CN111470942A - 一种醇类化合物的合成方法 - Google Patents

一种醇类化合物的合成方法 Download PDF

Info

Publication number
CN111470942A
CN111470942A CN201910062886.5A CN201910062886A CN111470942A CN 111470942 A CN111470942 A CN 111470942A CN 201910062886 A CN201910062886 A CN 201910062886A CN 111470942 A CN111470942 A CN 111470942A
Authority
CN
China
Prior art keywords
alkaline earth
earth metal
carbon
nickel
nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910062886.5A
Other languages
English (en)
Inventor
谢婧新
宗明生
荣峻峰
吴耿煌
于鹏
林伟国
纪洪波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201910062886.5A priority Critical patent/CN111470942A/zh
Publication of CN111470942A publication Critical patent/CN111470942A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种醇类化合物的合成方法,包括:以含有碱土金属的碳包覆镍的纳米复合材料为催化剂,在氢气气氛下催化酮类化合物进行加氢还原反应;其中,所述纳米复合材料含具有壳层和内核的核壳结构,所述壳层为含有碱土金属和氧的石墨化碳层,所述内核为镍纳米颗粒。该方法采用含碱土金属的碳包覆镍的纳米复合材料作为催化剂,碳材料与镍纳米颗粒协同发挥作用,产生了良好的催化效果,壳层的碱土金属进一步协同提高材料的催化性能,用于酮类化合物加氢还原合成醇类化合物,具有优异的活性、选择性及安全性。

Description

一种醇类化合物的合成方法
技术领域
本发明属于催化领域,具体涉及一种醇类化合物的合成方法。
背景技术
醇类化合物是非常重要的化工中间体,在有机溶剂、精细化工、医药,农药,家用化妆品等行业有十分广泛的用途。例如,正丁醇是一种重要的化工原料,可以用来制备邻苯二甲酸丁酯,脂肪族二元酸酯,磷酸丁酯等增塑剂以及丁酸、丁胺、丙烯酸丁酯等化工原料,也用于溶剂、脱水剂、抗乳化剂以及油脂,香料,抗菌素,维生素等萃取剂,醇酸树脂涂料的添加剂,以及消泡剂、选矿剂等,具有广泛的用途和广阔的市场前景。
加氢反应在石油化工生产中具有广泛的应用,其中将酮类化合物通过催化加氢的方法得到相应的醇类化合物具有十分重要的意义。工业上大部分丙酮皆由异丙苯过氧化法获得,并与苯酚联产。由于苯酚的需求量增加,联产出大量丙酮,出现了丙酮的过剩,通过丙酮加氢制备异丙醇成为一条可行的路线。
丙酮加氢制备异丙醇可以使用镍基或者铜基催化剂,也可以使用负载型贵金属催化剂和镍基催化剂,如铂(Pt)、钯(Pd)和铑(Rh)等贵金属催化剂及镍(Ni)基非贵金属催化剂。贵金属催化剂具有催化活性高、反应条件温和等优点,在酮类化合物催化加氢生成相应的醇类化合物占有很重要的地位。虽然贵金属有这些优点,但是贵金属催化剂价格成本过高,对原料杂质要求苛刻。负载型镍催化剂在制备过程中易发生团聚,催化效率较低,容易发生副反应。
由上述可知,开发在空气中稳定并具有优异催化性能的加氢还原催化剂用于酮类化合物的加氢还原,是本领域亟待解决的问题。
需注意的是,前述背景技术部分公开的信息仅用于加强对本发明的背景理解,因此它可包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明提供一种醇类化合物的合成方法,该方法采用含碱土金属的碳包覆镍的纳米复合材料作为催化剂,其中纳米复合材料以含有碱土金属和氧的石墨化碳层包覆镍纳米颗粒形成核壳结构,碳材料与镍纳米颗粒协同发挥作用,产生了良好的催化效果,壳层的碱土金属进一步协同提高材料的催化性能,用于酮类化合物加氢还原合成醇类化合物,具有优异的活性、选择性及安全性。
为了实现上述目的,本发明采用如下技术方案:
本发明提供一种醇类化合物的合成方法,包括:
以含有碱土金属的碳包覆镍的纳米复合材料为催化剂,在氢气气氛下催化酮类化合物进行加氢还原反应;
其中,所述纳米复合材料含具有壳层和内核的核壳结构,所述壳层为含有碱土金属和氧的石墨化碳层,所述内核为镍纳米颗粒。
根据本发明的一个实施方式,所述酮类化合物为脂肪酮、脂环酮或芳基酮。
根据本发明的一个实施方式,所述酮类化合物选自丙酮或环己酮。
根据本发明的一个实施方式,其中所述催化剂占所述酮类化合物质量的1%~50%,优选5~30%。
根据本发明的一个实施方式,其中所述加氢还原反应温度一般为100℃~200℃。
根据本发明的一个实施方式,其中所述氢气的压力一般为3MPa~6MPa。
根据本发明的一个实施方式,其中所述催化剂与酮类化合物在溶剂中混合后进行加氢还原反应,所述溶剂选自醇类、醚类、烷烃类和水中的一种或多种。
根据本发明的一个实施方式,其中所述纳米复合材料为具有至少一个介孔分布峰的介孔材料。任选地,所述纳米复合材料为具有两个或两个以上介孔分布峰的介孔材料。任选地,所述纳米复合材料在2nm~7nm的孔径范围和8nm~20nm的孔径范围分别具有一个介孔分布峰。任选地,所述介孔材料中介孔体积占总孔体积的比例大于50%,优选大于80%,更优选大于95%。
根据本发明的一个实施方式,其中以原子百分含量计,所述碱土金属含量0.1at%~3at%,优选0.2at%~3at%;碳含量为80at%~95at%,优选84at%~92at%;镍含量为0.1at%~10at%,优选1at%~8at%;氧含量为1at%~20at%,优选为5at%~12at%。
根据本发明,所述纳米复合材料中,各组分的含量之和为100at%。
根据本发明的一个实施方式,所述石墨化碳层的厚度为0.3nm~6.0nm,优选为0.3nm~3nm。
根据本发明的一个实施方式,其中所述核壳结构的粒径为1nm~200nm,优选为3nm~100nm,更优选为4nm~50nm。
根据本发明的一个实施方式,其中所述碱土金属选自铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)、钡(Ba)和镭(Ra)的一种或多种。
本发明的有益效果在于:
本发明提供的醇类化合物的合成方法,以含有碱土金属的碳包覆镍的纳米复合材料作为催化剂对酮类化合物进行加氢还原,由于催化剂材料非常稳定,不自燃,抗氧化,耐酸腐蚀,危险性低,适合保存与运输,从而保证了醇类化合物合成过程的安全性。
本发明的含有碱土金属的碳包覆镍的纳米复合材料在催化还原酮类化合物为醇类化合物的反应中表现了良好的重复性、高活性及高选择性,包覆在石墨化碳层里的镍具有穿透效应,进而影响负载在石墨化碳层表面的碱土金属的电子状态,而发挥协同作用,可使本发明的纳米复合材料具有较佳的催化性能;此外,由于该纳米复合材料具有较强的磁性,还可方便利用其磁性分离催化剂或用于磁稳定床等工艺。
附图说明
图1示出制备例1所制备的含碱土金属的碳包覆镍的纳米复合材料具有磁性的照片示意图;
图2是制备例1所制备的含碱土金属的碳包覆镍的纳米复合材料的TEM图;
图3是制备例1所制备的含碱土金属的碳包覆镍的纳米复合材料的XRD图;
图4a和图4b分别示出制备例1所制备的含碱土金属的碳包覆镍的纳米复合材料的N2吸附-脱附等温线及BJH孔径分布曲线;
图5是制备例2所制备的含碱土金属的碳包覆镍的纳米复合材料的TEM图;
图6是制备例2所制备的含碱土金属的碳包覆镍的纳米复合材料的XRD图;
图7是制备例2所制备的含碱土金属的碳包覆镍的纳米复合材料的BJH孔径分布曲线;
图8是制备例3所制备的含碱土金属的碳包覆镍的纳米复合材料的TEM图;
图9是制备例3所制备的含碱土金属的碳包覆镍的纳米复合材料的XRD图;
图10是制备例3所制备的含碱土金属的碳包覆镍的纳米复合材料的BJH孔径分布曲线。
具体实施方式
以下结合附图通过具体的实施例对本发明作出进一步的详细描述,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,但不以任何方式限制本发明。
本发明中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
本发明所公开的所有特征可以任意组合,这些组合应被理解为本发明所公开或记载的内容,除非本领域技术人员认为该组合明显不合理。本说明书所公开的数值点,不仅包括实施例中具体公开的数值点,还包括说明书中各数值范围的端点,这些数值点所任意组合的范围都应被视为本发明已公开或记载的范围。
在此未直接定义的任何术语应当被理解为具有与它们在本发明技术领域中通常所理解的相关联的含义。如贯穿本说明书使用的下面术语除非另外说明,应当理解为具有下面含义。
术语
术语“酮类化合物”是指分子中含有至少一个羰基的一类化合物。本发明所述的“酮类化合物”包括一元酮和多元酮。
术语“石墨化碳层”是指在高分辨透射电镜下可明显观察到层状结构的碳结构,而非无定型结构,且层间距约为0.34nm。该石墨化碳层包覆镍纳米颗粒后形成的复合材料呈球形或类球形。
术语“介孔”定义为孔径在2~50nm范围的孔。孔径小于2nm的孔定义为微孔,大于50nm的孔定义为大孔。
术语“介孔材料”定义为包含介孔孔道结构的多孔材料。
术语“含有碱土金属和氧的石墨化碳层”中的“碱土金属”和“氧”是指碱土金属元素和氧元素,其中所述纳米复合材料的“碱土金属含量”是指碱土金属元素的含量,“氧含量”是指氧元素的含量,具体是指,在碳包覆纳米复合材料制备过程中,形成石墨化碳层中含有以各种形式存在的碱土金属元素和氧元素,所述“碱土金属含量”为所有形式的碱土金属元素的总含量,所述“氧含量”为所有形式的氧元素的总含量。所述“碱土金属含量”和“氧含量”采用XPS方法测定。
术语“介孔分布峰”是指根据Barrett-Joyner-Halenda(BJH)方法对脱附曲线进行计算得到的孔分布曲线上的介孔分布峰。
术语“TOF”在本文中定义为单位时间内单个活性金属原子转化的反应物的量,TOF值衡量的是一个催化剂催化反应的速率,表示的是催化剂的本征活性。
试剂、仪器与测试
如无特殊说明,本发明所采用试剂均为分析纯,所用试剂均为市售可得。
本发明所采用XRD衍射仪的型号为XRD-6000型X射线粉末衍射仪(日本岛津),XRD测试条件为:Cu靶,Kα射线(波长λ=0.154nm),管电压为40kV,管电流为200mA,扫描速度为10°(2θ)/min。
本发明所采用高分辨透射电镜(HRTEM)的型号为JEM-2100(HRTEM)(日本电子株式会社),高分辨透射电镜测试条件为:加速电压为200kV
本发明所采用X射线光电子能谱分析仪(XPS)为VG Scientifc公司生产配备有Avantage V5.926软件的ESCALab220i-XL型射线电子能谱仪,X射线光电子能谱分析测试条件为:激发源为单色化A1KαX射线,功率为330W,分析测试时基础真空为3×10-9mbar。另外,电子结合能用C1s峰(284.6eV)校正,后期分峰处理软件为XPSPEAK。
BET测试方法:本发明中,样品的孔结构性质由Quantachrome AS-6B型分析仪测定,催化剂的比表面积和孔体积由Brunauer-Emmett-Taller(BET)方法得到,孔分布曲线根据Barrett-Joyner-Halenda(BJH)方法对脱附曲线进行计算得到。
本发明中,金属纳米粒子的平均粒径由XRD图分峰后,由谢乐公式:D=kγ/(B cosθ)计算得到。其中k为Scherrer常数,k=0.89;B为半高宽;θ为衍射角,单位弧度;γ为x射线波长,0.154054nm。
本发明提供一种醇类化合物的合成方法,包括:以含有碱土金属的碳包覆镍的纳米复合材料为催化剂,在氢气气氛下催化酮类化合物进行加氢还原反应;化学反应方程式例示如下:
Figure BDA0001954729320000061
其中,所述纳米复合材料含具有壳层和内核的核壳结构,所述壳层为含有碱土金属和氧的石墨化碳层,所述内核为镍纳米颗粒。
在一些实施例中,所述酮类化合物可以为脂肪酮、芳基酮或脂环酮,即R1和R2可为烷基、环烷基、芳基且R1和R2可相同或不同,其中,脂肪酮是指分子中碳原子连接成链状的一种酮,呈开链状,脂环酮是指分子中碳原子连接成闭合的碳环,芳香酮的羰基直接连在芳香环上。例如,所述脂肪酮包括但不限于丙酮,所述脂环酮包括但不限于环己酮,在一些实施例中,所述酮类化合物优选为丙酮、环己酮。
在一些实施例中,其中所述催化剂占所述酮类化合物质量的1%~50%,优选5%~30%。
在一些实施例中,其中所述加氢还原反应温度一般为100℃~200℃。
在一些实施例中,其中所述氢气的压力一般为3MPa~6MPa。
在一些实施例中,其中所述催化剂与酮类化合物在溶剂中混合后进行加氢还原反应,所述溶剂选自醇类、醚类、烷烃类和水中的一种或多种,例如乙醇、四氢呋喃、环己烷等。
根据本发明的一个实施方式,本发明的纳米复合材料,是一种“含有碱土金属和氧的石墨化碳层”、“被石墨化碳层严密包覆(不与外界接触)的镍纳米颗粒”和“可与外界接触、被限域的镍纳米颗粒”构成的复合材料。该纳米复合材料,其含有氧的石墨化碳层表面具有丰富的缺陷位,碳材料本身就具有催化活性,包覆在石墨化碳层里的镍具有穿透效应,进而影响负载在石墨化碳层表面的碱土金属的电子状态,而发挥协同作用,可使本发明的纳米复合材料具有较佳的催化性能。
在一些实施例中,其中所述纳米复合材料为具有至少一个介孔分布峰的介孔材料。即指,该纳米复合材料在根据Barrett-Joyner-Halenda(BJH)方法对脱附曲线进行计算得到的孔分布曲线上,至少具有一个介孔分布峰。本领域技术人员公知,介孔材料一般具有大的比表面积和比较规则的孔道结构,使其能够在大分子的分离、吸附、催化反应中发挥更好的作用,并且可能成为限域催化的微反应器。本发明的纳米复合材料具有丰富的介孔结构,使该纳米复合材料的传质效率更高,从而具有更优异的催化性能。
根据本发明的纳米复合材料,在一些实施例中,单批次制造的复合材料,在介孔范围内有两个分布峰;如将多批次制造的复合材料混合,则在介孔范围内可以有更多的分布峰。当纳米复合材料具有不同孔径范围的多级介孔结构时,可以使其表现出更独特的性能,且多级介孔结构可适用的应用范围更广。
根据本发明的纳米复合材料,在一些实施例中,介孔结构在2nm~5nm和6nm~15nm的介孔范围分别具有一个介孔分布峰。
根据本发明的纳米复合材料,在一些实施例中,介孔结构在2nm~7nm和8nm~20nm的介孔范围分别具有一个介孔分布峰。
根据本发明的纳米复合材料,在一些实施例中,所述复合材料中,介孔体积占总孔体积的比例大于50%,优选大于80%。在一些实施例中,介孔体积占总孔体积的比例大于90%,甚至100%。
根据本发明的纳米复合材料,在一些实施例中,其介孔体积可以为0.05cm3/g~1.25cm3/g,也可以为0.10cm3/g~0.30cm3/g。
根据本发明的纳米复合材料,在一些实施例中,其比表面积一般大于140m2/g,可以大于200m2/g。
根据本发明的纳米复合材料,其在空气中不自燃,可以在空气中储存。
根据本发明的纳米复合材料,在一些实施例中,所述复合材料的碳层掺杂氧元素,不掺杂氮元素。
根据本发明的纳米复合材料,在一些实施例中,所述复合材料的碳层只掺杂氧元素,不掺杂氢、氧以外的其他元素。
在一些实施例中,其中以原子百分含量计,经XPS测量,所述碱土金属含量0.1at%~3at%,优选0.2at%~3at%;碳含量为80at%~95at%,优选84at%~92at%;镍含量为0.1at%~10at%,优选1at%~8at%;氧含量为1at%~20at%,优选为5at%~12at%。
根据本发明,所述纳米复合材料中,各组分的含量之和为100at%。
根据本发明的纳米复合材料,在石墨化碳层中掺杂有氧。氧含量可以通过在制造过程中额外引入含氧化合物,比如多元醇来调节。通过调节所述纳米复合材料中的氧含量,可以调节石墨化碳层的催化性能,使其适用于催化不同的反应。在一些实施例中,以质量百分比计,所述纳米复合材料中,氧含量小于15.0%,优选为5%~12%。
根据本发明的一个实施方式,所述石墨化碳层的厚度为0.3nm~6.0nm,优选为0.3nm~3nm。
根据本发明的一个实施方式,其中所述核壳结构的粒径为1nm~200nm,优选为3nm~100nm,更优选为4nm~50nm。
在一些实施例中,其中所述碱土金属选自铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)、钡(Ba)和镭(Ra)的一种或多种。
本发明还提供一种上述纳米复合材料的制备方法,包括:
将镍盐与多元有机羧酸置于溶剂中混合形成均相溶液;
除去所述均相溶液中的溶剂,得到前驱体;
所述前驱体在惰性气氛或还原性气氛下进行一次热解;
将所述一次热解后的产物与含有所述碱土金属的溶液接触,然后进行干燥处理;其中,所述接触的方式包括将所述一次热解后的产物浸渍于所述碱土金属溶液中,或将所述一次热解后的产物置于碱土金属溶液中搅拌。浸渍或搅拌的时间不宜过长也不宜过短,优选为10min~300min之间,温度优选为0℃~100℃,优选在搅拌的情况下接触反应。根据本发明,一次热解后的产物与含碱土金属的溶液接触后可以过滤,也可以不过滤,然后将得到的产物干燥;
将所述干燥处理后的产物置于惰性气氛下进行二次热解,得所述含碱土金属的碳包覆镍的纳米复合材料。
具体地,所述前驱体是一种水溶性混合物,其是指将镍盐、多元有机羧酸在水和/或乙醇等溶剂中溶解成均相溶液,然后直接除去溶剂得到含镍的前驱体。除去溶剂的方法可采用蒸发,蒸发溶剂的温度和工艺可以采用任意可行的现有技术,例如,在80℃~120℃下喷雾干燥,或在烘箱中干燥。
在一些实施例中,其中所述镍盐选自镍的有机酸盐、碳酸盐和碱式碳酸盐中的一种或多种,所述镍的有机酸盐优选为不含杂原子的镍的有机羧酸盐,更优选为不含杂原子的所述镍的醋酸盐,其中所述杂原子指所述镍以外的金属原子。
在一些实施例中,其中所述多元有机羧酸选自柠檬酸、顺丁烯二酸、均苯三甲酸、对苯二甲酸、苹果酸、乙二胺四乙酸(EDTA)和吡啶二羧酸中的一种或多种。其中所述镍盐与多元有机羧酸的质量比为1:0.1~10,优选为1:0.5~5,更优选为1:0.8~3。
在一些实施例中,还包括将镍盐、多元有机羧酸及除前述两种外的其它有机化合物置于水、乙醇等溶剂中混合形成均相溶液,然后除去溶剂得到含镍的水溶性混合物。所述的其它有机化合物包括但不限于有机多元醇。在一些实施例中,镍盐、多元有机羧酸和其它有机化合物的质量比为1:0.5~10:0~10,优选1:1~3:0~3。
在一些实施例中,其中所述一次热解包括:在惰性气氛或还原性气氛下,对所述前驱体加热升温至恒温段,并在所述恒温段保持恒温;
其中,所述加热升温的速率为0.5℃/min~30℃/min,优选为1℃/min~10℃/min;所述恒温段温度为400℃~800℃,优选为500℃~800℃;所述恒温的时间为20min~600min,优选为30min~300min;所述惰性气氛为氮气或氩气,所述还原性气氛为惰性气体与氢气的混合气体,例如在惰性气氛中掺有少量氢气。
在一些实施例中,所述碱土金属溶液为含有碱土金属的盐和/或碱的溶液,例如,氯化镁(MgCl2)溶液、硝酸镁(Mg(NO3)2)溶液、氯化钙(CaCl2)溶液、硝酸钙(Ca(NO3)2)溶液、氯化钡(BaCl2)溶液等。所述碱土金属的盐和/或碱与所述一次热解后的产物的质量比为1:1~100,优选为1:1.5~50,更进一步优选为1:1.5~20。当含碱土金属的盐或碱过多时,会影响最终形成的纳米复合材料的催化性能,使活性降低。
在一些实施例中,其中所述二次热解包括:在惰性气氛下,对所述干燥后的产物加热升温至恒温段,并在所述恒温段保持恒温;
其中,所述加热升温的速率为0.5℃/min~10℃/min,优选为2.5℃/min~10℃/min;所述恒温段温度为80℃~800℃,优选为300℃~600℃;所述恒温的时间为20min~600min;所述惰性气氛为氮气或氩气。
本发明通过上述方法制备碳包覆镍纳米复合材料,而没有采用以金属-有机骨架化合物(MOF)为前驱体热解的方法,该方法需要在高温、高压下于溶剂中制得具有周期性结构的晶态固体材料(即MOF),通常制备MOFs的条件比较严格,所需配体价格昂贵,并且很难进行大量生产;此外,该方法制备的复合材料中对金属粒子的包覆不严密,与本发明的纳米复合材料结构上有显著不同。纳米复合材料中核壳结构的壳层含有的碱土金属,可与内核镍纳米颗粒产生协同作用,使催化性能更优异。本发明制备纳米复合材料的方法,方便在制备过程中调节石墨化碳层中的氧含量,从而方便调节纳米复合材料的电子特性,以适用于催化不同反应。
以下结合附图通过具体的实施例对本发明作出进一步的详细描述,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,但不以任何方式限制本发明。
制备例1
(1)称取10g醋酸镍、10g柠檬酸加到含有30mL去离子水的烧杯中,在70℃下搅拌得到均相溶液,并继续加热蒸干,得到一固体前驱体。
(2)将步骤(1)得到的固体前驱体置于瓷舟内,然后将瓷舟置于管式炉的恒温区,通入流量为100mL/min的氮气,并以5℃/min的速率升温至650℃,恒温2h后停止加热,并在氮气气氛下冷却至室温,得到碳包覆镍材料。
(3)称取2g步骤(2)得到的材料,加入4ml含有0.1528g硝酸镁的水溶液,于室温下浸渍24h,然后于120℃下对产物进行干燥。
(4)将步骤(3)得到的干燥后的材料置于瓷舟内,然后将瓷舟置于管式炉的恒温区,通入流量为50mL/min的氮气,并以2.5℃/min的速率升温至350℃,恒温3h后停止加热,并在氮气气氛下冷却至室温,得到含镁的碳包覆镍的纳米复合材料。
材料的表征:
经X射线光电子能谱分析(XPS)测定,该纳米复合材料中所含元素的原子百分含量分别为:碳含量为84.25at%,镍含量为5.63at%,氧含量为9.21at%,镁含量为0.91at%。
如图1所示,将该纳米复合材料置于水中成悬浮液,在容器外侧放置一块磁铁,一段时间后该纳米复合材料均被吸引到磁铁一侧,可见其具有磁性。该纳米复合材料的TEM图。如图2所示,可看出,在镍纳米颗粒的外层包裹着石墨化碳层,形成完整的核壳结构。该纳米复合材料的X射线衍射图如图3所示,在该材料的XRD图中显示石墨碳的衍射峰(2θ角为25.9°)和面心立方结构(fcc)Ni的衍射峰(2θ角为44.5°、51.7°和76.4°)。由谢乐公式计算出该碳包覆镍纳米粒子的平均粒径为12.3nm。
BET测试表明,该纳米复合材料的比表面积为152m2/g,孔体积为0.32cm3/g,其中>2nm的介孔体积为0.32cm3/g,占总孔体积的100%。图4a为该纳米复合材料的N2吸附-脱附等温线,图4b为该纳米复合材料的BJH孔径分布曲线,可以看出,所述复合材料在3.8nm和13.2nm处存在两个介孔分布峰。
制备例2
(1)称取10g醋酸镍,20g柠檬酸加到含有50mL去离子水的烧杯中,在80℃下搅拌得到均相溶液,并继续加热蒸干,得到一固体前驱体。
(2)将步骤(1)得到的固体置于瓷舟内,然后将瓷舟置于管式炉的恒温区,通入流量为150mL/min的氮气,并以5℃/min的速率升温至600℃,恒温2h后停止加热,并在氮气气氛下冷却至室温,得到碳包覆镍材料。
(3)称取2g步骤(2)得到的碳包覆镍材料,加入4mL含有0.8589g的硝酸镁水溶液,于室温下浸渍24h,然后于120℃对产物进行干燥。
(4)将步骤(3)得到的干燥后的材料置于瓷舟内,然后将瓷舟置于管式炉的恒温区,通入流量为70mL/min的氮气,并以10℃/min的速率升温至500℃,恒温2h后停止加热,并在氮气气氛下冷却至室温,得到含镁的碳包覆镍的纳米复合材料。
材料的表征:
经X射线光电子能谱分析(XPS)测定,该纳米复合材料中所含元素的原子百分含量分别为:碳含量为84.47at%,镍含量为1.68at%,氧含量为12.30at%,镁含量为1.55at%。
从该材料的TEM图(图5)可看出:在镍纳米颗粒的外层包裹着石墨化碳层,形成完整的核壳结构。图6示出该纳米复合材料的X射线衍射图,在该材料的中的XRD图中显示存在对应于碳的衍射峰(2θ角为25.6°)和fcc Ni的衍射峰(2θ角为44.4°、51.8°和76.3°),由谢乐公式计算出该碳包覆镍纳米粒子的平均粒径为7.8nm。
BET测试表明,该材料的比表面积为143m2/g,孔体积为0.33cm3/g,其中>2nm的孔体积为0.33cm3/g,占总孔体积的100%。图7为该纳米复合材料的BJH孔径分布曲线,可以看出,所述复合材料在3.73nm和11.68nm处存在两个介孔分布峰。
制备例3
(1)称取10g醋酸镍、10g对苯二甲酸加入30mL去离子水中,在70℃下搅拌得到均相溶液,并继续加热蒸干后得到固体前驱体。
(2)将该固体前驱体置于瓷舟内,然后将瓷舟置于管式炉的恒温区,通入氮气,流量100mL/min,并以5℃/min的速率升温至650℃,恒温2h后停止加热,在氮气气氛下冷却至室温,得到含有碳包覆镍材料。
(3)称取2g步骤(2)得到的碳包覆镍材料,加入4mL含有0.32g硝酸镁水溶液,于室温下浸渍24h,然后于120℃对产物进行干燥。
(4)将步骤(3)得到的干燥后的材料置于瓷舟内,然后将瓷舟置于管式炉的恒温区,通入流量为100mL/min的氮气,并以5℃/min的速率升温至400℃,恒温1h后停止加热,并在氮气气氛下冷却至室温,得到含镁的碳包覆镍的纳米复合材料。
材料的表征:
经X射线光电子能谱分析(XPS)测定,该纳米复合材料中所含元素的原子百分含量分别为:碳含量为88.78at%;镍含量为4.56at%,氧含量为6.13at%,镁含量为0.53at%。
图8该纳米复合材料的TEM图,可看出:其含有碳包覆镍的核壳结构,以石墨化碳层为壳,纳米金属镍为核。图9为该纳米复合材料的XRD图,其显示存在对应于碳的衍射峰(2θ角为25.9°)和fcc Ni的衍射峰(2θ角为44.5°、51.7°和76.4°)。由谢乐公式计算出该碳包覆镍纳米粒子的平均粒径为8.1nm。
BET测试表明,该材料的比表面积为172m2/g,孔体积为0.286cm3/g,其中>2nm的孔体积为0.279cm3/g,占总孔体积的97.6%。图10为该纳米复合材料的BJH孔径分布曲线,可以看出,该材料在4.04nm和19.19nm处存在两个介孔分布峰。
对比制备例
(1)称取10g醋酸镍、10g柠檬酸加到含有30mL去离子水的烧杯中,在70℃下搅拌得到均相溶液,并继续加热蒸干,得到一固体前驱体。
(2)将步骤(1)得到的固体置于瓷舟内,然后将瓷舟置于管式炉的恒温区,通入流量为100mL/min的氮气,并以5℃/min的速率升温至650℃,恒温2h后停止加热,并在氮气气氛下冷却至室温,得到碳包覆镍的纳米复合材料。
材料的表征:
经X射线光电子能谱分析(XPS)测定,该纳米复合材料中所含元素的原子百分含量分别为:碳含量为88.26at%,镍含量为5.4at%,氧含量为6.36at%。
该纳米复合材料存在对应于石墨碳的衍射峰(2θ角为26°)和面心立方结构(fcc)Ni的衍射峰(2θ角为44.5°、51.7°和76.4°)。由谢乐公式计算出该碳包覆镍纳米粒子的平均粒径为4.7nm。BET测试表明,该复合材料的比表面积为146m2/g,孔体积为0.37cm3/g,其中>2nm的介孔体积为0.365cm3/g,占总孔体积的98.6%。
实施例1
将制备例1所得复合材料作为催化剂用于酮类化合物加氢制备目的产物醇类化合物的反应,具体的实验步骤为:
将0.1g纳米复合材料、1.96g丙酮,100mL环己烷加入反应釜中,通H2置换反应釜3次后,通H2使反应釜内压力为6MPa,搅拌升温,升温至预定反应温度100℃,反应预定时间12小时后停止加热,降至室温,排压,开反应釜取产物丙醇进行色谱分析。通过以下公式计算反应物转化率及目的产物选择性:
转化率=已反应的反应物质量/反应物加入量×100%
选择性=目的产物质量/反应生成物质量×100%
经分析后,得到丙酮转化率为100%,丙醇选择性为98.0%。
反应进行300s时,取样进行色谱分析,计算反应物转化率,通过公式TOF=(已反应的反应物物质的量)/(催化剂活性金属物质的量*300s)得到该催化剂TOF为7.96×10-3s-1
实施例2
将制备例1制得的纳米复合材料作为催化剂用于酮类化合物加氢还原反应,具体的实验步骤为:
将0.1g纳米复合材料、0.34g丙酮、30mL环己烷加入反应釜中,通入H2置换反应釜3次后,再次通入H2使反应釜内压力为3MPa,搅拌升温,升温至预定反应温度150℃,持续反应8小时后停止加热,降至室温后排压,打开反应釜取出产物丙醇进行色谱分析。通过实施例1所示公式分别计算反应物转化率、产物选择性和TOF,得到丙酮转化率为99.2%,丙醇选择性为99.4%,TOF为8.32×10-3s-1
实施例3
将制备例1制得的纳米复合材料作为催化剂用于酮类化合物加氢还原反应,具体的实验步骤为:
将0.1g纳米复合材料、0.52g丙酮、50mL环己烷加入反应釜中,通入H2置换反应釜3次后,再次通入H2使反应釜内压力为3MPa,搅拌升温,升温至预定反应温度200℃,持续反应2小时后停止加热,降至室温后排压,打开反应釜取出产物丙醇进行色谱分析。通过实施例1所示公式分别计算反应物转化率、产物选择性和TOF,得到丙酮转化率为98.4%,丙醇选择性为99.2%,TOF为8.77×10-3s-1
实施例4
将制备例1制得的纳米复合材料作为催化剂用于酮类化合物加氢还原反应,具体的实验步骤为:
将0.1g纳米复合材料、0.49g丙酮、50mL水加入反应釜中,通入H2置换反应釜3次后,再次通入H2使反应釜内压力为4MPa,搅拌升温,升温至预定反应温度150℃,持续反应6小时后停止加热,降至室温后排压,打开反应釜取出产物丙醇进行色谱分析。通过实施例1所示公式分别计算反应物转化率、产物选择性和TOF,得到丙酮转化率为97.1%,丙醇选择性为98.8%,TOF为9.04×10-3s-1
实施例5
将制备例1制得的纳米复合材料作为催化剂用于酮类化合物加氢还原反应,具体的实验步骤为:
将0.1g纳米复合材料、0.34g环己酮、30mL环己烷加入反应釜中,通入H2置换反应釜3次后,再次通入H2使反应釜内压力为3MPa,搅拌升温,升温至预定反应温度200℃,持续反应4小时后停止加热,降至室温后排压,打开反应釜取出产物环己醇进行色谱分析。通过实施例1所示公式分别计算反应物转化率、产物选择性和TOF,得到环己酮转化率为100%,环己醇选择性为99.2%,TOF为7.31×10-3s-1
实施例6
将制备例2制得的纳米复合材料作为催化剂用于酮类化合物加氢还原反应,具体的实验步骤为:
将0.1g纳米复合材料、0.34g丙酮、30mL环己烷加入反应釜中,通入H2置换反应釜3次后,再次通入H2使反应釜内压力为3MPa,搅拌升温,升温至预定反应温度150℃,持续反应8小时后停止加热,降至室温后排压,打开反应釜取出产物丙醇进行色谱分析。通过实施例1所示公式分别计算反应物转化率、产物选择性和TOF,得到丙酮转化率为100%,丙醇选择性为99.5%,TOF为9.01×10-3s-1
实施例7
将制备例3制得的纳米复合材料作为催化剂用于酮类化合物加氢还原反应,具体的实验步骤为:
将0.1g纳米复合材料、0.34g丙酮、30mL环己烷加入反应釜中,通入H2置换反应釜3次后,再次通入H2使反应釜内压力为3MPa,搅拌升温,升温至预定反应温度150℃,持续反应8小时后停止加热,降至室温后排压,打开反应釜取出产物丙醇进行色谱分析。通过实施例1所示公式分别计算反应物转化率、产物选择性和TOF,得到丙酮转化率为100%,丙醇选择性为99.3%,TOF为8.42×10-3s-1
对比例
将对比制备例制得的纳米复合材料作为催化剂用于酮类化合物加氢还原反应,具体的实验步骤为:
将0.1g纳米复合材料、1.96g丙酮、100mL环己烷加入反应釜中,通入H2置换反应釜3次后,再次通入H2使反应釜内压力为6MPa,搅拌升温,升温至预定反应温度100℃,持续反应12小时后停止加热,降至室温后排压,打开反应釜取出产物丙醇进行色谱分析。通过实施例1所示公式分别计算反应物转化率、产物选择性和TOF,得到丙酮转化率为100%,丙醇选择性为97.3%,TOF为5.11×10-3s-1
可见,由上述实施例及对比例可知,本发明的纳米复合材料作为催化剂催化酮类化合物的催化加氢反应具有很好的催化效果,且相较于不含碱土金属的催化剂,含碱土金属的碳包覆镍的纳米复合材料不仅使催化反应具有高的转化率和产物选择性,同时兼具了更高的催化反应速率,催化性能更佳。
本领域技术人员应当注意的是,本发明所描述的实施方式仅仅是示范性的,可在本发明的范围内作出各种其他替换、改变和改进。因而,本发明不限于上述实施方式,而仅由权利要求限定。

Claims (12)

1.一种醇类化合物的合成方法,包括:
以含有碱土金属的碳包覆镍的纳米复合材料为催化剂,在氢气气氛下催化酮类化合物进行加氢还原反应;
其中,所述纳米复合材料含具有壳层和内核的核壳结构,所述壳层为含有碱土金属和氧的石墨化碳层,所述内核为镍纳米颗粒。
2.根据权利要求1所述的合成方法,所述酮类化合物为脂肪酮、脂环酮或芳基酮。
3.根据权利要求2所述的合成方法,所述酮类化合物选自丙酮或环己酮。
4.根据权利要求1所述的合成方法,其中所述催化剂占所述酮类化合物质量的1%~50%,优选5%~30%。
5.根据权利要求1所述的合成方法,其中所述加氢还原反应温度为100℃~200℃。
6.根据权利要求1所述的合成方法,其中所述氢气的压力为3MPa~6MPa。
7.根据权利要求1所述的合成方法,其中催化剂与酮类化合物在溶剂中混合后进行加氢还原反应,所述溶剂选自醇类、醚类、烷烃类和水中的一种或多种。
8.根据权利要求1~7中任一项所述的合成方法,其中所述纳米复合材料为具有至少一个介孔分布峰的介孔材料。
9.根据权利要求8所述的合成方法,其中所述纳米复合材料为具有两个或两个以上介孔分布峰的介孔材料。
10.根据权利要求8所述的合成方法,其中所述介孔材料中介孔体积占总孔体积的比例大于50%,优选大于80%。
11.根据权利要求1所述的合成方法,其中以原子百分含量计,所述碱土金属含量0.1at%~3at%,碳含量为80at%~95at%,镍含量为0.1at%~10at%,氧含量为1at%~20at%。
12.根据权利要求1~11中任一项所述的合成方法,所述碱土金属选自铍、镁、钙、锶、钡和镭的一种或多种。
CN201910062886.5A 2019-01-23 2019-01-23 一种醇类化合物的合成方法 Pending CN111470942A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910062886.5A CN111470942A (zh) 2019-01-23 2019-01-23 一种醇类化合物的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910062886.5A CN111470942A (zh) 2019-01-23 2019-01-23 一种醇类化合物的合成方法

Publications (1)

Publication Number Publication Date
CN111470942A true CN111470942A (zh) 2020-07-31

Family

ID=71743851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910062886.5A Pending CN111470942A (zh) 2019-01-23 2019-01-23 一种醇类化合物的合成方法

Country Status (1)

Country Link
CN (1) CN111470942A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1346703A (zh) * 2001-09-11 2002-05-01 中国石油天然气股份有限公司 一种仲辛酮加氢制仲辛醇的方法及其含镍的催化剂
CN103191746A (zh) * 2013-03-20 2013-07-10 北京化工大学 一种碳负载核壳结构纳米金属催化剂及其制备方法和应用
CN105032424A (zh) * 2015-06-05 2015-11-11 中国科学院化学研究所 一种用于芳香硝基化合物选择性加氢反应的催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1346703A (zh) * 2001-09-11 2002-05-01 中国石油天然气股份有限公司 一种仲辛酮加氢制仲辛醇的方法及其含镍的催化剂
CN103191746A (zh) * 2013-03-20 2013-07-10 北京化工大学 一种碳负载核壳结构纳米金属催化剂及其制备方法和应用
CN105032424A (zh) * 2015-06-05 2015-11-11 中国科学院化学研究所 一种用于芳香硝基化合物选择性加氢反应的催化剂及其制备方法

Similar Documents

Publication Publication Date Title
CN109305881B (zh) 一种醇类化合物的合成方法
CN111468117A (zh) 含碱土金属的碳包覆过渡金属的纳米复合材料及其制备方法和应用
CN111470949A (zh) 一种环己醇类化合物的合成方法
CN111470985A (zh) 一种氨基苯甲醚类化合物的合成方法
CN111470948A (zh) 一种环己醇类化合物的合成方法
CN111468126A (zh) 含碱金属的碳包覆过渡金属的纳米复合材料及其制备方法和应用
CN111468155A (zh) 一种醇类化合物的合成方法
CN111470982A (zh) 一种苯胺类化合物的合成方法
CN111470978A (zh) 一种卤代苯胺的合成方法
CN111470950A (zh) 一种环己醇类化合物的合成方法
CN111470942A (zh) 一种醇类化合物的合成方法
CN111470947A (zh) 一种环己醇类化合物的合成方法
CN111470989A (zh) 一种氨基苯酚类化合物的合成方法
CN111468157A (zh) 一种氨基苯酚类化合物的合成方法
CN111468119A (zh) 含碱土金属的碳包覆过渡金属的纳米复合材料及其制备方法和应用
CN111470944A (zh) 一种醇类化合物的合成方法
CN111468122A (zh) 一种醇类化合物的合成方法
CN111470934A (zh) 一种环烷烃类化合物的合成方法
CN111470945A (zh) 一种醇类化合物的合成方法
CN111468123A (zh) 一种苯胺类化合物的合成方法
CN111470943A (zh) 一种醇类化合物的合成方法
CN111470931A (zh) 一种环烷烃类化合物的合成方法
CN111468124A (zh) 一种氨基苯甲醚类化合物的合成方法
CN111468156A (zh) 一种醇类化合物的合成方法
CN111470976A (zh) 一种卤代苯胺的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination