN116987603A (en) Recombinant saccharomyces cerevisiae strain for high yield of cannabigerolic acid as well as construction method and application thereof
JP7443657B2 (en) Optimization of C-5 sterol desaturation
KR101541034B1 (en) Escherichia coli for high production of d―galactonate and use thereof
Korvin et al. A molecular switch that enhances productivity of bioprocesses for heterologous metabolite production
CN113151378A (en) Method for preparing nucleoside, nicotinic acid adenine dinucleotide and nicotinic acid mononucleotide of nicotinic acid or derivative thereof, enzyme composition and application
KR101902190B1 (en) Mutant microorganism with enhanced succinic acid-producing capability and method for producing succinic acid using the same
CN108949840B (en) Engineering bacterium and application thereof in production of p-hydroxycinnamic acid
CN111304105A (en) Genetically engineered bacterium for producing lipase by using methanol and xylose cosubstrate and application thereof
KR20200023450A (en) Microorganisms and Related Methods Having Stabilized Copy Numbers of Functional DNA Sequences

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination