CN111471240A - 一种聚丙烯与石墨烯复合导电功能材料及其制备方法 - Google Patents

一种聚丙烯与石墨烯复合导电功能材料及其制备方法 Download PDF

Info

Publication number
CN111471240A
CN111471240A CN201910060091.0A CN201910060091A CN111471240A CN 111471240 A CN111471240 A CN 111471240A CN 201910060091 A CN201910060091 A CN 201910060091A CN 111471240 A CN111471240 A CN 111471240A
Authority
CN
China
Prior art keywords
polypropylene
graphene
functional material
composite conductive
conductive functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910060091.0A
Other languages
English (en)
Inventor
赵勤宽
吴方鑫
吴方静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910060091.0A priority Critical patent/CN111471240A/zh
Publication of CN111471240A publication Critical patent/CN111471240A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种聚丙烯与石墨烯复合导电功能材料及其制备方法,一是对石墨烯进行表面处理,二是采用聚烯烃塑料再生剂对聚丙烯进行表面处理,它是利用化学反应和聚合原理,主要在塑料界面和本体发生协同反应,在聚丙烯分子链上接枝极性的功能基团同时发生扩链反应,在提高分子量的同时增加聚丙烯塑料的界面极性和内聚能,从而提高与石墨烯的亲和性,具有同步实现增强和增韧的作用,在生产工艺方面,首先做成石墨烯母粒,这样使用起来更方便,效果更好。本发明功能材料的表面电阻率能够降低到十万欧姆以下,同时保持了良好的物理机械性能,适用于汽车、新能源汽车、电子电器、家用电器、工业电器、石油化工等领域。

Description

一种聚丙烯与石墨烯复合导电功能材料及其制备方法
技术领域
本发明涉及高分子材料技术领域,具体为一种聚丙烯与石墨烯复合导电功能材料及其制备方法。
背景技术
聚丙烯是一种半结晶的热塑性塑料,密度为0.90g/cm3,是最轻的通用塑料,具有无毒、无味、密度小、优良抗吸湿性、抗多种有机溶剂和酸碱腐蚀等优点,广泛应用于汽车工业、家用电器、管材、机械零件制作等方面。缺点是耐低温冲击性差,较易老化,但可分别通过改性和添加抗氧剂予以克服。但是聚丙烯材料由于绝缘好,表面电阻率大于1014Ω,容易在表面积聚电荷,形成静电,静电累积后易伤人或者造成其他损失。因此,通过改性降低聚丙烯表面累积静电是扩大其应用范围的重要途径。
石墨烯是一种二维碳材料,是单层石墨烯、双层石墨烯和多层石墨烯的统称,于2004年问世,其发现者是英国曼彻斯特大学安德烈-海姆教授,2010 年获得诺贝尔物理学奖。石墨烯是新一代的透明导电材料,它几乎是完全透明的,厚度仅一个原子层。常温下其电子迁移率超过15000cm2/V·s,又比纳米碳管或硅晶体高,而体积电阻率只约1Ω·m,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯作为一种新兴的碳材料,由于具有较大的比表面积,高导电性和超高机械强度等特点,被认为是最理想的增强材料。将石墨烯与聚合物复合可以提高聚合物的力学性能、电学性能和热稳定性等,得到密度小、强度高、导电性能良好的新型材料。
石墨烯表面能较大,层与层之间具有较强的π-π共轭作用导致相互吸附,并且不能溶于水和一般有机溶剂中,因此很难与聚合物基体形成有效的相互作用,难以分散,这些问题极大的限制了石墨烯的应用。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种聚丙烯与石墨烯复合导电功能材料及其制备方法,能够在使用的过程中,聚丙烯分子链上接枝极性的功能基团同时发生扩链反应,在提高分子量的同时增加聚丙烯塑料的界面极性和内聚能,从而提高与纳米沐和粉的亲和性,具有同步实现增强和增韧的作用。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:一种聚丙烯与石墨烯复合导电功能材料及其制备方法,以重量份计包括:聚丙烯100份,石墨烯微片母粒0.5-5份,聚烯烃表面处理剂0.5-5份,分散剂0.5-10份,耐磨剂1-15份,增韧剂1-10份。
优选的,所述的聚丙烯为均聚聚丙烯和共聚聚丙烯,搭配比例1:4。
优选的,所述的石墨烯微片厚度为2-40nm。
优选的,所述聚烯烃表面处理剂为聚烯烃塑料再生剂。
优选的,所述的分散剂可以为白油、硅油、硅烷、铝酸脂、聚乙烯蜡、聚丙烯蜡等中的一种。
优选的,所述的耐磨剂为超细碳化硅,粒径1-3μm。
优选的,所述增韧剂为聚烯烃弹性体乙烯-丙烯-辛烯共聚物、苯乙烯-丁二烯共聚物、氢化的苯乙烯-丁二烯-苯乙烯嵌段共聚物中的一种或两种以上的混合物。
优选的,包括以下步骤:步骤一,石墨烯母粒制备:将均聚聚丙烯称量 40公斤倒入高速搅拌机里,接着加入聚烯烃表面处理剂,然后搅拌5-8分钟,物料放出备用,石墨烯表面处理:首先,先称取5公斤石墨烯微片,轻轻倒入捏合机中,其次,将硅烷偶联剂用无水乙醇进行稀释备用,稀释倍数为10 倍,即同无水乙醇之比为1:10,在慢速搅拌状态下,慢慢倒入捏合机中,大约搅拌2-3小时备用,石墨烯母粒制备:将石墨烯母粒制备和石墨烯表面处理完成后的聚丙烯和石墨烯微片倒入高速搅拌机中,让后加入配方规定的分散剂,搅拌10-15分钟.将混合好的物料加入到双转子密炼挤出机,加工温度控制在140℃-225℃进行挤出造粒,即得母粒,步骤二,聚丙烯与石墨烯复合导电功能材料制备:首先,按照配方比例称量各组分,依次倒入高速搅拌机中,搅拌5-8分钟,其次,将上述搅拌好的物料送进双螺杆挤出机挤出造粒,温度控制140-225℃,冷却、混合、检测、包装,即得聚丙烯与石墨烯复合导电功能材料产成品。
(三)有益效果
本发明提供了一种数据传输及交互系统,具备以下有益效果:
(1)、能够对石墨烯进行表面处理。
(2)、能够采用聚烯烃塑料,再生剂对聚丙烯进行表面处理,它是利用化学反应和聚合原理,主要在塑料界面和本体发生协同反应,在聚丙烯分子链上接枝极性的功能基团同时发生扩链反应,在提高分子量的同时增加聚丙烯塑料的界面极性和内聚能,从而提高与纳米沐和粉的亲和性,具有同步实现增强和增韧的作用。首先做成纳米增强母粒,这样使用起来更方便,填充增强效果更好。
(3)、能够采用超细碳化硅增加材料耐磨性和导电导热及综合性能。
(4)、本发明所述配方及工艺制得的聚丙烯与石墨烯复合导电功能材料技术性能指标可以达到如下要求:
(5)、
聚丙烯与石墨烯复合导电功能材料技术性能指标
Figure BDA0001951345780000041
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种技术方案:本发明通过以下技术方案予以实现:一种聚丙烯与石墨烯复合导电功能材料及其制备方法,以重量份计包括:聚丙烯100 份,石墨烯微片母粒0.5-5份,聚烯烃表面处理剂0.5-5份,分散剂0.5-10 份,耐磨剂1-15份,增韧剂1-10份,的聚丙烯为均聚聚丙烯和共聚聚丙烯,搭配比例1:4,的石墨烯微片厚度为2-40nm,聚烯烃表面处理剂为聚烯烃塑料再生剂,的分散剂可以为白油、硅油、硅烷、铝酸脂、聚乙烯蜡、聚丙烯蜡等中的一种,的耐磨剂为超细碳化硅,粒径1-3μm,增韧剂为聚烯烃弹性体乙烯-丙烯-辛烯共聚物、苯乙烯-丁二烯共聚物、氢化的苯乙烯-丁二烯-苯乙烯嵌段共聚物中的一种或两种以上的混合物,包括以下步骤:步骤一,石墨烯母粒制备:将均聚聚丙烯称量40公斤倒入高速搅拌机里,接着加入聚烯烃表面处理剂,然后搅拌5-8分钟,物料放出备用,石墨烯表面处理:首先,先称取5公斤石墨烯微片,轻轻倒入捏合机中,其次,将硅烷偶联剂用无水乙醇进行稀释备用,稀释倍数为10倍,即同无水乙醇之比为1:10,在慢速搅拌状态下,慢慢倒入捏合机中,大约搅拌2-3小时备用,石墨烯母粒制备:将石墨烯母粒制备和石墨烯表面处理完成后的聚丙烯和石墨烯微片倒入高速搅拌机中,让后加入配方规定的分散剂,搅拌10-15分钟.将混合好的物料加入到双转子密炼挤出机,加工温度控制在140℃-225℃进行挤出造粒,即得母粒,步骤二,聚丙烯与石墨烯复合导电功能材料制备:首先,按照配方比例称量各组分,依次倒入高速搅拌机中,搅拌5-8分钟,其次,将上述搅拌好的物料送进双螺杆挤出机挤出造粒,温度控制140-225℃,冷却、混合、检测、包装,即得聚丙烯与石墨烯复合导电功能材料产成品。
综上所述,该聚丙烯与石墨烯复合导电功能材料及其制备方法,在制作的过程中,首先:将均聚聚丙烯称量40公斤倒入高速搅拌机里,接着加入聚烯烃表面处理剂,然后搅拌5-8分钟,物料放出备用,同时,称取5公斤石墨烯微片,轻轻倒入捏合机中,其次,将硅烷偶联剂用无水乙醇进行稀释备用,稀释倍数为10倍,即同无水乙醇之比为1:10,在慢速搅拌状态下,慢慢倒入捏合机中,大约搅拌2-3小时备用,接着,将石墨烯母粒制备和石墨烯表面处理完成后的聚丙烯和石墨烯微片倒入高速搅拌机中,让后加入配方规定的分散剂,搅拌10-15分钟.将混合好的物料加入到双转子密炼挤出机,加工温度控制在140℃-225℃进行挤出造粒,得到母粒,最后按照配方比例称量各组分,依次倒入高速搅拌机中,搅拌5-8分钟,其次,将上述搅拌好的物料送进双螺杆挤出机挤出造粒,温度控制140-225℃,冷却、混合、检测、包装,即得聚丙烯与石墨烯复合导电功能材料产成品。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

1.一种聚丙烯与石墨烯复合导电功能材料,其特征在于:以重量份计包括:聚丙烯100份,石墨烯微片母粒0.5-5份,聚烯烃表面处理剂0.5-5份,分散剂0.5-10份,耐磨剂1-15份,增韧剂1-10份。
2.根据权利要求1所述的一种聚丙烯与石墨烯复合导电功能材料,其特征在于:所述的聚丙烯为均聚聚丙烯和共聚聚丙烯,搭配比例1:4。
3.根据权利要求1所述的一种聚丙烯与石墨烯复合导电功能材料,其特征在于:所述的石墨烯微片厚度为2-40nm。
4.根据权利要求1-3所述的一种聚丙烯与石墨烯复合导电功能材料,其特征在于:所述聚烯烃表面处理剂为聚烯烃塑料再生剂。
5.根据权利要求1所述的一种聚丙烯与石墨烯复合导电功能材料,其特征在于:所述的分散剂可以为白油、硅油、硅烷、铝酸脂、聚乙烯蜡、聚丙烯蜡等中的一种。
6.根据权利要求1所述的一种聚丙烯与石墨烯复合导电功能材料,其特征在于:所述的耐磨剂为超细碳化硅,粒径1-3μm。
7.根据权利要求1所述的一种聚丙烯与石墨烯复合导电功能材料,其特征在于:所述增韧剂为聚烯烃弹性体乙烯-丙烯-辛烯共聚物、苯乙烯-丁二烯共聚物、氢化的苯乙烯-丁二烯-苯乙烯嵌段共聚物中的一种或两种以上的混合物。
8.权利要求1至7任一项所述的聚丙烯与石墨烯复合导电功能材料制备方法,其特征在于:包括以下步骤:步骤一,石墨烯母粒制备:将权利要求2所述的均聚聚丙烯称量40公斤倒入高速搅拌机里,接着加入权利要求4所述的聚烯烃表面处理剂,然后搅拌5-8分钟,物料放出备用,石墨烯表面处理:首先,先称取5公斤石墨烯微片,轻轻倒入捏合机中,其次,将权利要求5所述的硅烷偶联剂用无水乙醇进行稀释备用,稀释倍数为10倍,即同无水乙醇之比为1:10,在慢速搅拌状态下,慢慢倒入捏合机中,大约搅拌2-3小时备用,石墨烯母粒制备:将石墨烯母粒制备和石墨烯表面处理完成后的聚丙烯和石墨烯微片倒入高速搅拌机中,让后加入配方规定的分散剂,搅拌10-15分钟.将混合好的物料加入到双转子密炼挤出机,加工温度控制在140℃-225℃进行挤出造粒,即得母粒,步骤二,聚丙烯与石墨烯复合导电功能材料制备:首先,按照权利要求1所述的配方比例称量各组分,依次倒入高速搅拌机中,搅拌5-8分钟,其次,将上述搅拌好的物料送进双螺杆挤出机挤出造粒,温度控制140-225℃,冷却、混合、检测、包装,即得聚丙烯与石墨烯复合导电功能材料产成品。
CN201910060091.0A 2019-01-23 2019-01-23 一种聚丙烯与石墨烯复合导电功能材料及其制备方法 Pending CN111471240A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910060091.0A CN111471240A (zh) 2019-01-23 2019-01-23 一种聚丙烯与石墨烯复合导电功能材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910060091.0A CN111471240A (zh) 2019-01-23 2019-01-23 一种聚丙烯与石墨烯复合导电功能材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111471240A true CN111471240A (zh) 2020-07-31

Family

ID=71743841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910060091.0A Pending CN111471240A (zh) 2019-01-23 2019-01-23 一种聚丙烯与石墨烯复合导电功能材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111471240A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112321854A (zh) * 2020-11-12 2021-02-05 高碑店市隆泰丰博石墨烯有限公司 一种采用弹性体为载体的石墨烯多功能母粒及其制备方法
CN115819000A (zh) * 2021-12-31 2023-03-21 南京诚赢集约建材科技有限公司 基于沥青再生剂与石墨烯混合分散中试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104530557A (zh) * 2014-11-26 2015-04-22 苏州新区佳合塑胶有限公司 一种导电pp材料及其制备方法
CN105273309A (zh) * 2015-10-26 2016-01-27 李修兵 一种抗静电阻燃型石墨烯基聚丙烯复合材料及其制备方法
CN105315538A (zh) * 2015-12-01 2016-02-10 厦门陆海环保股份有限公司 一种再生聚乙烯与石墨烯复合导电材料及其制备方法
CN106633407A (zh) * 2016-12-30 2017-05-10 华东理工大学 一种石墨烯微片抗静电聚丙烯的制备方法
CN107955270A (zh) * 2017-11-15 2018-04-24 宁夏易兴新材料发展有限公司 一种新型聚丙烯纳米复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104530557A (zh) * 2014-11-26 2015-04-22 苏州新区佳合塑胶有限公司 一种导电pp材料及其制备方法
CN105273309A (zh) * 2015-10-26 2016-01-27 李修兵 一种抗静电阻燃型石墨烯基聚丙烯复合材料及其制备方法
CN105315538A (zh) * 2015-12-01 2016-02-10 厦门陆海环保股份有限公司 一种再生聚乙烯与石墨烯复合导电材料及其制备方法
CN106633407A (zh) * 2016-12-30 2017-05-10 华东理工大学 一种石墨烯微片抗静电聚丙烯的制备方法
CN107955270A (zh) * 2017-11-15 2018-04-24 宁夏易兴新材料发展有限公司 一种新型聚丙烯纳米复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王文广主编: "《聚合物改性原理》", 31 March 2018, 北京:中国轻工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112321854A (zh) * 2020-11-12 2021-02-05 高碑店市隆泰丰博石墨烯有限公司 一种采用弹性体为载体的石墨烯多功能母粒及其制备方法
CN115819000A (zh) * 2021-12-31 2023-03-21 南京诚赢集约建材科技有限公司 基于沥青再生剂与石墨烯混合分散中试方法

Similar Documents

Publication Publication Date Title
Zha et al. A particular interfacial strategy in PVDF/OBC/MWCNT nanocomposites for high dielectric performance and electromagnetic interference shielding
Liu et al. Non-covalent modification of boron nitride nanoparticle-reinforced PEEK composite: Thermally conductive, interfacial, and mechanical properties
CN102585349B (zh) 一种抗静电材料、制备方法及其应用
Bhawal et al. Mechanically robust conductive carbon clusters confined ethylene methyl acrylate–based flexible composites for superior shielding effectiveness
Wu et al. Injection molded segregated carbon nanotube/polypropylene composite for efficient electromagnetic interference shielding
Chow et al. Polyamide blend-based nanocomposites: A review.
Al-Saleh Clay/carbon nanotube hybrid mixture to reduce the electrical percolation threshold of polymer nanocomposites
George et al. Acrylonitrile‐based polymer/graphene nanocomposites: a review
CN102585348A (zh) 一种增韧导电材料及其制备方法
CN111117199A (zh) 石墨烯增强聚碳酸酯导热复合材料及其制备方法
CN102924910B (zh) 一种高性能玻璃纤维增强聚酰胺导电复合材料的制备方法
Katheria et al. A journey of thermoplastic elastomer nanocomposites for electromagnetic shielding applications: from bench to transitional research
Li et al. Simultaneous enhancements in toughness and electrical conductivity of polypropylene/carbon nanotube nanocomposites by incorporation of electrically inert calcium carbonate nanoparticles
CN104371279A (zh) 含石墨烯的复合材料及其制备方法和应用
Shehzad et al. Flexible dielectric nanocomposites with ultrawide zero-temperature coefficient windows for electrical energy storage and conversion under extreme conditions
Guo et al. TPU/PLA nanocomposites with improved mechanical and shape memory properties fabricated via phase morphology control and incorporation of multi‐walled carbon nanotubes nanofillers
CN101067031A (zh) 纳米炭黑改性的导电塑料的制备方法
CN111471240A (zh) 一种聚丙烯与石墨烯复合导电功能材料及其制备方法
Fan et al. Thermal conductivity and mechanical properties of high density polyethylene composites filled with silicon carbide whiskers modified by cross-linked poly (vinyl alcohol)
He et al. Excellent thermally conducting modified graphite nanoplatelets and MWCNTs/poly (phenylene sulfone) composites for high-performance electromagnetic interference shielding effectiveness
Wei et al. Grafting of epoxidized natural rubber chains with BN platelets to obtain flexible and thermally conductive papers
Zhou et al. Enhanced in-plane thermal conductivity of PP composites with high orientation and rational layered distribution of BNNS
Wang et al. Design of rGO-BN hybrids for enhanced thermal management properties of polyurethane composites fabricated by 3D printing
Qian et al. Enhanced mechanical and dielectric properties of natural rubber using sustainable natural hybrid filler
Khan et al. Enhancement of mechanical and electrical properties for in-situ compatibilization of immiscible polypropylene/polystyrene blends

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200731

WD01 Invention patent application deemed withdrawn after publication