CN111118052A - Recombinant saccharomyces cerevisiae, construction method thereof and application of recombinant saccharomyces cerevisiae in production of hydroxy fatty acid - Google Patents

Recombinant saccharomyces cerevisiae, construction method thereof and application of recombinant saccharomyces cerevisiae in production of hydroxy fatty acid Download PDF

Info

Publication number
CN111118052A
CN111118052A CN202010060712.8A CN202010060712A CN111118052A CN 111118052 A CN111118052 A CN 111118052A CN 202010060712 A CN202010060712 A CN 202010060712A CN 111118052 A CN111118052 A CN 111118052A
Authority
CN
China
Prior art keywords
saccharomyces cerevisiae
hydroxy fatty
recombinant saccharomyces
seq
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010060712.8A
Other languages
Chinese (zh)
Inventor
卢文玉
李冰
刘静静
张传波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010060712.8A priority Critical patent/CN111118052A/en
Publication of CN111118052A publication Critical patent/CN111118052A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/905Stable introduction of foreign DNA into chromosome using homologous recombination in yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • C12N9/0038Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12N9/0042NADPH-cytochrome P450 reductase (1.6.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/03Oxidoreductases acting on the CH-CH group of donors (1.3) with oxygen as acceptor (1.3.3)
    • C12Y103/03006Acyl-CoA oxidase (1.3.3.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/02Oxidoreductases acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12Y106/02004NADPH-hemoprotein reductase (1.6.2.4), i.e. NADP-cytochrome P450-reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a recombinant saccharomyces cerevisiae, a construction method thereof and application thereof in production of hydroxy fatty acid.A key gene acyl-CoA oxidase POX1 in β oxidation pathway related to fatty acid catabolism in saccharomyces cerevisiae is knocked out by a homologous recombination method, acyl-CoA activators FAA1 and FAA4 are knocked out to obtain a recombinant bacterium (I), cytochrome P450 oxidase CYP52M1 and cytochrome P450 reductase SbCPR are introduced into the recombinant bacterium (I) to obtain a recombinant strain (II), or cytochrome P450 oxidase CYP52M1 and cytochrome P450 reductase AtCPR1 are introduced into the recombinant bacterium (I) to obtain a recombinant bacterium (III), or cytochrome P450 oxidase and cytochrome P450 reductase fusion protein gene CYP52M1-AtCPR1 are introduced into the recombinant bacterium (I) to obtain a recombinant bacterium (IV).

Description

Recombinant saccharomyces cerevisiae, construction method thereof and application of recombinant saccharomyces cerevisiae in production of hydroxy fatty acid
Technical Field
The invention relates to the technical field of biology, in particular to recombinant saccharomyces cerevisiae, a construction method thereof and application thereof in producing hydroxy fatty acid.
Background
Long chain hydroxy fatty acids are widely used in various fields such as food, chemical, cosmetic industries, and as synthetic intermediates for ceramides, polyesters, and cyclic lactones due to their unique properties, the pharmaceutical properties of hydroxy fatty acids, including anti-biotic, anti-inflammatory, and anti-diabetic effects are also disclosed[9]. Omega-hydroxy fatty acid is fatty acid with hydroxyl at the end, is a multifunctional compound with wide application, such as adhesive, lubricant and potential anticancer agent, and is used as a material for synthesizing polymers such as bioplastic and the like, and the produced bioplastic has better water resistance, nontoxicity, biocompatibility and chemical versatility.
In view of the wide commercial use of hydroxy fatty acids, researchers have made extensive efforts to produce hydroxy fatty acids by chemical or biological methods. Direct synthesis of the desired specific hydroxy fatty acid molecule by chemical catalysis is difficult to achieve due to the limitations of selective carbon atoms and harsh reaction conditions. In biological systems, the synthesis of hydroxy fatty acids can be achieved by selective enzymatic reactions using yeast or E.coli to achieve specific hydroxylation of fatty acid molecules. For example, bacillus megaterium can hydroxylate oleic acid molecules at 1,2, and 3 carbon atom positions, producing different hydroxyoleic acids. Candida tropicalis can also produce hydroxy fatty acids as by-products when alkanes or fatty acids are cultured as the main carbon source.
Saccharomyces cerevisiae is a traditional and well-studied host strain with mature genetic tools for the manipulation of metabolic pathways and has been successfully manipulated to produce many valuable platform chemicals and biofuels. Furthermore, saccharomyces cerevisiae is easy to culture in chemically defined media, and can utilize inexpensive renewable raw materials and exhibit a rapid growth rate, which is advantageous for a wider industrial application. The endogenous fatty acid synthesis pathway of saccharomyces cerevisiae can provide a precursor for the synthesis of hydroxy fatty acids, and the subsequent hydroxylation reaction is completed by the subsequently introduced cytochrome P450 oxidase CYP52M1 and reductase CPR. Based on the discovery of the saccharomyces cerevisiae endogenous pathway and the hydroxyl fatty acid exogenous synthetic gene, the method and the technology of synthetic biology are utilized to construct and optimize the biosynthesis pathway of the hydroxyl fatty acid in the saccharomyces cerevisiae to produce the hydroxyl fatty acid, so that the method has great potential.
At present, the heterologous synthesis of omega (omega-1) -hydroxy fatty acids of a specific structure (C16-C18) in Saccharomyces cerevisiae by synthetic biological methods has not been reported.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a recombinant saccharomyces cerevisiae, a construction method thereof and application thereof in producing hydroxy fatty acid.
The second purpose of the invention is to provide a construction method of the recombinant saccharomyces cerevisiae (I) for producing the hydroxy fatty acid.
The third purpose of the invention is to provide a recombinant saccharomyces cerevisiae (II) for producing the hydroxy fatty acid.
The fourth purpose of the invention is to provide a construction method of the recombinant saccharomyces cerevisiae (II) for producing the hydroxy fatty acid.
The fifth purpose of the invention is to provide a recombinant saccharomyces cerevisiae for producing hydroxy fatty acid (III).
The sixth purpose of the invention is to provide a construction method of the recombinant saccharomyces cerevisiae (III) for producing the hydroxy fatty acid.
The seventh object of the present invention is to provide a recombinant saccharomyces cerevisiae producing hydroxy fatty acid (IV).
The eighth purpose of the invention is to provide a construction method of the recombinant saccharomyces cerevisiae (IV) for producing the hydroxy fatty acid.
The ninth purpose of the invention is to provide the use of the recombinant saccharomyces cerevisiae (I), (II), (III) and (IV) for producing the hydroxy fatty acid.
The technical scheme of the invention is summarized as follows:
a construction method of a recombinant saccharomyces cerevisiae (I) for producing hydroxyfatty acid comprises the following steps of knocking out an acyl-CoA oxidase encoding gene expression box which is a key gene in β oxidation pathway related to fatty acid catabolism on a saccharomyces cerevisiae genome through a homologous recombination method, and knocking out an acyl-CoA activating enzyme encoding gene expression box, so as to obtain the recombinant saccharomyces cerevisiae (I) for producing hydroxyfatty acid, wherein the acyl-CoA oxidase encoding gene expression box is composed of an acyl-CoA oxidase encoding gene POX1, the acyl-CoA oxidase encoding gene expression box is composed of an acyl-CoA activating enzyme encoding gene FAA1, the acyl-CoA activating enzyme encoding gene expression box is composed of an acyl-CoA activating enzyme encoding gene FAA4, the acyl-CoA 1 encoding gene nucleotide sequence is shown by SEQ ID NO.1, the acyl-CoA synthetase encoding gene FAA1 nucleotide sequence is shown by SEQ ID NO.2, and the acyl-CoA synthetase encoding nucleotide sequence is shown by SEQ ID NO. 4.
The recombinant saccharomyces cerevisiae (I) for producing the hydroxy fatty acid constructed by the method.
A construction method of recombinant saccharomyces cerevisiae (II) for producing hydroxy fatty acid comprises the following steps: and (2) introducing a cytochrome P450 oxidase gene expression cassette and a cytochrome P450 reductase gene expression cassette into the HO site of the recombinant saccharomyces cerevisiae (I) by a homologous recombination method to obtain the recombinant saccharomyces cerevisiae (II) for producing the hydroxy fatty acid. The cytochrome P450 oxidase gene expression box is composed of a promoter PPGK1Cytochrome P450 oxidase-encoding gene CYP52M1 and terminator TADH1Composition is carried out; the cytochrome P450 reductase gene expression box is composed of a promoter PTDH3Cytochrome P450 reductase-encoding gene SbCPR and terminator TTDH2Composition is carried out; the nucleotide sequence of the cytochrome P450 oxidase coding gene CYP52M1 is shown in SEQ ID NO. 4; the promoter PPGK1The nucleotide sequence of (A) is shown in SEQ ID NO.8, and a terminator TADH1The nucleotide sequence of (A) is shown in SEQ ID NO.9, and the promoter PTDH3The nucleotide sequence of (A) is shown in SEQ ID NO.10, and a terminator TTDH2The nucleotide sequence of SEQ ID NO. 11.
The recombinant saccharomyces cerevisiae for producing the hydroxy fatty acid constructed by the method is II.
A construction method of recombinant saccharomyces cerevisiae (III) for producing hydroxy fatty acid comprises the following steps: introducing a cytochrome P450 oxidase gene CYP52M1 expression cassette and a cytochrome P450 reductase gene AtCPR1 expression cassette into HO sites of the recombinant saccharomyces cerevisiae (I) by a homologous recombination method to obtain the recombinant saccharomyces cerevisiae (III) for producing hydroxy fatty acid; the cytochrome P450 reductase gene expression box is composed of a promoter PTDH3Cytochrome P450 reductase-encoding gene AtCPR1 and terminator TTDH2Composition is carried out; the promoter PTDH3The nucleotide sequence of (A) is shown in SEQ ID NO.9, terminator TTDH2The nucleotide sequence of SEQ ID NO. 10.
The recombinant saccharomyces cerevisiae for producing the hydroxy fatty acid constructed by the method is (III).
A construction method of recombinant saccharomyces cerevisiae (IV) for producing hydroxy fatty acid comprises the following steps: introducing a cytochrome P450 oxidase gene expression cassette and a cytochrome P450 reductase gene fusion protein gene CYP52M1-AtCPR1 expression cassette into a recombinant saccharomyces cerevisiae strain (I) by a homologous recombination method to obtain recombinant saccharomyces cerevisiae (IV) for producing hydroxy fatty acid; the cytochrome P450 oxidase and cytochrome P450 reductase fusion protein gene expression cassette is composed of a promoter PPGK1Cytochrome P450 oxidase and cytochrome P450 reductase fusion protein-encoding gene CYP52M1-AtCPR1 and terminator TADH1And (4) forming. Nucleotide sequence of cytochrome P450 oxidase and cytochrome P450 reductase fusion protein gene CYP52M1-AtCPR1Shown as SEQ ID NO. 7.
The recombinant saccharomyces cerevisiae (IV) for producing the hydroxy fatty acid constructed by the method.
The application of the recombinant saccharomyces cerevisiae (I), (II), (III) and (IV) for producing the hydroxy fatty acid by fermentation. The recombinant saccharomyces cerevisiae utilizes glucose to synthesize the hydroxy fatty acid from the head, and the obtained hydroxy fatty acid types comprise omega-hydroxy-hexadecanoic acid, omega-1-hydroxy-hexadecanoic acid, omega-hydroxy-oleic acid and omega-1-hydroxy-oleic acid.
Experiments prove that the recombinant strain 2 can produce 37.8mg/L of hydroxy fatty acid through shake flask fermentation; the strain 3 can produce 83.2mg/L of hydroxy fatty acid; strain 4 produced 148.7mg/L of hydroxy fatty acid. And (3) performing a 5L fermentation tank feeding fermentation experiment on the recombinant bacterium 4 with the highest yield of the hydroxy fatty acid, wherein the recombinant bacterium can produce 347mg/L of hydroxy fatty acid after 144 h. The invention lays a foundation for artificially synthesizing the hydroxy fatty acid.
Drawings
FIG. 1 is a diagram of the metabolic pathway for producing hydroxy fatty acid by Saccharomyces cerevisiae.
FIG. 2 shows the results of gas-mass spectrometry analysis of hydroxy fatty acids with different structures:
a, detecting and analyzing results of gas chromatography of hydroxy fatty acids with different structures;
b is GC-MS detection analysis of hydroxy fatty acid with the structure and a comparison graph thereof (A is an omega-1-hydroxy-hexadecanoic acid mass spectrum comparison graph, B is an omega-hydroxy-hexadecanoic acid mass spectrum comparison graph, C is an omega-1-hydroxy-oleic acid mass spectrum comparison graph, and D is an omega-hydroxy-oleic acid mass spectrum comparison graph).
FIG. 3 analysis of the production of hydroxyfatty acids by recombinant strains (A is a comparison of the production of hydroxyfatty acids by recombinant strains B04 and B05, and B is a comparison of the production of hydroxyfatty acids by recombinant strains B05 and B06).
FIG. 4 shows the growth curve and yield analysis of the recombinant strain 4 in a 5L fermentor (FIG. A shows batch fermentation, and FIG. B shows fed-batch fermentation).
Detailed Description
The present invention will be further illustrated by the following specific examples.
The test methods used in the following examples are all conventional methods unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The Saccharomyces cerevisiae strain is Saccharomyces cerevisiae BY4741 (American ATCC 4002569), and is hereinafter referred to as Saccharomyces cerevisiae.
Example 1 construction method of recombinant Saccharomyces cerevisiae (I) for producing hydroxy fatty acid
Module construction
Homology arms POX1A-up, POX1B-down, FAA1A-up, FAA1B-down, FAA4A-up, FAA4B-down were designed based on the DNA sequences of the acyl-CoA oxidase-encoding gene POX1, the acyl-CoA activator-encoding gene FAA1 and the acyl-CoA 4 provided on NCBI. The templates are all from the genome of Saccharomyces cerevisiae BY 4741; selectable marker gene his3 was derived from plasmid Pxp320 (available from addge, Inc.WWW.addgene.org)。
Taking a saccharomyces cerevisiae BY4741 genome as a template,
POX1A-F (SEQ ID NO.12),
HIS3-POX1A-R (SEQ ID NO.13) as primer
Amplification homology arm POX1A-up (SEQ ID NO.14)
HIS3-POX1B-F (SEQ ID NO.15),
POX1B-R (SEQ ID NO.16) is used as a primer,
amplification homology arm POX1B-down (SEQ ID NO.17)
With FAA1A-F (SEQ ID NO.18),
LEU2-FAA1A-R (SEQ ID NO.19) as primer
Amplification homology arm FAA1A-up (SEQ ID NO.20)
LEU2-FAA1B-F (SEQ ID NO.21),
FAA1B-R (SEQ ID NO.22) as a primer,
amplification homology arm FAA1B-down (SEQ ID NO.23)
With FAA4A-F (SEQ ID NO.24),
LEU2-FAA4A-R (SEQ ID NO.25) as primer
Amplification homology arm FAA4A-up (SEQ ID NO.26)
LEU2-FAA4B-F (SEQ ID NO.27),
FAA4B-R (SEQ ID NO.28) as a primer,
amplification homology arm FAA4B-down (SEQ ID NO.29)
Using PRS403 (ATCC in USA) as template,
POX1A-HIS3-F(SEQ ID NO.30),
POX1B-HIS3-R (SEQ ID NO.31) is used as a primer,
amplification marker gene his3(SEQ ID NO.32)
The genome of the saccharomyces cerevisiae S288C is taken as a template,
FAA1A-LEU2-F(SEQ ID NO.33),
FAA1B-LEU2-R (SEQ ID NO.34) is used as a primer,
amplification marker gene leu2(SEQ ID NO.35)
The genome of the saccharomyces cerevisiae S288C is taken as a template,
FAA4A-LEU2-F(SEQ ID NO.36),
FAA4B-LEU2-R (SEQ ID NO.37) is used as a primer,
amplification marker gene leu2(SEQ ID NO.35)
The PCR enzyme used in the present invention is Phanta Super-Fidelity DNA Polymerase from Biotech, Inc. of Nanjing Novowed. A50. mu.L PCR amplification system is shown in Table 1:
TABLE 1
Figure BDA0002374363330000051
Figure BDA0002374363330000061
An amplification program is set up on the PCR instrument. The amplification conditions were 95 ℃ pre-denaturation for 4min (1 cycle); denaturation at 95 ℃ for 15sec, annealing at 55 ℃ for 15sec, and extension at 72 ℃ for 1min (35 cycles); extension at 72 ℃ for 5min (1 cycle).
The fusion PCR system used in the present invention is shown in Table 2:
TABLE 2
Figure BDA0002374363330000062
The fusion program was set up on a PCR instrument. The fusion conditions were pre-denaturation at 95 ℃ for 4min (1 cycle); denaturation at 95 ℃ for 15sec, annealing at 58 ℃ for 15sec, and extension at 72 ℃ for 1min (11 cycles); extension at 72 ℃ for 5min (1 cycle).
And purifying and recovering the fragment obtained by PCR amplification by using an agarose gel DNA recovery kit (Tiangen Biochemical technology Beijing, Ltd.) to obtain a DNA fragment used for transforming the saccharomyces cerevisiae, then carrying out fusion PCR on the DNA fragment, and amplifying a gene expression cassette used for transforming the saccharomyces cerevisiae by using a fusion PCR product as a template to finally obtain the DNA fragments used for transforming the saccharomyces cerevisiae, wherein the DNA fragments are POX1A-HIS3-POX1B, FAA1A-LEU2-FAA1B and FAA4A-LEU2-FAA4B respectively.
Yeast transformation
Initial Saccharomyces cerevisiae BY4741 was cultured in YPD medium for 12h, and 300. mu.L of the initial Saccharomyces cerevisiae BY4741 was added to 3mL of fresh YPD medium and cultured for 5 h. Centrifuging at 3000rpm for 5min at room temperature, collecting thallus, discarding supernatant, and sterilizing with ddH2O washing the cells, centrifuging at 3000rpm for 5min to collect the cells, and discarding the supernatant. Then 1mL of 100mM lithium acetate is added into the thalli, the cells are evenly suspended by gentle blowing and beating, the thalli are placed at room temperature for 5min and then centrifuged at 3000rpm for 5min at normal temperature, and yeast competent cells are prepared. The transformation mix consisted of 240. mu.L PEG (50% W/V), 36. mu.L 1.0M lithium acetate, 10. mu.L ss-DNA, 300ng each of the transformation fragments POX1A, HIS3 and POX 1B. Finally using sterilized ddH2The content of O is filled to 360 mu L. Sequentially adding the above components into the freshly prepared Saccharomyces cerevisiae competent cells, uniformly blowing by using a pipette gun, standing in a water bath at 42 ℃ for 30min, centrifuging at 4000rpm at normal temperature for 2min, removing the supernatant, adding 1mLYPD liquid culture medium, and culturing at 30 ℃ and 220rpm for 2 h. Then centrifuging at 4000rpm for 5min at normal temperature, discarding the supernatant, washing with sterile water for 2 times, finally resuspending the cells with 100 μ L of sterile water, and screening by coating a histidine-deficient plate. The screening culture condition is 30 ℃, and the culture lasts more than 48 h.
Thus, by a homologous recombination method, the coding gene of acyl-CoA oxidase in a saccharomyces cerevisiae metabolic pathway is knocked out, colony PCR verification is carried out, single colonies which are successfully transformed are selected, and fragments FAA1A-LEU2-FAA1B and FAA4A-LEU2-FAA4B are respectively transformed by the same method to obtain the recombinant strain 1.
Example 2 construction method of recombinant Saccharomyces cerevisiae (II) for producing hydroxy fatty acid
Respectively amplifying homologous arms HOup (SEQ ID NO.42) and HOdown (SEQ ID NO.43) BY taking a Saccharomyces cerevisiae BY4741 genome as a template and HOA-F (SEQ ID NO.38), PGK1p-HOA-R (SEQ ID NO.39), HIS3-HOB-F (SEQ ID NO.40) and HOB-R (SEQ ID NO.41) as primers; HOA-PGK1P-F (SEQ ID NO.44), CYP52M1-PGK1P-R (SEQ ID NO.45), CYP52M1-ADH1t-F (SEQ ID NO.46) and TDH3P-ADH1t-R (SEQ ID NO.47) are respectively used as primers to amplify the promoter PPGK1(SEQ ID NO.7) and a terminator TADH1t(SEQ ID NO. 8); amplifying cytochrome P450 oxidase gene CYP52M1(SEQ ID No.4) by taking PGK1P-CYP52M1-F (SEQ ID No.48) and ADH1t-CYP52M1-R (SEQ ID No.49) as primers; ADH1t-TDH3P-F (SEQ ID NO.50), SbCPR-TDH3P-R (SEQ ID NO.51), SbCPR-TDH2t-F (SEQ ID NO.52) and HIS3-TDH2t-R (SEQ ID NO.53) are respectively used as primers to amplify promoter PTDH3(SEQ ID NO.9) and a terminator TTDH2t(SEQ ID NO. 10); the cytochrome P450 reductase gene SbCPR (SEQ ID NO.5) is amplified by using TDH3P-SbCPR-F (SEQ ID NO.54) and TDH2t-SbCPR-R (SEQ ID NO.55) as primers. The marker gene HIS3(SEQ ID NO.31) was amplified using plasmid PRS403 (ATCC, USA) as a template, TDH2t-HIS3-F (SEQ ID NO.56), HOB-HIS3-R (SEQ ID NO.57) as primers. The PCR method was performed as in example 1 to obtain the DNA fragments for transforming Saccharomyces cerevisiae, which are the upstream homology arm HOAup and the gene CYP52M1 expression cassette PPGK1-CYP52M1-TADH1Gene SbCPR expression cassette PTDH3-SbCPR-TTDH2And a downstream homology arm his3-HOBdown containing a selectable marker gene his 3. The sequence is shown in a sequence table.
The transformation method is the same as example 1, and the DNA fragment is introduced into saccharomyces cerevisiae recombinant bacteria 1 to obtain recombinant saccharomyces cerevisiae (II) for producing the hydroxy fatty acid.
Example 3 construction method of recombinant Saccharomyces cerevisiae (III) for producing Hydroxyfatty acids
Respectively amplifying homologous arms HOup (SEQ ID NO.42) and HOdown (SEQ ID NO.43) BY taking a Saccharomyces cerevisiae BY4741 genome as a template and HOA-F (SEQ ID NO.38), PGK1p-HOA-R (SEQ ID NO.39), HIS3-HOB-F (SEQ ID NO.40) and HOB-R (SEQ ID NO.41) as primers; HOA-PGK1P-F (SEQ ID NO.44), CYP52M1-PGK1P-R (SEQ ID NO.45), CYP52M1-ADH1t-F (SEQ ID NO.46) and TDH3P-ADH1t-R (SEQ ID NO.47) are respectively used as primers to amplify the promoter PPGK1(SEQ ID NO.7) and a terminator TADH1t(SEQ ID NO. 8); amplifying cytochrome P450 oxidase gene CYP52M1(SEQ ID No.4) by taking PGK1P-CYP52M1-F (SEQ ID No.48) and ADH1t-CYP52M1-R (SEQ ID No.49) as primers; ADH1t-TDH3P-F (SEQ ID NO.50), AtCPR1-TDH3P-R (SEQ ID NO.58), AtCPR1-TDH2t-F (SEQ ID NO.59) and HIS3-TDH2t-R (SEQ ID NO.53) are respectively used as primers to amplify the promoter PTDH3(SEQ ID NO.9) and a terminator TTDH2t(SEQ ID NO. 10); TDH3P-AtCPR1-F (SEQ ID NO.60) and TDH2t-AtCPR1-R (SEQ ID NO.61) are used as primers to amplify cytochrome P450 reductase gene AtCPR1(SEQ ID NO. 6). The marker gene HIS3(SEQ ID NO.31) was amplified using plasmid PRS403 (ATCC, USA) as a template, TDH2t-HIS3-F (SEQ ID NO.56), HOB-HIS3-R (SEQ ID NO.57) as primers. The PCR method was performed as in example 1 to obtain the DNA fragments for transforming Saccharomyces cerevisiae, which are the upstream homology arm HOAup and the gene CYP52M1 expression cassette PPGK1-CYP52M1-TADH1Gene AtCPR1 expression cassette PTDH3-AtCPR1-TTDH2And a downstream homology arm his3-HOBdown containing a selectable marker gene his 3. The sequence is shown in a sequence table.
The transformation method is the same as example 1, and the DNA fragment is introduced into saccharomyces cerevisiae recombinant bacteria 1 to obtain recombinant saccharomyces cerevisiae (III) for producing the hydroxy fatty acid.
Example 4 construction method of recombinant Saccharomyces cerevisiae (IV) for producing hydroxy fatty acids
Respectively amplifying homologous arms HOup (SEQ ID NO.42) and HOdown (SEQ ID NO.43) BY taking a Saccharomyces cerevisiae BY4741 genome as a template and HOA-F (SEQ ID NO.38), PGK1p-HOA-R (SEQ ID NO.39), HIS3-HOB-F (SEQ ID NO.40) and HOB-R (SEQ ID NO.41) as primers; HOA-PGK1p-F (SEQ ID NO.44) and CYP52M1-PGK1p-R (SEQ ID NO.44) respectivelyNO.45), AtCPR1-TDH2t-F (SEQ ID NO.59), HIS3-TDH2t-R (SEQ ID NO.53) as primers, and an amplification promoter PPGK1(SEQ ID NO.7) and a terminator TTDH2t(SEQ ID NO. 8); PGK1P-CYP52M1-F (SEQ ID NO.48) and TDH2t-AtCPR1-R (SEQ ID NO.61) are used as primers to amplify cytochrome P450 oxidase gene and cytochrome P450 reductase gene fusion protein gene CYP52M1-AtCPR1(SEQ ID NO. 7); the marker gene HIS3(SEQ ID NO.31) was amplified using plasmid PRS403 (ATCC, USA) as a template, TDH2t-HIS3-F (SEQ ID NO.56), HOB-HIS3-R (SEQ ID NO.57) as primers. The PCR method was performed as in example 1 to obtain the DNA fragments for the transformed Saccharomyces cerevisiae, which were the upstream homology arm HOAup and the gene CYP52M1-AtCPR1 expression cassette PPGK1-CYP52M1-AtCPR1-TTDH2The downstream homology arm his3-HOBdown containing the selectable marker gene his 3. The sequence is shown in a sequence table.
The transformation method is the same as example 1, and the DNA fragment is introduced into saccharomyces cerevisiae recombinant bacteria 1 to obtain recombinant saccharomyces cerevisiae (IV) for producing the hydroxy fatty acid.
Example 5 fermentation of recombinant Saccharomyces cerevisiae and GC-MS detection of the fermentation product
The recombinant Saccharomyces cerevisiae strains (I), 2, 3 and 4 obtained in examples 1 to 4 were cultured in YPD medium (30 ℃ C., 220rmp), respectively. After fermentation for 4 days, taking the fermentation liquor, centrifuging for 10min at the normal temperature of 12000rpm, adding glass beads and ethyl acetate into the lower-layer thallus, oscillating for 30min, centrifuging for 10min at the normal temperature of 12000rpm, taking an organic phase for derivatization, selecting N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) as a derivatization reagent, and then carrying out GC-MS (gas chromatography-mass spectrometry) qualitative and quantitative detection after passing through a 0.22-micrometer organic film.
And (3) detecting conditions of hydroxy fatty acid GC-MS: the GC-TQ 8030 was produced by Shimadzu corporation, Japan. The gas chromatography column was an HP-5MS (30 m. times.0.250 mm. times.0.25 μm) type column from Agilent, USA, with helium as the carrier gas.
The sample introduction conditions and the detection conditions are as follows:
sample introduction amount: 1 mul; the split ratio is as follows: 10; sample inlet temperature: 300 ℃; column temperature: keeping at 100 deg.C for 2min, increasing to 200 deg.C at 40 deg.C/min for 1min, increasing to 245 deg.C/min for 1min at 4 deg.C/min, and increasing to 290 deg.C at 30 deg.C/min for 10 min. Ion source temperature: at 310 ℃; solvent retention time: and 5 min.
The GC-MS detection results are shown in FIG. 2. Comparing the four hydroxy fatty acid mass spectrograms with the corresponding mass spectrograms in the Wiley mass spectrograms database, the four peaks can be determined to be omega-1-hydroxy-hexadecanoic acid, omega-1-hydroxy-oleic acid and omega-hydroxy-oleic acid respectively.
The yield results of each recombinant strain are shown in FIG. 3. The recombinant bacterium 2 generates 37.8mg/L hydroxy fatty acid; the recombinant bacterium 3 generates 83.2mg/L hydroxy fatty acid; the recombinant bacterium 4 produces 148.7mg/L of hydroxy fatty acid.
Example 6 feeding fermentation of recombinant bacterium 4 in 5L fermenter
And (3) performing a 5L fermentation tank feeding fermentation experiment on the recombinant bacterium 4 with the highest yield of the hydroxy fatty acid. The feed solution comprises 500g/L glucose, 300g/L sodium glutamate and inorganic salt solution (0.9g KH)2PO4,0.512g MgSO4·7H2O,0.35gK2SO4,0.028g Na2SO4And adding 10mL/L of trace element solution and 12mL/L of vitamin solution after distilled water is added to 50mL and sterilized by moist heat at 115 ℃ for 20 min). Wherein the vitamin solution is 0.005g of biotin, 0.1g of calcium pantothenate, 2.5g of inositol, 0.1g of nicotinic acid, 0.02g of p-aminobenzoic acid, 0.1g of pyridoxal hydrochloride and 0.1g of thiamine hydrochloride, and distilled water is added to the solution to reach a constant volume of 100 mL; the microelement solution is ZnSO4·7H2O 0.575g,MnCl2·4H2O0.032 g, anhydrous CuSO40.032g,CoCl2·6H2O0.047g,Na2MoO4·2H2O 0.048g,FeSO4·7H2O 0.28g,CaCl2·2H2O0.29 g, 0.5M EDTA solution 8mL, distilled water to 100 mL.
The concrete operation of feeding is as follows: the recombinant Saccharomyces cerevisiae strain 4 was inoculated into YPD liquid medium, cultured at 30 ℃ and 220rmp for 20 hours, and then inoculated at 10% inoculum size into a 5L fermentor containing 2L of YPD liquid medium. Feeding materials after fermenting for 24h, feeding 80mL of glucose, 50mL of sodium glutamate and 50mL of inorganic salt solution every 10h, feeding materials after 120h, and continuing fermenting for 144h to finish fermentation.
As shown in FIG. 4, 347mg/L of hydroxy fatty acid was produced by the recombinant strain 4 after 144 hours.
Sequence listing
<110> Tianjin university
<120> recombinant saccharomyces cerevisiae, construction method thereof and application thereof in production of hydroxy fatty acid
<160>61
<170>SIPOSequenceListing 1.0
<210>62
<211>2247
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>62
atgacgagac gtactactat taatcccgat tcggtggttc tgaatcctca aaaatttatc 60
cagaaagaaa gggcggattc gaaaatcaaa gttgaccaag ttaacacatt tttagagtca 120
tccccggaga ggagaactct gacgcacgcc ttaatagacc aaatagtgaa tgatcctata 180
ttgaaaactg atacggacta ttacgatgct aaaaaaatgc aagagagaga aattactgcc 240
aaaaaaatag ctaggcttgc tagttatatg gagcacgata tcaaaacagt gcgcaaacac 300
tttcgcgaca ctgacctgat gaaagagttg caagcaaatg atccagacaa agcttcgcct 360
ttaacaaaca aagacctttt tatattcgat aagagattgt cacttgtagc aaatattgat 420
cctcaattgg gtacgcgcgt gggtgtacac ttggggctat ttggtaattg tatcaagggc 480
aatggtactg atgagcaaat ccggtattgg ttgcaggaga gaggtgccac tttgatgaaa 540
ggtatatatg gctgttttgc aatgactgag ttaggacatg gttccaatgt tgcccagctg 600
cagactaggg ctgtgtacga taagcaaaat gatacttttg taattgatac acctgatcta 660
actgccacca aatggtggat tggtggggct gcccattctg ccacgcacgc tgccgtgtac 720
gccagattga tcgttgaagg taaagactac ggtgtaaaaa cattcgttgt tcctctgaga 780
gacccttcga ctttccaact gttagctggt gtttccatag gggatattgg agcgaagatg 840
ggtcgtgacg gtattgataa tggctggatc cagttcagaa acgtagttat ccctagagaa 900
tttatgctaa gtagatttac caaagttgtc cgttctccag atggttcagt caccgtcaaa 960
actgagccac aattggatca aatttctggt tatagtgcat tgttaagtgg tagagttaac 1020
atggtcatgg attcatttag gtttggctcc aaatttgcta ctattgctgt acgttacgcg 1080
gttggtcgtc agcaattcgc acctagaaag ggattgtctg aaacacaatt aatcgactat 1140
ccccttcacc aatatcgtgt tttaccacaa ttgtgtgttc catatttggt gtcacctgta 1200
gcttttaagt taatggacaa ctattattcc actttggacg agttatacaa cgcttcctca 1260
tctgcataca aagctgctct ggttaccgtg agtaaaaagt tgaagaattt atttattgat 1320
agcgccagct tgaaagccac caatacttgg ttaattgcta cactgattga tgagttgaga 1380
cagacttgcg gaggacatgg gtattcacag tataacggat ttggtaaagg ctatgacgac 1440
tgggtggttc agtgcacatg ggagggtgat aataatgttt tatctttaac ttcagcaaaa 1500
tcaatattga aaaaatttat cgattcagcc acaaagggta gatttgacaa cacactggat 1560
gtggactcat tctcttactt aaaacctcag tacataggat ctgtggtttc tggagaaata 1620
aagagtggtt taaaggagtt gggtgattat actgaaattt ggtctatcac cttaatcaaa 1680
ttactggcac atattggtac tttagttgaa aaatcaagaa gtattgatag cgtttctaag 1740
cttttagtct tagtatccaa atttcatgcc ttgcgctgca tgttgaaaac ctattacgac 1800
aagttaaact ctcgtgattc acatatttcc gatgaaatta caaaggaatc tatgtggaat 1860
gtttataagt tattttcctt gtattttatt gacaagcatt ccggagaatt ccaacaattc 1920
aagatcttca ctcctgatca gatctctaaa gttgtgcagc cacaactatt ggctcttttg 1980
ccaattgtga ggaaagactg tataggtctg acagactcct ttgaattacc tgacgcgatg 2040
ttaaattctc ctataggtta ctttgatggc gatatctatc acaattactt caatgaagtt 2100
tgccgcaata atccagtgga ggcagatggg gcagggaagc cttcttatca tgcgctgttg 2160
agcagcatgc tcggtagagg tttcgaattt gaccaaaagt taggtggtgc agctaatgcg 2220
gaaattttat cgaaaataaa caagtga 2247
<210>2
<211>2103
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>2
atggttgctc aatataccgt tccagttggg aaagccgcca atgagcatga aactgctcca 60
agaagaaatt atcaatgccg cgagaagccg ctcgtcagac cgcctaacac aaagtgttcc 120
actgtttatg agtttgttct agagtgcttt cagaagaaca aaaattcaaa tgctatgggt 180
tggagggatg ttaaggaaat tcatgaagaa tccaaatcgg ttatgaaaaa agttgatggc240
aaggagactt cagtggaaaa gaaatggatg tattatgaac tatcgcatta tcattataat 300
tcatttgacc aattgaccga tatcatgcat gaaattggtc gtgggttggt gaaaatagga 360
ttaaagccta atgatgatga caaattacat ctttacgcag ccacttctca caagtggatg 420
aagatgttct taggagcgca gtctcaaggt attcctgtcg tcactgccta cgatactttg 480
ggagagaaag ggctaattca ttctttggtg caaacggggt ctaaggccat ttttaccgat 540
aactctttat taccatcctt gatcaaacca gtgcaagccg ctcaagacgt aaaatacata 600
attcatttcg attccatcag ttctgaggac aggaggcaaa gtggtaagat ctatcaatct 660
gctcatgatg ccatcaacag aattaaagaa gttagacctg atatcaagac ctttagcttt 720
gacgacatct tgaagctagg taaagaatcc tgtaacgaaa tcgatgttca tccacctggc 780
aaggatgatc tttgttgcat catgtatacg tctggttcta caggtgagcc aaagggtgtt 840
gtcttgaaac attcaaatgt tgtcgcaggt gttggtggtg caagtttgaa tgttttgaag 900
tttgtgggca ataccgaccg tgttatctgt tttttgccac tagctcatat ttttgaattg 960
gttttcgaac tattgtcctt ttattggggg gcctgcattg gttatgccac cgtaaaaact 1020
ttaactagca gctctgtgag aaattgtcaa ggtgatttgc aagaattcaa gcccacaatc 1080
atggttggtg tcgccgctgt ttgggaaaca gtgagaaaag ggatcttaaa ccaaattgat 1140
aatttgccct tcctcaccaa gaaaatcttc tggaccgcgt ataataccaa gttgaacatg 1200
caacgtctcc acatccctgg tggcggcgcc ttaggaaact tggttttcaa aaaaatcaga 1260
actgccacag gtggccaatt aagatatttg ttaaacggtg gttctccaat cagtcgggat 1320
gctcaggaat tcatcacaaa tttaatctgc cctatgctta ttggttacgg tttaaccgag 1380
acatgcgcta gtaccaccat cttggatcct gctaattttg aactcggcgt cgctggtgac 1440
ctaacaggtt gtgttaccgt caaactagtt gatgttgaag aattaggtta ttttgctaaa 1500
aacaaccaag gtgaagtttg gatcacaggt gccaatgtca cgcctgaata ttataagaat 1560
gaggaagaaa cttctcaagc tttaacaagc gatggttggt tcaagaccgg tgacatcggt 1620
gaatgggaag caaatggcca tttgaaaata attgacagga agaaaaactt ggtcaaaaca 1680
atgaacggtg aatatatcgc actcgagaaa ttagagtccg tttacagatc taacgaatat 1740
gttgctaaca tttgtgttta tgccgaccaa tctaagacta agccagttgg tattattgta 1800
ccaaatcatg ctccattaac gaagcttgct aaaaagttgg gaattatgga acaaaaagac 1860
agttcaatta atatcgaaaa ttatttggag gatgcaaaat tgattaaagc tgtttattct 1920
gatcttttga agacaggtaa agaccaaggt ttggttggca ttgaattact agcaggcata 1980
gtgttctttg acggcgaatg gactccacaa aacggttttg ttacgtccgc tcagaaattg 2040
aaaagaaaag acattttgaa tgctgtcaaa gataaagttg acgccgttta tagttcgtct 2100
taa 2103
<210>3
<211>2085
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>3
atgaccgaac aatattccgt tgcagttggc gaagccgcca atgagcatga aaccgctcca 60
agaagaaata tcagggttaa agaccagcct ttgattagac ccataaactc ctcagcatct 120
acactgtacg aattcgccct ggaatgtttt accaagggtg gtaagagaga cggtatggca 180
tggagagata ttatagatat acatgagacg aaaaaaacca tagtcaagag ggtggatggt 240
aaggataagc ccatcgaaaa aacatggttg tactacgaac tgactcccta cataaccatg 300
acatacgagg agatgatctg cgtaatgcac gacattggac gtgggctgat aaagattggt 360
gttaaaccta acggtgagaa caagttccac atctttgcct ctacttctca caagtggatg 420
aaaacttttc ttggttgcat gtcacaaggt attcctgtgg tcaccgcgta cgacactttg 480
ggtgagagcg gtttgattca ctccatggtg gaaacagatt ccgtcgccat tttcacggac 540
aaccagctgt tgtccaaatt agcagttcct ttgaaaaccg ccaagaacgt aaaattcgtc 600
attcacaacg aacccatcga tccaagtgac aaaagacaaa atggtaagct ttacaaggct 660
gccaaggatg ctgttgacaa aatcaaggaa gttagaccgg acataaaaat ctacagtttc 720
gatgaaatta ttgagatagg taaaaaggcc aaggacgagg ttgaattgca tttccccaag 780
cctgaagatc cagcttgtat catgtacact tctggttcca ctggtacacc aaagggtgtg 840
gtattgacac attacaacat tgtagctggt attggtggtg tgggccataa cgttatcgga 900
tggattggcc caacagaccg tattatcgca ttcttgccat tggctcatat ttttgaatta 960
acctttgaat tcgaagcgtt ctactggaat ggtatcctag ggtacgccaa tgtcaagact 1020
ttaaccccaa cttctacacg taattgccaa ggtgacctga tggagtttaa acctaccgta 1080
atggtgggtg tcgccgcagt ttgggaaaca gtgagaaaag gtatcctggc caagatcaac 1140
gaattgcccggttggtctca aacgcttttc tggactgtct atgctttgaa agagagaaat 1200
ataccatgta gcggcttgct gagtgggttg atcttcaaga gaatcagaga agcaaccggt 1260
ggaaacttaa ggtttattct gaacggtggg tctgcaatca gcatagacgc ccaaaaattc 1320
ctctccaacc ttctatgtcc tatgctcatt ggatatgggc taactgaggg tgtggctaat 1380
gcctgtgtcc tggagcctga acattttgat tacggtattg ctggtgacct tgtcggaact 1440
attacagcta aattggtgga tgtcgaagat ttgggctatt ttgccaagaa taatcaaggt 1500
gaattgctgt ttaagggtgc acccatctgt tctgaatact ataagaatcc tgaagaaact 1560
gctgcggcct ttaccgatga tggctggttc cgtaccggtg atatcgctga atggaccccc 1620
aagggacaag ttaagatcat tgatagaaag aaaaatttgg ttaagacctt aaatggtgag 1680
tacattgcat tggaaaaatt agaatccatt tacagatcaa atccttacgt ccaaaacatc 1740
tgtgtctacg ctgatgaaaa caaagttaag cctgtcggta ttgtggtccc taacttagga 1800
cacttgtcta agctggctat cgaattaggt ataatggtac caggtgaaga tgtcgaaagc 1860
tatatccatg aaaagaagct acaggatgcc gtttgcaaag atatgctgtc aactgccaaa 1920
tctcaaggct tgaatggtat tgaattatta tgtggcattg ttttctttga agaagaatgg 1980
actccagaaa atggccttgt tacatccgcc caaaaattaa agagaagaga tattctagcg 2040
gctgtcaagc cagatgtgga aagagtttat aaagaaaaca cttaa 2085
<210>4
<211>1617
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>4
atgctgatca aggatattat cttgacgccc atgtctttgt ctgctgttgc tggtttgttg 60
cctttgttgt ttgttgcttt tttggtcttg catgagccaa tttggttgtt gtggtataga 120
tatgctgcta gaaggcataa gtgttccatg ccaagattca tcgaaaagtc tttcccattg 180
ggtatccaaa gaaccatgga tatgattaag accgctaagt cttacacctt gttggaagtt 240
caatacgaca gggtgtttaa caagttcaag gctagaactt acttgagaca agctccattg 300
caataccaaa tcttcactat cgaaccagag aacatcaaga ctattttggc taccaagttc 360
aacgattttg gtttgggtgc tagattccat actgttggta aagttttcgg tcaaggtatc 420
ttcactttgt ctggtaatgg ttggaagcag tccagatcta tgttaagacc acaattcact 480
aaggaccaag tctgcagaat tgaccaaatt tcttctcatg ctgccgaact gatcaaagaa 540
atgaatagag ctatgaaggt cgaccaattc atcgatgttc aacattactt ccacaagttg 600
accttggata ctgctactga atttttgttc ggtgagtctt gcgaatcttt gaatccagaa 660
aatcaatcct gcatcgttgc tagagatggt tctgaaatta ctgccgaaca attcgtcgaa 720
tcctacaact ttttgttgaa ctacgctttc aagaggacct tgtcctctaa agtttactgg 780
ctgtttaact ccaaagaatt cagggatcat aagaagagag cccaatccta cattgattac 840
tatgttgata aggccttgta cgctacttct tttgctgctg aaaattccat tgctgaaaaa 900
gatgctgctg cagaatcttc tggtatctac gttttttctt tggaaatggc caaggttacc 960
agagatccag ttactatcag agatcagatt ttcaacattt tgatcgccgg tagagataca 1020
actgctgcta ctttgtcttt tgccattcat tttttggcta gaaaccccga cgttttcaac 1080
aagttgagag aagaagtttt ggaccatttc ggcaccaaag aagaacaaag accattgtcc 1140
ttcgagttgt tgaaacaagc accatacttg aagcaagtca tcaacgaagt tttgagattg 1200
gctccagttt tgcctttgaa ctttagaact gctgttagag ataccacctt gccaattggt 1260
ggtggtccag aacaaaaaga tccaattttc gttccaaaag gtactgccgt ttactactct 1320
atctacatgg ttcacagaga tatcaaatac tggggtccag atgctcatga attcaatcca 1380
aatagatggg agaacctgaa gttggataat gtttgggctt tcttgccttt taatggtggc 1440
ccaagaattt gtttgggtca acaatttgct ttgaccgagt tgtctttgac tttggttaga 1500
ctgttgcaag agtactccaa gattgaaatg ggtcctgatt ttccagaatc tcctagattc 1560
tctactactt tgactgctca acatgctcca ccaggtgttg ttgttagatt ttcttga 1617
<210>5
<211>2064
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>5
atggccgata ttaacttcat tgcctctgtt gttgttgctt tggctgttgt ttttgttgcc 60
tacaagtact ttaatggtgg tccagatgtt caatcttcta aggctggtaa ttctactcca 120
ttcggtaact ctaaagctga tgaagatggt gattccagag atttcgttgc tttgatggaa 180
aagaacaaca agaacgtcat cgtgttctac ggttctcaaa ctggtactgc tgaagatttg 240
gcttctaagt tggctaaaga actgtcctct aaatacggtt tgaggactat gactgctgat 300
ccagaaaatt tcgacttcga aaagttggac actttcccag aatctcattt ggccgttttt 360
ttgatggctt cttatggtga tggtgaacct actgataatg ctcaagactt gtactctttc 420
ttgggtaact ctccatcttt ctcacaagac ggtgaaactt tggaaaactt gaactttgct 480
gttttcggtt tgggtaacgt cttgtacgaa ttttacaaca aagccggtaa ggacatgcat 540
aagtacttga ctgacttagg tggtcattct attggtccat acggtgaagg tgatgattct 600
aaaggtatgt tggaagagga ttacatggct tggaaggatg aatttttggc tgctttggtt 660
gctaaatggg gtttgactga aagagaagct gtttacgaac catccatctc cgtcaaagaa 720
attgaagagg atgctcattc ccacgatgtt tatttgggtg agccaaattt gaaacacttg 780
caagcttcta aagcccaaga aattccaaag ggtccataca atgcttctaa tccaatgttg 840
gctaagatta ctgctgctag agaattattc accaacaccg atagacattg catccacatg 900
gaatttgata caactggtgc tagatacact accggtgatc atttggcttt ttggttccaa 960
aacaacgaag aagaagtcca aagattcgtt aaggctttgg gtattgctaa tccacaacaa 1020
cctattgcca tttccgtttt ggataagact tccaccgtta gaattccatc tccaactact 1080
tacgaaacca tcatcagaca tttcttggaa atcaacggtc cagtttccag acaagttttg 1140
tcatctattg caccatttgc tccatccgaa gaagttaaga aagctactca acaactgggc 1200
tctaacaaag aattatttgc ttctcatgtt gccgccaaga agtttaacat tgctagattg 1260
ctattgcact tgtcaggtgg tcaaccatgg aaaaatgttc cattctcctt cgtcattgaa 1320
acgattccac acttgcagcc aagatattac tctatctctt cctcttctgt gcaatctcca 1380
aacactgttt ctattaccgc tgttgttgaa agacaaactt tgaccggtgt tgatcatgaa 1440
ttgagaggtg ttgctaccaa tcaaattttg gctttgtctg aagccttggt tggtcatcca 1500
tctatgactt atagattgca acaaccacac gacttcacca actcattatc ctctcaagat 1560
atcagagttc cagttcacat taggcacagc ttgtttaaat tgccaggtaa acctaccgtt 1620
ccaatcatta tggttggtcc aggtactggt gttgctcctt ttagaggttt tgttcacgaa 1680
agagcttctc aaaaagctgc cggtaaagaa gttggtaagg ctatgttgtt taccggttct 1740
agacatgcta acgaggattt cttgtatagg gatgaatgga agcaattctc cgacttcttg 1800
gatttggaaa ctgccttttc tagagactcc tctaagaagg tttacgtcca acacaaattg 1860
aaagaaagag ccaaggacgt tttcgccttg ttgaatgaag gtgctgtttt ttacgtttgt 1920
ggtgatgctg gtggtatgtc tcatgatgtt cattctgctt tattggaaat cgttgcccaa 1980
gaaggtaact tgtcatctga agatgctgat aagttcgtca gaaagatgag atctaggaac 2040
aagtaccaag aggatgtttg gtga 2064
<210>6
<211>2079
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>6
atgacttctg cattatacgc atcagactta tttaagcagt tgaaatctat aatgggaaca 60
gactcattgt cagacgacgt cgttttagtt attgctacta cttcattggc tttggttgct 120
ggatttgttg ttttattgtg gaaaaagaca acagctgata ggtctggtga attaaagcca180
ttaatgatac ctaaatcttt aatggctaag gacgaggacg acgacttgga tttaggatca 240
ggaaagacta gagtctctat atttttcgga actcagacag gaacagctga gggattcgca 300
aaggctttat cagaagagat taaagcaagg tacgagaagg ctgctgtcaa agttatagat 360
ttggatgact acgcagctga tgacgaccag tacgaggaaa agttgaaaaa ggaaactttg 420
gcatttttct gtgttgcaac atacggtgac ggtgagccaa ctgacaacgc tgctaggttc 480
tacaaatggt tcacagagga aaatgagaga gacattaaat tgcagcagtt ggcttacggt 540
gtcttcgcat tgggaaacag gcaatatgaa catttcaata agattggaat tgtcttggac 600
gaagaattat gcaaaaaagg agctaagagg ttgatagagg tcggtttggg tgacgatgac 660
cagtcaatag aggacgactt caatgcatgg aaagagtcat tgtggtcaga gttagataag 720
ttattaaaag acgaagacga caagtcagtc gcaacacctt acacagcagt catacctgag 780
tatagggtcg tcactcacga cccaagattc actactcaaa agtcaatgga gtcaaatgtc 840
gcaaacggaa atactactat tgacattcat cacccatgca gggttgacgt cgctgtccag 900
aaagagttac acactcacga gtctgacagg tcatgcattc acttggagtt cgatatttca 960
agaactggta ttacttacga aacaggtgac cacgttggtg tctacgctga gaaccacgtc 1020
gagattgtcg aggaagctgg aaagttgttg ggacattctt tagatttggt cttctcaatt 1080
catgctgaca aagaggacgg ttcaccattg gagtctgctg ttccaccacc attccctgga 1140
ccatgcactt taggtactgg tttggcaagg tacgcagact tattgaaccc acctaggaag 1200
tcagctttag ttgcattggc tgcatatgca acagaaccat ctgaggcaga gaaattaaag 1260
cacttgactt ctcctgacgg taaggacgag tactcacagt ggatagtcgc atctcagagg 1320
tcattgttgg aggtcatggc agcatttcca tcagcaaagc cacctttagg tgttttcttc 1380
gcagctatag cacctagatt gcagcctagg tattattcaa tatcttcttc acctaggttg 1440
gctccatcta gggtccacgt cacatcagct ttggtttacg gacctactcc tacaggaagg 1500
atacataaag gagtctgctc tacttggatg aagaacgctg tcccagcaga gaagtctcat 1560
gagtgctcag gagctcctat ttttattagg gcatcaaatt tcaaattgcc ttcaaaccca 1620
tctactccaa tagtcatggt cggaccagga acaggtttgg ctcctttcag gggatttttg 1680
caggagagga tggctttgaa ggaggatggt gaggaattgg gatcatcttt gttgttcttt 1740
ggttgtagga ataggcaaat ggacttcatt tatgaggacg aattgaacaa ctttgttgat 1800
caaggagtca tatcagagtt aattatggct ttctcaaggg agggtgcaca aaaggaatac 1860
gtccaacaca agatgatgga aaaggctgca caggtctggg acttgattaa ggaggaggga 1920
tacttatatg tctgcggtga cgcaaagggt atggcaagag acgtccacag gactttgcac 1980
acaattgtcc aggaacagga gggtgtttct tcatctgaag cagaggctat tgttaaaaag 2040
ttgcaaactg aaggtaggta cttgagggac gtctggtaa 2079
<210>7
<211>3582
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>7
atgctgatca aggatattat cttgacgccc atgtctttgt ctgctgttgc tggtttgttg 60
cctttgttgt ttgttgcttt tttggtcttg catgagccaa tttggttgtt gtggtataga 120
tatgctgcta gaaggcataa gtgttccatg ccaagattca tcgaaaagtc tttcccattg 180
ggtatccaaa gaaccatgga tatgattaag accgctaagt cttacacctt gttggaagtt 240
caatacgaca gggtgtttaa caagttcaag gctagaactt acttgagaca agctccattg 300
caataccaaa tcttcactat cgaaccagag aacatcaaga ctattttggc taccaagttc 360
aacgattttg gtttgggtgc tagattccat actgttggta aagttttcgg tcaaggtatc 420
ttcactttgt ctggtaatgg ttggaagcag tccagatcta tgttaagacc acaattcact 480
aaggaccaag tctgcagaat tgaccaaatt tcttctcatg ctgccgaact gatcaaagaa 540
atgaatagag ctatgaaggt cgaccaattc atcgatgttc aacattactt ccacaagttg 600
accttggata ctgctactga atttttgttc ggtgagtctt gcgaatcttt gaatccagaa 660
aatcaatcct gcatcgttgc tagagatggt tctgaaatta ctgccgaaca attcgtcgaa 720
tcctacaact ttttgttgaa ctacgctttc aagaggacct tgtcctctaa agtttactgg 780
ctgtttaact ccaaagaatt cagggatcat aagaagagag cccaatccta cattgattac 840
tatgttgata aggccttgta cgctacttct tttgctgctg aaaattccat tgctgaaaaa 900
gatgctgctg cagaatcttc tggtatctac gttttttctt tggaaatggc caaggttacc 960
agagatccag ttactatcag agatcagatt ttcaacattt tgatcgccgg tagagataca 1020
actgctgcta ctttgtcttt tgccattcat tttttggcta gaaaccccga cgttttcaac 1080
aagttgagag aagaagtttt ggaccatttc ggcaccaaag aagaacaaag accattgtcc 1140
ttcgagttgt tgaaacaagc accatacttg aagcaagtca tcaacgaagt tttgagattg 1200
gctccagttt tgcctttgaa ctttagaact gctgttagag ataccacctt gccaattggt 1260
ggtggtccag aacaaaaaga tccaattttc gttccaaaag gtactgccgt ttactactct 1320
atctacatgg ttcacagaga tatcaaatac tggggtccag atgctcatga attcaatcca 1380
aatagatggg agaacctgaa gttggataat gtttgggctt tcttgccttt taatggtggc 1440
ccaagaattt gtttgggtca acaatttgct ttgaccgagt tgtctttgac tttggttaga 1500
ctgttgcaag agtactccaa gattgaaatg ggtcctgatt ttccagaatc tcctagattc 1560
tctactactt tgactgctca acatgctcca ccaggtgttg ttgttagatt ttcttgaggt 1620
tctacttctt caggttcagg ttggaaaaag acaacagctg ataggtctgg tgaattaaag 1680
ccattaatga tacctaaatc tttaatggct aaggacgagg acgacgactt ggatttagga 1740
tcaggaaaga ctagagtctc tatatttttc ggaactcaga caggaacagc tgagggattc 1800
gcaaaggctt tatcagaaga gattaaagca aggtacgaga aggctgctgt caaagttata 1860
gatttggatg actacgcagc tgatgacgac cagtacgagg aaaagttgaa aaaggaaact 1920
ttggcatttt tctgtgttgc aacatacggt gacggtgagc caactgacaa cgctgctagg 1980
ttctacaaat ggttcacaga ggaaaatgag agagacatta aattgcagca gttggcttac 2040
ggtgtcttcg cattgggaaa caggcaatat gaacatttca ataagattgg aattgtcttg 2100
gacgaagaat tatgcaaaaa aggagctaag aggttgatag aggtcggttt gggtgacgat 2160
gaccagtcaa tagaggacga cttcaatgca tggaaagagt cattgtggtc agagttagat 2220
aagttattaa aagacgaaga cgacaagtca gtcgcaacac cttacacagc agtcatacct 2280
gagtataggg tcgtcactca cgacccaaga ttcactactc aaaagtcaat ggagtcaaat 2340
gtcgcaaacg gaaatactac tattgacatt catcacccat gcagggttga cgtcgctgtc 2400
cagaaagagt tacacactca cgagtctgac aggtcatgca ttcacttgga gttcgatatt 2460
tcaagaactg gtattactta cgaaacaggt gaccacgttg gtgtctacgc tgagaaccac 2520
gtcgagattg tcgaggaagc tggaaagttg ttgggacatt ctttagattt ggtcttctca 2580
attcatgctg acaaagagga cggttcacca ttggagtctg ctgttccacc accattccct 2640
ggaccatgca ctttaggtac tggtttggca aggtacgcag acttattgaa cccacctagg 2700
aagtcagctt tagttgcatt ggctgcatat gcaacagaac catctgaggc agagaaatta 2760
aagcacttga cttctcctga cggtaaggac gagtactcac agtggatagt cgcatctcag 2820
aggtcattgt tggaggtcat ggcagcattt ccatcagcaa agccaccttt aggtgttttc 2880
ttcgcagcta tagcacctag attgcagcct aggtattatt caatatcttc ttcacctagg 2940
ttggctccat ctagggtcca cgtcacatca gctttggttt acggacctac tcctacagga 3000
aggatacata aaggagtctg ctctacttgg atgaagaacg ctgtcccagc agagaagtct 3060
catgagtgct caggagctcc tatttttatt agggcatcaa atttcaaatt gccttcaaac 3120
ccatctactc caatagtcat ggtcggacca ggaacaggtt tggctccttt caggggattt 3180
ttgcaggaga ggatggcttt gaaggaggat ggtgaggaat tgggatcatc tttgttgttc 3240
tttggttgta ggaataggca aatggacttc atttatgagg acgaattgaa caactttgtt 3300
gatcaaggag tcatatcaga gttaattatg gctttctcaa gggagggtgc acaaaaggaa 3360
tacgtccaac acaagatgat ggaaaaggct gcacaggtct gggacttgat taaggaggag 3420
ggatacttat atgtctgcgg tgacgcaaag ggtatggcaa gagacgtcca caggactttg 3480
cacacaattg tccaggaaca ggagggtgtt tcttcatctg aagcagaggc tattgttaaa 3540
aagttgcaaa ctgaaggtag gtacttgagg gacgtctggt aa 3582
<210>8
<211>750
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>8
acgcacagat attataacat ctgcataata ggcatttgca agaattactc gtgagtaagg 60
aaagagtgag gaactatcgc atacctgcat ttaaagatgc cgatttgggc gcgaatcctt 120
tattttggct tcaccctcat actattatca gggccagaaa aaggaagtgt ttccctcctt 180
cttgaattga tgttaccctc ataaagcacg tggcctctta tcgagaaaga aattaccgtc 240
gctcgtgatt tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc tcgacttcct 300
gtcttcctat tgattgcagc ttccaatttc gtcacacaac aaggtcctag cgacggctca 360
caggttttgt aacaagcaat cgaaggttct ggaatggcgg gaaagggttt agtaccacat 420
gctatgatgc ccactgtgat ctccagagca aagttcgttc gatcgtactg ttactctctc 480
tctttcaaac agaattgtcc gaatcgtgtg acaacaacag cctgttctca cacactcttt 540
tcttctaacc aagggggtgg tttagtttag tagaacctcg tgaaacttac atttacatat 600
atataaactt gcataaattg gtcaatgcaa gaaatacata tttggtcttt tctaattcgt 660
agtttttcaa gttcttagat gctttctttt tctctttttt acagatcatc aaggaagtaa 720
ttatctactt tttacaacaa atataaaaca 750
<210>9
<211>437
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>9
gcgaatttct tatgatttat gatttttatt attaaataag ttataaaaaa aataagtgta 60
tacaaatttt aaagtgactc ttaggtttta aaacgaaaat tcttattctt gagtaactct 120
ttcctgtagg tcaggttgct ttctcaggta tagcatgagg tcgctcttat tgaccacacc 180
tctaccggca tgccgagcaa atgcctgcaa atcgctcccc atttcaccca attgtagata 240
tgctaactcc agcaatgagt tgatgaatct cggtgtgtat tttatgtcct cagaggacaa 300
cacctgttgt aatcgttctt ccacacggat ccacagccta gccttcagtt gggctctatc 360
ttcatcgtca ttcattgcat ctactagccc cttacctgag cttcaagacg ttatatcgct 420
tttatgtatc atgatct 437
<210>10
<211>800
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>10
atactagcgt tgaatgttag cgtcaacaac aagaagttta atgacgcgga ggccaaggca 60
aaaagattcc ttgattacgt aagggagtta gaatcatttt gaataaaaaa cacgcttttt 120
cagttcgagt ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt 180
agtgattttc ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt 240
acatgcccaa aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga 300
acagtttatt cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag 360
aaaaaaaaag aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt 420
ccattctctt agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac 480
ctcaatggag tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc 540
atgtatctat ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa 600
agctgaaaaa aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt 660
atataaagac ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat 720
tctactttta tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata 780
aacacacata aacaaacaaa 800
<210>11
<211>400
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>11
atttaactcc ttaagttact ttaatgattt agtttttatt attaataatt catgctcatg 60
acatctcata tacacgttta taaaacttaa atagattgaa aatgtattaa agattcctca 120
gggattcgat ttttttggaa gtttttgttt ttttttcctt gagatgctgt agtatttggg 180
aacaattata caatcgaaag atatatgctt acattcgacc gttttagccg tgatcattat 240
cctatagtaa cataacctga agcataactg acactactat catcaatact tgtcacatga 300
gaactctgtg aataattagg ccactgaaat ttgatgcctg aaggaccggc atcacggatt 360
ttcgataaag cacttagtat cacactaatt ggcttttcgc 400
<210>12
<211>24
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>12
tcctagcgac gaaaaatgcg agat 24
<210>13
<211>31
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>13
gatcctctag agtcgacgca tcgtaatagt c 31
<210>14
<211>683
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>14
tcctagcgac gaaaaatgcg agatctcgac caaaaaaagg gggtagggta ataaaattaa 60
ccctattatt ttttaacttt aaaacctata atgtgctaat attttattat aaacctcctt 120
tttttgcgtt caaaccctga cacattttaa gccctatatt tacggtatta gttgattaaa 180
ctccgaagcg aaaggaattc ggtcattagc ggctaatagc cgttggggta aatcacctac 240
aagcaagtac acaagagaac gttggcgttg ttaagtcaaa gcactaatac attggggctt 300
taagagtgtt tataaaggtc taacctgtaa aaattattta aacaacttga acaggcctta 360
aagttttcct cattccgctc atcatcacta atattgctct ccgtttttga atacacactt 420
gacactaata agtatcacag aaaaaaagaa aatataataa attagtattg cgatatgacg 480
agacgtacta ctattaatcc cgattcggtg gttctgaatc ctcaaaaatt tatccagaaa 540
gaaagggcgg attcgaaaat caaagttgac caagttaaca catttttaga gtcatccccg 600
gagaggagaa ctctgacgca cgccttaata gaccaaatag tgaatgatcc tatattgaaa 660
actgatacgg actattacga tgc 683
<210>15
<211>32
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>15
gaattcatca cgtgcctcta aagttgtgca gc 32
<210>16
<211>28
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>16
agtaaacact caataattac ctgccatc 28
<210>17
<211>618
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>17
ctctaaagtt gtgcagccac aactattggc tcttttgcca attgtgagga aagactgtat 60
aggtctgaca gactcctttg aattacctga cgcgatgtta aattctccta taggttactt 120
tgatggcgat atctatcaca attacttcaa tgaagtttgc cgcaataatc cagtggaggc 180
agatggggca gggaagcctt cttatcatgc gctgttgagc agcatgctcg gtagaggttt 240
cgaatttgac caaaagttag gtggtgcagc taatgcggaa attttatcga aaataaacaa 300
gtgagtagag gtttcctgtt ttccttcgaa ccctctgttt tgcgactttt gtttcaattc 360
aactagtgtc gccaagtttt aacaaaaagt tacaaaatcc tagtgagagg ccatcttatg 420
tgcataacgg tactctctat ctatttacat atctaatact attcacataa ctatgacgaa 480
tcaatgacat gactacattt accaatgtat agtagtaaaa aaattgccat ctcctagaat 540
cgaaccaggg tttcatcggc cacaacgatg tgtactaacc actatactaa gatggcaggt 600
aattattgag tgtttact 618
<210>18
<211>21
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>18
atacgaatga cacaggggca c 21
<210>19
<211>32
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>19
gatcctctag agtcgacatc cctccaaccc at 32
<210>20
<211>544
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>20
atacgaatga cacaggggca cccacccatc gcatatcagg agaacttccc tgtgcatacg 60
ggacagcaga gataggctgt tctcgcgcgt tttttttttt tttttgcttt ttttggttcc 120
tttcgcggat atcgtattat cgatattaca acaaaaatgt ttggagatct ccttcgctgt 180
ctttaagtaa aaggctttaa ccgcttattt ttctctcttt ttttcctttt acccctcact 240
tgtcgtgaga caattgtagt atatttagta agtatagaaa gttcttgttg ttaaaaaact 300
cgttaggata caataaaaac tagaacaaac acaaaagaca aaaaaagaca acaatatggt 360
tgctcaatat accgttccag ttgggaaagc cgccaatgag catgaaactg ctccaagaag 420
aaattatcaa tgccgcgaga agccgctcgt cagaccgcct aacacaaagt gttccactgt 480
ttatgagttt gttctagagt gctttcagaa gaacaaaaat tcaaatgcta tgggttggag 540
ggat 544
<210>21
<211>32
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>21
catcacgtgc tagccgacca atctaagact aa 32
<210>22
<211>23
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>22
gctcctaatt agactgccat gcg 23
<210>23
<211>635
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>23
gccgaccaat ctaagactaa gccagttggt attattgtac caaatcatgc tccattaacg 60
aagcttgcta aaaagttggg aattatggaa caaaaagaca gttcaattaa tatcgaaaat 120
tatttggagg atgcaaaatt gattaaagct gtttattctg atcttttgaa gacaggtaaa 180
gaccaaggtt tggttggcat tgaattacta gcaggcatag tgttctttga cggcgaatgg 240
actccacaaa acggttttgt tacgtccgct cagaaattga aaagaaaaga cattttgaat 300
gctgtcaaag ataaagttga cgccgtttat agttcgtctt aatggatcaa catttccatg 360
ataggaaagc ctcatcatac taaagcactt tttcagtttt ttgctttaga actgctacca 420
attataaaat agaatgcaca ggttatcttg tttggtttgt tattatcctt ttttcttctt 480
taccagtcat atcacctcat tcacgtatgt tcgtaattta taatgttaaa aatggcatat 540
atagatatat ttatgaacat cctaaaaaat aactaaattt ttctacattt caaaaaaggt 600
aacgttgact gccgcatggc agtctaatta ggagc 635
<210>24
<211>22
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>24
tattctgggt gtttctcggc ct 22
<210>25
<211>29
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>25
ctctagagtc gactatgtag ggagtcagt 29
<210>26
<211>615
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>26
tattctgggt gtttctcggc cttcgttcat ctcgttcttt ctactcttag ccctcatctt 60
tctcttctgc attcttttca cctcattaag aacattcgcg gcgccgcttt accccaacaa 120
aaacagccca tcttttgttc tacctctttc agataaggct caacagatag acaataactg 180
atcattcttt cttttgtttg caacccctct gagttgacat aaaagcgaga atacaaaaga 240
accagcatta gtaacacatc atttttttct ctgttcttca ctatttcttg aaaaactaag 300
aagtacgcat caaaatgacc gaacaatatt ccgttgcagt tggcgaagcc gccaatgagc 360
atgaaaccgc tccaagaaga aatatcaggg ttaaagacca gcctttgatt agacccataa 420
actcctcagc atctacactg tacgaattcg ccctggaatg ttttaccaag ggtggtaaga 480
gagacggtat ggcatggaga gatattatag atatacatga gacgaaaaaa accatagtca 540
agagggtgga tggtaaggat aagcccatcg aaaaaacatg gttgtactac gaactgactc 600
cctacataac catga 615
<210>27
<211>32
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>27
tcatcacgtg ctaccaaaac atctgtgtct ac 32
<210>28
<211>28
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>28
gtttgattac taaaagttgg ggcattcg 28
<210>29
<211>688
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>29
ccaaaacatc tgtgtctacg ctgatgaaaa caaagttaag cctgtcggta ttgtggtccc 60
taacttagga cacttgtcta agctggctat cgaattaggt ataatggtac caggtgaaga 120
tgtcgaaagc tatatccatg aaaagaagct acaggatgcc gtttgcaaag atatgctgtc 180
aactgccaaa tctcaaggct tgaatggtat tgaattatta tgtggcattg ttttctttga 240
agaagaatgg actccagaaa atggccttgt tacatccgcc caaaaattaa agagaagaga 300
tattctagcg gctgtcaagc cagatgtgga aagagtttat aaagaaaaca cttaaaggaa 360
gacatagttt tttactttcc cccctgccct tcataaacac tacgtttcat tttctaagag 420
catcaatttg caaacacctg aactacttgc acaatacata gtttcttctc ctacagatac 480
agttaataat taataaataa cattacacat aaacatgttt aagtttcatt tcagcaagac 540
aagattgaca ttattaagcg tgatctaaac tatgaatttc tcccgggtat gaaactacat 600
tctactattg attttaatag atgagcgatt aaacgggata tttgaattta tgacttctgt 660
aaaccatcga atgccccaac ttttagta 688
<210>30
<211>31
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>30
gactattacg atgcgtcgac tctagaggat c 31
<210>31
<211>32
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>31
gctgcacaac tttagaggca cgtgatgaat tc 32
<210>32
<211>1299
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>32
gtcgactcta gaggatcccc gggataactt cgtatagcat acattatacg aagttatcgt 60
tttaagagct tggtgagcgc taggagtcac tgccaggtat cgtttgaaca cggcattagt 120
cagggaagtc ataacacagt cctttcccgc aattttcttt ttctattact cttggcctcc 180
tctgtacact ctatattttt ttatgcctcg gtaatgattt tcattttttt ttttccacct 240
agcggatgac tctttttttt tcttagcgat tggcattatc acataatgaa ttatacatta 300
tataaagtaa tgtgatttct tcgaagaata tactaaaaaa tgagcaggca agataaacga 360
aggcaaagat gacagagcag aaagccctag taaagcgtat tacaaatgaa accaagattc 420
agattgcgat ctctttaaag ggtggtcccc tagcgatagagcactcgatc ttcccagaaa 480
aagaggcaga agcagtagca gaacaggcca cacaatcgca agtgattaac gtccacacag 540
gtatagggtt tctggaccat atgatacatg ctctggccaa gcattccggc tggtcgctaa 600
tcgttgagtg cattggtgac ttacacatag acgaccatca caccactgaa gactgcggga 660
ttgctctcgg tcaagctttt aaagaggccc taggggccgt gcgtggagta aaaaggtttg 720
gatcaggatt tgcgcctttg gatgaggcac tttccagagc ggtggtagat ctttcgaaca 780
ggccgtacgc agttgtcgaa cttggtttgc aaagggagaa agtaggagat ctctcttgcg 840
agatgatccc gcattttctt gaaagctttg cagaggctag cagaattacc ctccacgttg 900
attgtctgcg aggcaagaat gatcatcacc gtagtgagag tgcgttcaag gctcttgcgg 960
ttgccataag agaagccacc tcgcccaatg gtaccaacga tgttccctcc accaaaggtg 1020
ttcttatgta gtgacaccga ttatttaaag ctgcagcata cgatatatat acatgtgtat 1080
atatgtatac ctatgaatgt cagtaagtat gtatacgaac agtatgatac tgaagatgac 1140
aaggtaatgc atcattctat acgtgtcatt ctgaacgagg cgcgctttcc ttttttcttt 1200
ttgctttttc tttttttttc tcttgaactc gaataacttc gtatagcata cattatacga 1260
agttatcccg ggtaccgagc tcgaattcat cacgtgcta 1299
<210>33
<211>32
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>33
atgggttgga gggatgtcga ctctagagga tc 32
<210>34
<211>33
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>34
cttagtctta gattggtcgg ctagcacgtg atg 33
<210>35
<211>2285
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>35
gtcgactcta gaggatcccc gggataactt cgtatagcat acattatacg aagttatcgt 60
tttaagagct tggtgagcgc taggaaccta atattattgc cttattaaaa atggaatccc 120
aacaattaca tcaaaatcca cattctcttc aaaatcaatt gtcctgtact tccttgttca 180
tgtgtgttca aaaacgttat atttatagga taattatact ctatttctca acaagtaatt 240
ggttgtttgg ccgagcggtc taaggcgcct gattcaagaa atatcttgac cgcagttaac 300
tgtgggaata ctcaggtatc gtaagatgca agagttcgaa tctcttagca accattattt 360
ttttcctcaa cataacgaga acacacaggg gcgctatcgc acagaatcaa attcgatgac 420
tggaaatttt ttgttaattt cagaggtcgc ctgacgcata tacctttttc aactgaaaaa 480
ttgggagaaa aaggaaaggt gagagcgccg gaaccggctt ttcatataga atagagaagc 540
gttcatgact aaatgcttgc atcacaatac ttgaagttga caatattatt taaggaccta600
ttgttttttc caataggtgg ttagcaatcg tcttactttc taacttttct taccttttac 660
atttcagcaa tatatatata tatatttcaa ggatatacca ttctaatgtc tgcccctaag 720
aagatcgtcg ttttgccagg tgaccacgtt ggtcaagaaa tcacagccga agccattaag 780
gttcttaaag ctatttctga tgttcgttcc aatgtcaagt tcgatttcga aaatcattta 840
attggtggtg ctgctatcga tgctacaggt gttccacttc cagatgaggc gctggaagcc 900
tccaagaagg ctgatgccgt tttgttaggt gctgtgggtg gtcctaaatg gggtaccggt 960
agtgttagac ctgaacaagg tttactaaaa atccgtaaag aacttcaatt gtacgccaac 1020
ttaagaccat gtaactttgc atccgactct cttttagact tatctccaat caagccacaa 1080
tttgctaaag gtactgactt cgttgttgtc agagaattag tgggaggtat ttactttggt 1140
aagagaaagg aagacgatgg tgatggtgtc gcttgggata gtgaacaata caccgttcca 1200
gaagtgcaaa gaatcacaag aatggccgct ttcatggccc tacaacatga gccaccattg 1260
cctatttggt ccttggataa agctaatgtt ttggcctctt caagattatg gagaaaaact 1320
gtggaggaaa ccatcaagaa cgaattccct acattgaagg ttcaacatca attgattgat 1380
tctgccgcca tgatcctagt taagaaccca acccacctaa atggtattat aatcaccagc 1440
aacatgtttg gtgatatcat ctccgatgaa gcctccgtta tcccaggttc cttgggtttg 1500
ttgccatctg cgtccttggc ctctttgcca gacaagaaca ccgcatttgg tttgtacgaa 1560
ccatgccacg gttctgctcc agatttgcca aagaataagg tcaaccctat cgccactatc 1620
ttgtctgctg caatgatgtt gaaattgtca ttgaacttgc ctgaagaagg taaggccatt 1680
gaagatgcag ttaaaaaggt tttggatgca ggtatcagaa ctggtgattt aggtggttcc 1740
aacagtacca ccgaagtcgg tgatgctgtc gccgaagaag ttaagaaaat ccttgcttaa 1800
aaagattctc tttttttatg atatttgtac ataaacttta taaatgaaat tcataataga 1860
aacgacacga aattacaaaa tggaatatgt tcatagggta gacgaaacta tatacgcaat 1920
ctacatacat ttatcaagaa ggagaaaaag gaggatgtaa aggaatacag gtaagcaaat 1980
tgatactaat ggctcaacgt gataaggaaa aagaattgca ctttaacatt aatattgaca 2040
aggaggaggg caccacacaa aaagttaggt gtaacagaaa atcatgaaac tatgattcct 2100
aatttatata ttggaggatt ttctctaaaa aaaaaaaaat acaacaaata aaaaacactc 2160
aatgacctga ccatttgatg gagtttaagt caataccttc ttgaactctt gaactcgaat 2220
aacttcgtat agcatacatt atacgaagtt atcccgggta ccgagctcga attcatcacg 2280
tgcta 2285
<210>36
<211>31
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>36
tgactcccta catagtcgac tctagaggat c 31
<210>37
<211>33
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>37
acagatgttt tggtagcacg tgatgaattc gag 33
<210>38
<211>24
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>38
agtcgcggaa aaaagtaaac agct 24
<210>39
<211>34
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>39
taatatctgt gcgtactgac aatttatgac ctgc 34
<210>40
<211>38
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>40
attcatcacg tgctagaaag ggaatcaagt atttttat 38
<210>41
<211>34
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>41
gcttgataac tgttactgat atgtctgagg aaag 34
<210>42
<211>486
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>42
agtcgcggaa aaaagtaaac agctattgct actcaaatga ggtttgcaga agcttgttga 60
agcatgatga agcgttctaa acgcactatt catcattaaa tatttaaagc tcataaaatt 120
gtattcaatt cctattctaa atggctttta tttctattac aactattagc tctaaatcca 180
tatcctcata agcagcaatc aattctatct atactttaaa atgctttctg aaaacacgac 240
tattctgatg gctaacggtg aaattaaaga catcgcaaac gtcacggcta actcttacgt 300
tatgtgcgca gatggctccg ctgcccgcgt cataaatgtc acacagggct atcagaaaat 360
ctataatata cagcaaaaaa ccaaacacag agcttttgaa ggtgaacctg gtaggttaga 420
tcccaggcgt agaacagttt atcagcgtct tgcattacaa tgtactgcag gtcataaatt 480
gtcagt 486
<210>43
<211>516
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>43
agaaagggaa tcaagtattt ttataaagat tggagtggta aaaatcgagt atgtgctaga 60
tgctatggaa gatacaaatt cagcggtcat cactgtataa attgcaagta tgtaccagaa 120
gcacgtgaag tgaaaaaggc aaaagacaaa ggcgaaaaat tgggcattac gcccgaaggt 180
ttgccagtta aaggaccaga gtgtataaaa tgtggcggaa tcttacagtt tgatgctgtc 240
cgcgggcctc ataagagttg tggtaacaac gcaggtgcgc gcatctgcta aaatgtgtat 300
attagtttaa aaagttgtat gtaataaaag taaaatttaa tattttggat gaaaaaaacc 360
atttttagac tttttcttaa ctagaatgct ggagtagaaa tacgccatct caagatacaa 420
aaagcgttac cggcactgat ttgtttcaac cagtatatag attattattg ggtcttgatc 480
aactttcctc agacatatca gtaacagtta tcaagc 516
<210>44
<211>37
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>44
gtcataaatt gtcagtacgc acagatatta taacatc 37
<210>45
<211>41
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>45
atatccttga tcagcattgt tttatatttg ttgtaaaaag t 41
<210>46
<211>37
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>46
tgttagattt tcttgagcga atttcttatg atttatg 37
<210>47
<211>40
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>47
ctaacattca acgctagtat agatcatgat acataaaagc 40
<210>48
<211>41
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>48
caaatataaa acaatgctga tcaaggatat tatcttgacg c 41
<210>49
<211>35
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>49
cataagaaat tcgctcaaga aaatctaaca acaac 35
<210>50
<211>40
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>50
gcttttatgt atcatgatct atactagcgt tgaatgttag 40
<210>51
<211>38
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>51
taatatcggc cattttgttt gtttatgtgt gtttattc 38
<210>52
<211>40
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>52
aggatgtttg gtgaatttaa ctccttaagt tactttaatg 40
<210>53
<211>31
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>53
caggcatgca agcgcgaaaa gccaattagt g 31
<210>54
<211>33
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>54
acataaacaa acaaaatggc cgatattaac ttc 33
<210>55
<211>33
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>55
cttaaggagt taaattcacc aaacatcctc ttg 33
<210>56
<211>31
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>56
cactaattgg cttttcgcgc ttgcatgcct g 31
<210>57
<211>32
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>57
tgattccctt tctagcacgt gatgaattcg ag 32
<210>58
<211>38
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>58
atgcagaagtcattttgttt gtttatgtgt gtttattc 38
<210>59
<211>39
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>59
ggacgtctgg taaatttaac tccttaagtt actttaatg 39
<210>60
<211>34
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>60
acataaacaa acaaaatgac ttctgcatta tacg 34
<210>61
<211>33
<212>DNA
<213> a recombinant Saccharomyces cerevisiae producing hydroxy fatty acids
<400>61
ttaaggagtt aaatttacca gacgtccctc aag 33

Claims (9)

1. A construction method of recombinant saccharomyces cerevisiae (I) for producing hydroxy fatty acid is characterized by comprising the following steps of knocking out acyl-CoA oxidase POX1 which is a key gene in β oxidation pathway related to fatty acid catabolism in saccharomyces cerevisiae by a homologous recombination method, and knocking out acyl-CoA activating enzymes FAA1 and FAA4 to obtain the recombinant saccharomyces cerevisiae (I);
the nucleotide sequence of the acyl-CoA oxidase gene POX1 is shown in SEQ ID NO. 1;
the nucleotide sequence of the acyl-CoA synthetase gene FAA1 is shown in SEQ ID NO. 2;
the nucleotide sequence of the acyl-CoA synthetase gene FAA4 is shown in SEQ ID NO. 3.
2. The recombinant Saccharomyces cerevisiae (I) for producing hydroxy fatty acid constructed by the method of claim 1.
3. A construction method of recombinant saccharomyces cerevisiae (II) for producing hydroxy fatty acid is characterized by comprising the following steps: introducing a cytochrome P450 oxidase gene CYP52M1 expression cassette and a cytochrome P450 reductase gene SbCPR expression cassette into an HO site of the recombinant saccharomyces cerevisiae (I) by a homologous recombination method to obtain a recombinant saccharomyces cerevisiae (II) for producing hydroxy fatty acid, wherein the obtained hydroxy fatty acid comprises omega-1-hydroxy-hexadecanoic acid and omega-1-hydroxy-oleic acid;
the nucleotide sequence of cytochrome P450 oxidase gene CYP52M1 is shown in SEQ ID NO. 4;
the nucleotide sequence of cytochrome P450 reductase gene SbCPR is shown in SEQ ID NO. 5.
4. The recombinant Saccharomyces cerevisiae producing hydroxy fatty acids constructed by the method of claim 3 (II).
5. A construction method of recombinant saccharomyces cerevisiae (III) for producing hydroxy fatty acid is characterized by comprising the following steps: introducing a cytochrome P450 oxidase gene CYP52M1 expression cassette and a cytochrome P450 reductase gene AtCPR1 expression cassette into an HO site of the recombinant saccharomyces cerevisiae (I) by a homologous recombination method to obtain the recombinant saccharomyces cerevisiae (III) for producing hydroxy fatty acid, wherein the obtained hydroxy fatty acid types comprise omega-hydroxy-hexadecanoic acid, omega-1-hydroxy-hexadecanoic acid, omega-hydroxy-oleic acid and omega-1-hydroxy-oleic acid;
the nucleotide sequence of cytochrome P450 reductase gene AtCPR1 is shown in SEQ ID NO. 6.
6. The recombinant Saccharomyces cerevisiae producing hydroxy fatty acids constructed by the method of claim 5 (III).
7. A construction method of recombinant saccharomyces cerevisiae (IV) for producing hydroxy fatty acid is characterized by comprising the following steps: introducing a cytochrome P450 oxidase gene expression cassette and a cytochrome P450 reductase gene fusion protein gene CYP52M1-AtCPR1 expression cassette into a recombinant saccharomyces cerevisiae strain (I) by a homologous recombination method to obtain recombinant saccharomyces cerevisiae (IV) for producing hydroxy fatty acid, wherein the obtained hydroxy fatty acid types comprise omega-hydroxy-hexadecanoic acid, omega-1-hydroxy-hexadecanoic acid, omega-hydroxy-oleic acid and omega-1-hydroxy-oleic acid;
the nucleotide sequence of the cytochrome P450 oxidase and cytochrome P450 reductase fusion protein gene CYP52M1-AtCPR1 is shown in SEQ ID NO. 7.
8. The recombinant Saccharomyces cerevisiae producing hydroxy fatty acids (IV) constructed by the method of claim 7.
9. Use of the recombinant saccharomyces cerevisiae yeast of any of claims 2, 4, 6 and 8 for the fermentative production of hydroxy fatty acids.
CN202010060712.8A 2020-01-19 2020-01-19 Recombinant saccharomyces cerevisiae, construction method thereof and application of recombinant saccharomyces cerevisiae in production of hydroxy fatty acid Pending CN111118052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010060712.8A CN111118052A (en) 2020-01-19 2020-01-19 Recombinant saccharomyces cerevisiae, construction method thereof and application of recombinant saccharomyces cerevisiae in production of hydroxy fatty acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010060712.8A CN111118052A (en) 2020-01-19 2020-01-19 Recombinant saccharomyces cerevisiae, construction method thereof and application of recombinant saccharomyces cerevisiae in production of hydroxy fatty acid

Publications (1)

Publication Number Publication Date
CN111118052A true CN111118052A (en) 2020-05-08

Family

ID=70491073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010060712.8A Pending CN111118052A (en) 2020-01-19 2020-01-19 Recombinant saccharomyces cerevisiae, construction method thereof and application of recombinant saccharomyces cerevisiae in production of hydroxy fatty acid

Country Status (1)

Country Link
CN (1) CN111118052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214219A (en) * 2021-12-31 2022-03-22 北京化工大学 Genetic engineering bacterium produced by using formate-assisted free fatty acid
CN115011494A (en) * 2022-05-11 2022-09-06 中国科学院天津工业生物技术研究所 Construction and application of saccharomyces cerevisiae capable of producing fatty acid without producing ethanol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107746815A (en) * 2017-09-11 2018-03-02 天津大学 Produce recombinant Saccharomyces cerevisiae bacterium and its construction method of 13R manoyl oxides
CN108271383A (en) * 2015-04-02 2018-07-10 比奥派多利亚有限公司 Fungal cell and the method for production very long chain fatty acids derivative products
CN108949601A (en) * 2018-07-17 2018-12-07 天津大学 Utilize the recombinant Saccharomyces cerevisiae bacterium and construction method of xylose production dammarendiol and protopanoxadiol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108271383A (en) * 2015-04-02 2018-07-10 比奥派多利亚有限公司 Fungal cell and the method for production very long chain fatty acids derivative products
CN107746815A (en) * 2017-09-11 2018-03-02 天津大学 Produce recombinant Saccharomyces cerevisiae bacterium and its construction method of 13R manoyl oxides
CN108949601A (en) * 2018-07-17 2018-12-07 天津大学 Utilize the recombinant Saccharomyces cerevisiae bacterium and construction method of xylose production dammarendiol and protopanoxadiol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGJING LIU: "Biosynthesis of Long-Chain ω-Hydroxy Fatty Acids by Engineered Saccharomyces cerevisiae", J AGRIC FOOD CHEM, vol. 67, no. 16, pages 2 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214219A (en) * 2021-12-31 2022-03-22 北京化工大学 Genetic engineering bacterium produced by using formate-assisted free fatty acid
CN114214219B (en) * 2021-12-31 2023-12-15 北京化工大学 Genetically engineered bacterium produced by formic acid-assisted free fatty acid
CN115011494A (en) * 2022-05-11 2022-09-06 中国科学院天津工业生物技术研究所 Construction and application of saccharomyces cerevisiae capable of producing fatty acid without producing ethanol

Similar Documents

Publication Publication Date Title
CN108949601B (en) Recombinant saccharomyces cerevisiae for producing dammarenediol and protopanoxadiol by using xylose and construction method
CN111205993B (en) Recombinant yeast for producing ursolic acid and oleanolic acid as well as construction method and application thereof
CN111434773B (en) Recombinant yeast for high-yield sandalwood oil and construction method and application thereof
CN110484572A (en) A method of improving saccharomyces cerevisiae nerolidol yield
CN111118052A (en) Recombinant saccharomyces cerevisiae, construction method thereof and application of recombinant saccharomyces cerevisiae in production of hydroxy fatty acid
CN114621968A (en) Tetrahydropyrimidine biosynthesis gene cluster, mutant and method for preparing tetrahydropyrimidine
CN114369613A (en) Yeast strain for constructing high-yield CBGA synthesis by modifying galactose promoter and construction method and application thereof
CN114606147B (en) Method for simultaneously enhancing and inhibiting multiple key genes in saccharomyces cerevisiae 7-dehydrocholesterol synthesis
CN116987603A (en) Recombinant saccharomyces cerevisiae strain for high yield of cannabigerolic acid as well as construction method and application thereof
CN111235044A (en) Recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol, construction method and application
CN109136119B (en) Microorganisms and uses thereof
CN111690549A (en) Recombinant yarrowia lipolytica strain for producing protopanoxadiol by using xylose and construction method and application thereof
CN114717124B (en) Saccharomyces cerevisiae engineering strain for high-yield ergosterol, construction method and application
CN107223152B (en) Carbon monoxide dehydrogenase (CODH) active genetically engineered bacteria with change
CN108588108B (en) Preparation method and application of bacillus for efficiently metabolizing glycerol
CN110684795A (en) Construction method of monascus purpureus comp50904_ c4 gene overexpression strain
CN113249240B (en) Saccharomyces cerevisiae for high yield of hydroxytyrosol and construction method thereof
CN113493758B (en) Tyrosol-producing recombinant escherichia coli capable of shortening fermentation period and application thereof
CN113025506B (en) Recombinant filamentous fungus for producing ethanol and construction and application thereof
CN113684191A (en) Pear head mould steroid 11 beta-hydroxylase CYP5311B2 mutant construction and application thereof
CN111826372A (en) Engineering strain for producing butanol by using xylose and construction method and application thereof
CN114196641B (en) Steroid C14 alpha hydroxylase, expression vector, engineering bacteria and application thereof
CN111718948B (en) Gene and application thereof in production of mannich
CN113913448B (en) Method for improving yield of pyrroloquinoline quinone of methylotrophic bacteria and application
CN113061539B (en) Method for improving production capacity of aspergillus niger glucoamylase and recombinant aspergillus niger strain

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200508