CN111463351A - Lead leakage prevention packaging structure of perovskite solar cell and packaging method thereof - Google Patents

Lead leakage prevention packaging structure of perovskite solar cell and packaging method thereof Download PDF

Info

Publication number
CN111463351A
CN111463351A CN202010372089.XA CN202010372089A CN111463351A CN 111463351 A CN111463351 A CN 111463351A CN 202010372089 A CN202010372089 A CN 202010372089A CN 111463351 A CN111463351 A CN 111463351A
Authority
CN
China
Prior art keywords
layer
encapsulation
solar cell
perovskite solar
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010372089.XA
Other languages
Chinese (zh)
Inventor
彭勇
李康闯
万京伟
邹俊洁
陈力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202010372089.XA priority Critical patent/CN111463351A/en
Publication of CN111463351A publication Critical patent/CN111463351A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种钙钛矿太阳能电池的防铅泄露封装结构及其封装方法,该钙钛矿太阳能电池包括依次叠加设置的导电玻璃、电子传输层、钙钛矿吸光层、空穴传输层、金属电极,其特征在于,防铅泄露封装结构包括保护层、陶瓷封装层、封装玻璃、边封层;保护层热蒸镀在金属电极上;陶瓷封装层溅射或沉积在保护层上;边封层层压在钙钛矿太阳能电池的四周;封装玻璃通过粘贴边封层设置在陶瓷封装层的上方,并与陶瓷封装层和边封层形成空腔。本发明通过三层有机/无机材料复合封装保护,在有效减少太阳电池组件在冰雹等外力冲击下的破坏几率的同时,本封装技术还能够有效阻碍破碎的太阳电池组件在自然界的雨水冲刷等条件下组件中铅的泄露。The invention provides an anti-lead leakage encapsulation structure of a perovskite solar cell and an encapsulation method thereof. The perovskite solar cell comprises a conductive glass, an electron transport layer, a perovskite light absorption layer, a hole transport layer, a conductive glass, an electron transport layer, a perovskite light absorption layer, a hole transport layer, The metal electrode is characterized in that the anti-lead leakage encapsulation structure includes a protective layer, a ceramic encapsulation layer, an encapsulation glass, and an edge seal layer; the protective layer is thermally evaporated on the metal electrode; the ceramic encapsulation layer is sputtered or deposited on the protective layer; The sealing layer is laminated around the perovskite solar cell; the packaging glass is arranged above the ceramic packaging layer by pasting the edge sealing layer, and forms a cavity with the ceramic packaging layer and the edge sealing layer. The present invention is protected by three-layer organic/inorganic material composite encapsulation, which can effectively reduce the damage probability of the solar cell module under the impact of external forces such as hail, and at the same time, the packaging technology can also effectively prevent the broken solar cell module from being washed by rain in nature and other conditions. Lead leakage from lower components.

Description

钙钛矿太阳能电池的防铅泄露封装结构及其封装方法Anti-lead leakage encapsulation structure of perovskite solar cell and encapsulation method thereof

技术领域technical field

本发明涉及光伏行业用封装技术领域,特别涉及一种钙钛矿太阳能电池的防铅泄露封装结构及其封装方法。The invention relates to the technical field of encapsulation used in the photovoltaic industry, in particular to a lead leakage-preventing encapsulation structure of a perovskite solar cell and an encapsulation method thereof.

背景技术Background technique

钙钛矿太阳能电池中的铅泄露是目前光伏行业和大众对于钙钛矿太阳能电池行业迅速发展的主要忧虑之一。为了减少钙钛矿太阳能电池中的铅带来的环境和社会问题,行业中提出了多种可能的解决方案:使用非铅材料部分或者全部取代铅、或通过封装技术阻止铅的泄露。这其中使用封装技术防止铅泄露正在成为技术发展方向之一。Lead leakage in perovskite solar cells is one of the main concerns of the photovoltaic industry and the general public about the rapid development of the perovskite solar cell industry. In order to reduce the environmental and social problems caused by lead in perovskite solar cells, a variety of possible solutions have been proposed in the industry: partially or completely replacing lead with non-lead materials, or preventing lead leakage through packaging technology. Among them, the use of packaging technology to prevent lead leakage is becoming one of the technical development directions.

目前钙钛矿太阳能电池使用的封装技术有多种,但是能够有效阻止铅泄露的封装技术并不多。本发明结合磁控溅射技术和某些有机材料能够与铅元素发生结合反应的特点,提出了一种新的封装方式,具有以下特点:1、能够有效应对太阳电池在使用过程中受到外力冲击发生破损的情况,大幅降低太阳电池组件在冰雹、飞石等冲击下的破损率;2、发生破损的太阳电池组件在复合封装条件下,能够有效减少水/水蒸气的侵蚀,减少钙钛矿材料中的铅在自然环境下从组件向环境扩散的几率。最终有效地减少钙钛矿太阳能电池中的铅对于环境的危害。At present, there are many packaging technologies used in perovskite solar cells, but there are not many packaging technologies that can effectively prevent lead leakage. Combined with the magnetron sputtering technology and the characteristics that certain organic materials can combine and react with lead elements, the present invention proposes a new packaging method, which has the following characteristics: 1. It can effectively deal with the impact of external forces on solar cells during use. In case of damage, the damage rate of solar cell modules under the impact of hail, flying stones, etc. is greatly reduced; 2. Under the condition of composite packaging, the damaged solar cell modules can effectively reduce the erosion of water/water vapor and reduce perovskite The probability that lead in a material will diffuse from the component to the environment in the natural environment. Finally, the harm of lead in perovskite solar cells to the environment can be effectively reduced.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本发明旨在提出一种钙钛矿太阳能电池的防铅泄露封装结构,以解决现有钙钛矿太阳能电池铅泄露的问题。In view of this, the present invention aims to provide an anti-lead leakage encapsulation structure of perovskite solar cells, so as to solve the problem of lead leakage of existing perovskite solar cells.

为达到上述目的,本发明的技术方案通过以下方法实现:To achieve the above object, the technical scheme of the present invention is realized by the following methods:

一种钙钛矿太阳能电池的防铅泄露封装结构,所述钙钛矿太阳能电池包括依次叠加设置的导电玻璃、电子传输层、钙钛矿吸光层、空穴传输层、金属电极,其特征在于,所述防铅泄露封装结构包括保护层、陶瓷封装层、封装玻璃、边封层;所述保护层热蒸镀在所述金属电极上;所述陶瓷封装层溅射或沉积在所述保护层上;所述边封层层压在所述钙钛矿太阳能电池的四周;所述封装玻璃通过粘贴所述边封层设置在所述陶瓷封装层的上方,并与所述陶瓷封装层和所述边封层形成空腔。An anti-lead leakage encapsulation structure of a perovskite solar cell, the perovskite solar cell comprises a conductive glass, an electron transport layer, a perovskite light-absorbing layer, a hole transport layer, and a metal electrode that are stacked in sequence, and is characterized in that , the anti-lead leakage encapsulation structure includes a protective layer, a ceramic encapsulation layer, an encapsulation glass, and an edge seal layer; the protective layer is thermally evaporated on the metal electrode; the ceramic encapsulation layer is sputtered or deposited on the protective layer The edge seal layer is laminated around the perovskite solar cell; the encapsulation glass is arranged above the ceramic encapsulation layer by pasting the edge seal layer, and is connected with the ceramic encapsulation layer and the ceramic encapsulation layer. The edge sealing layer forms a cavity.

可选地,所述防铅泄露封装结构还包括粘合层;所述粘合层位于所述封装玻璃与所述陶瓷封装层和所述边封层形成的所述空腔中。Optionally, the lead leakage prevention packaging structure further includes an adhesive layer; the adhesive layer is located in the cavity formed by the packaging glass, the ceramic packaging layer and the edge sealing layer.

可选地,所述粘合层为环氧丙烷粘合层、乙烯—醋酸乙烯共聚物粘合层中的一种。Optionally, the adhesive layer is one of a propylene oxide adhesive layer and an ethylene-vinyl acetate copolymer adhesive layer.

可选地,所述防铅泄露封装结构还包括粘合层;所述粘合层位于所述封装玻璃与所述陶瓷封装层和所述边封层形成的所述空腔中,且所述粘合层与所述边封层一体化设置。Optionally, the lead leakage prevention packaging structure further comprises an adhesive layer; the adhesive layer is located in the cavity formed by the packaging glass, the ceramic packaging layer and the edge sealing layer, and the The adhesive layer is integrally arranged with the edge seal layer.

可选地,所述粘合层与所述边封层为一体化的紫外固化胶。Optionally, the adhesive layer and the edge sealing layer are integrated UV curing adhesives.

可选地,所述保护层为氧化钼保护层,且所述保护层的厚度为50nm。Optionally, the protective layer is a molybdenum oxide protective layer, and the thickness of the protective layer is 50 nm.

可选地,所述陶瓷封装层为氧化铝陶瓷封装层、氧化硅陶瓷封装层、氮化硅陶瓷封装层中的一种,且所述陶瓷封装层的厚度为350nm。Optionally, the ceramic encapsulation layer is one of an alumina ceramic encapsulation layer, a silicon oxide ceramic encapsulation layer, and a silicon nitride ceramic encapsulation layer, and the thickness of the ceramic encapsulation layer is 350 nm.

可选地,所述封装玻璃为钠钙封装玻璃、超白封装玻璃、钢化封装玻璃中的一种。Optionally, the encapsulation glass is one of soda lime encapsulation glass, ultra-white encapsulation glass, and tempered encapsulation glass.

可选地,所述边封层为聚异丁烯边封层,且所述边封层的厚度为3mm。Optionally, the side sealing layer is a polyisobutylene side sealing layer, and the thickness of the side sealing layer is 3 mm.

本发明的第二目的在于提供一种上述防铅泄露封装结构的封装方法,该封装方法,包括以下步骤:The second object of the present invention is to provide a packaging method for the above-mentioned lead leakage prevention packaging structure, the packaging method comprising the following steps:

1)在所述钙钛矿太阳能电池的所述金属电极上热蒸镀所述保护层,其中,热蒸镀的工艺参数为:真空压强为:2.5×10-4Pa,热蒸发功率:90W,蒸发速率:0.2A/s;1) Thermally evaporate the protective layer on the metal electrode of the perovskite solar cell, wherein the process parameters of thermal evaporation are: vacuum pressure: 2.5×10 -4 Pa, thermal evaporation power: 90W , evaporation rate: 0.2A/s;

2)采用磁控溅射法将所述陶瓷封装层溅射在所述保护层上,其中,磁控溅射工艺参数为:靶材纯度:99.9%,溅射温度:室温,本底真空:8×10-4Pa,氩气流量:20sccm,靶间距:125mm,工作气压:0.4-0.7Pa,溅射功率:60-100W,溅射速率:0.1-0.15A/s;2) The ceramic encapsulation layer is sputtered on the protective layer by a magnetron sputtering method, wherein the magnetron sputtering process parameters are: target purity: 99.9%, sputtering temperature: room temperature, background vacuum: 8×10 -4 Pa, argon flow rate: 20sccm, target spacing: 125mm, working pressure: 0.4-0.7Pa, sputtering power: 60-100W, sputtering rate: 0.1-0.15A/s;

3)去除电池周围0.5cm的钙钛矿薄膜后,在所述钙钛矿太阳能电池有钙钛矿薄膜侧的四周边缘处粘贴所述边封层,然后,将所述封装玻璃粘贴在所述边封层上,得到初步封装电池;3) After removing the 0.5 cm perovskite film around the cell, paste the edge sealing layer on the surrounding edge of the perovskite solar cell on the side with the perovskite film, and then paste the packaging glass on the perovskite solar cell. On the edge sealing layer, a preliminary packaged battery is obtained;

4)通过层压方法对所述初步封装电池进行处理,得到防铅泄露的钙钛矿太阳能电池,其中,层压工艺为:温度:150℃,压强差:10kPa,加热加压处理时间:5min。4) The preliminary encapsulated battery is processed by a lamination method to obtain a lead leakage-proof perovskite solar cell, wherein the lamination process is: temperature: 150° C., pressure difference: 10kPa, heating and pressure treatment time: 5min .

相对于现有技术,本发明所述的钙钛矿太阳能电池的防铅泄露封装结构具有以下优势:Compared with the prior art, the anti-lead leakage encapsulation structure of the perovskite solar cell of the present invention has the following advantages:

本发明首先在钙钛矿太阳能电池器件上蒸镀一层大约几十纳米厚的氧化钼保护层,然后溅射一层几纳米至数百纳米厚的氧化铝陶瓷封装层,再使用玻璃盖板与封装胶(PIB胶与PO胶联用)对器件进行进一步封装,通过三层有机/无机材料复合封装保护,在实现对钙钛矿太阳能电池器件提供保护的同时,有效减少太阳电池组件在冰雹等外力冲击下的破坏几率。除此之外,本封装技术还能够有效减少破碎的太阳电池组件在自然界的雨水冲刷等条件下组件中铅的泄露,从而减少钙钛矿太阳能电池组件中的铅对于环境的污染。In the present invention, a molybdenum oxide protective layer with a thickness of about tens of nanometers is firstly evaporated on the perovskite solar cell device, and then an alumina ceramic encapsulation layer with a thickness of several nanometers to hundreds of nanometers is sputtered, and then a glass cover plate is used. The device is further encapsulated with encapsulating adhesive (PIB adhesive and PO adhesive), and is protected by three-layer organic/inorganic material composite encapsulation, which not only protects the perovskite solar cell device, but also effectively reduces the hail damage of the solar cell module. The probability of damage under the impact of external force. In addition, the encapsulation technology can also effectively reduce the leakage of lead in the broken solar cell module under the conditions of natural rain erosion and other conditions, thereby reducing the environmental pollution caused by the lead in the perovskite solar cell module.

附图说明Description of drawings

构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings constituting a part of the present invention are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the attached image:

图1为本发明实施例1的钙钛矿太阳能电池的防铅泄露封装结构的结构示意图;1 is a schematic structural diagram of a lead leakage-preventing encapsulation structure of a perovskite solar cell according to Embodiment 1 of the present invention;

图2为本发明实施例2的钙钛矿太阳能电池的防铅泄露封装结构的结构示意图;2 is a schematic structural diagram of a lead leakage-preventing packaging structure of a perovskite solar cell according to Embodiment 2 of the present invention;

图3为本发明实施例3的钙钛矿太阳能电池的防铅泄露封装结构的结构示意图;3 is a schematic structural diagram of the lead leakage-preventing packaging structure of the perovskite solar cell according to Embodiment 3 of the present invention;

图4为本发明采用氧化钼保护层、经过氧化铝陶瓷封装层封装的钙钛矿太阳能电池的结构示意图;4 is a schematic structural diagram of a perovskite solar cell encapsulated by an alumina ceramic encapsulation layer using a molybdenum oxide protective layer according to the present invention;

图5为本发明采用氧化钼保护层封装的钙钛矿太阳能电池的结构示意图。FIG. 5 is a schematic structural diagram of a perovskite solar cell encapsulated by a molybdenum oxide protective layer according to the present invention.

附图标记:Reference number:

1-导电玻璃、2-电子传输层、3-钙钛矿吸光层、4-空穴传输层、5-金属电极、6-保护层、7-陶瓷封装层、8-边封层、9-封装玻璃、10-空腔、11-粘合层。1- Conductive glass, 2- Electron transport layer, 3- Perovskite light absorption layer, 4- Hole transport layer, 5- Metal electrode, 6- Protective layer, 7- Ceramic encapsulation layer, 8- Edge sealing layer, 9- Encapsulating glass, 10-cavity, 11-adhesive layer.

具体实施方式Detailed ways

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。It should be noted that the embodiments of the present invention and the features of the embodiments may be combined with each other under the condition of no conflict.

下面将结合附图和实施例来详细说明本发明。The present invention will be described in detail below with reference to the accompanying drawings and embodiments.

实施例1Example 1

结合图1所示,本实施例的钙钛矿太阳能电池的防铅泄露封装结构中,钙钛矿太阳能电池包括依次叠加设置的导电玻璃1、电子传输层2、钙钛矿吸光层3、空穴传输层4、金属电极5;防铅泄露封装结构包括保护层6、陶瓷封装层7、边封层8、封装玻璃9,其中,保护层6为氧化钼保护层,其热蒸镀在金属电极5上,能够阻挡磁控溅射产生的高能冲击,达到保护钙钛矿材料的目的,从而有效防止钙钛矿材料中的铅泄露;陶瓷封装层7为氧化铝陶瓷封装层,其通过磁控溅射方法溅射在氧化钼保护层上,可有效防止外界水/水汽进入组件,同时能够进一步有效阻止钙钛矿组件中的铅脱出;边封层8为聚异丁烯(PIB)边封层,其通过层压方法层压在钙钛矿太阳能电池的四周,可对组件四周进行封装,更进一步有效防止铅泄露;封装玻璃9为钠钙封装玻璃,其通过粘贴边封层设置在氧化铝陶瓷封装层的上方,并与氧化铝陶瓷封装层7和边封层8形成空腔10,此时,钠钙封装玻璃与钙钛矿太阳能电池器件四周设置的边缘封装胶(PIB胶),即边封层8,共同对钙钛矿太阳能电池器件的各个方向实现封装,从而还进一步防止铅泄露到环境中。With reference to FIG. 1 , in the anti-lead leakage encapsulation structure of the perovskite solar cell of the present embodiment, the perovskite solar cell includes a conductive glass 1 , an electron transport layer 2 , a perovskite light absorbing layer 3 , an air-conducting glass 1 , an electron transport layer 2 , a perovskite light absorbing layer 3 , and an empty layer arranged in sequence. The hole transport layer 4, the metal electrode 5; the anti-lead leakage packaging structure includes a protective layer 6, a ceramic packaging layer 7, an edge sealing layer 8, and a packaging glass 9, wherein the protective layer 6 is a molybdenum oxide protective layer, which is thermally evaporated on the metal. On the electrode 5, the high-energy impact generated by magnetron sputtering can be blocked, so as to achieve the purpose of protecting the perovskite material, thereby effectively preventing the leakage of lead in the perovskite material; the ceramic encapsulation layer 7 is an alumina ceramic encapsulation layer, which passes the magnetic The controlled sputtering method is sputtered on the molybdenum oxide protective layer, which can effectively prevent external water/water vapor from entering the component, and can further effectively prevent the lead from the perovskite component from coming out; the edge sealing layer 8 is a polyisobutylene (PIB) edge sealing layer , which is laminated around the perovskite solar cell by a lamination method, which can encapsulate around the module and further effectively prevent lead leakage; the encapsulation glass 9 is soda-lime encapsulation glass, which is arranged on the alumina by pasting the edge sealing layer. Above the ceramic encapsulation layer, and form a cavity 10 with the alumina ceramic encapsulation layer 7 and the edge seal layer 8, at this time, the soda-lime encapsulation glass and the edge encapsulation glue (PIB glue) arranged around the perovskite solar cell device, namely The edge sealing layer 8 jointly realizes the encapsulation of all directions of the perovskite solar cell device, thereby further preventing the leakage of lead into the environment.

在本实施例中,氧化钼材料对钙钛矿材料起到保护作用,氧化铝材料起到隔绝水汽与氧气的作用,PIB封装胶起到增强钙钛矿太阳能电池器件抗冲击能力的作用,其通过三层保护作用,防止外界环境对钙钛矿材料产生破坏,也有效抑制了钙钛矿中的铅向外界扩散的过程,对钙钛矿太阳能电池器件起到了保护与防铅泄露的作用。In this embodiment, the molybdenum oxide material plays a protective role on the perovskite material, the alumina material plays the role of isolating water vapor and oxygen, and the PIB encapsulant plays a role in enhancing the impact resistance of the perovskite solar cell device. Through the three-layer protection, the perovskite material is prevented from being damaged by the external environment, and the process of the diffusion of lead in the perovskite to the outside is also effectively inhibited, which plays a role in protecting the perovskite solar cell device and preventing lead leakage.

采用本实施例的防铅泄露封装结构对钙钛矿太阳能电池进行封装时,即基于氧化钼保护层、陶瓷封装层及PIB边封联用的钙钛矿太阳能电池防铅泄露封装技术,其具体封装方法,包括以下步骤:When encapsulating the perovskite solar cell with the lead-leakage-preventing encapsulation structure of this embodiment, the lead-leakage-preventing encapsulation technology of the perovskite solar cell based on the combination of the molybdenum oxide protective layer, the ceramic encapsulation layer and the PIB edge seal, the specific The packaging method includes the following steps:

1)取制备好正负极的钙钛矿太阳能电池器件,在正极(Au电极)上采用热蒸镀方法制备一层氧化钼保护层,具体步骤如下:待蒸镀仪真空抽至2.5×10-4Pa后开始蒸镀,热蒸发功率为90W,蒸发速率0.2A/s,将氧化钼蒸镀至Au电极上,厚度约为50nm;1) Take the perovskite solar cell device with the prepared positive and negative electrodes, and use the thermal evaporation method to prepare a molybdenum oxide protective layer on the positive electrode (Au electrode). The evaporation starts after -4 Pa, the thermal evaporation power is 90W, the evaporation rate is 0.2A/s, and the molybdenum oxide is evaporated on the Au electrode with a thickness of about 50nm;

2)采用磁控溅射法制备氧化铝陶瓷封装层,具体步骤为:将氧化铝溅射至氧化钼保护层上,厚度约为350nm,其中,磁控溅射工艺参数为:所有靶材纯度99.9%,圆靶大小为三英寸(76.2mm),均采用射频,室温下溅射,无额外加热,本底真空8×10-4Pa,氩气流量为20sccm,靶间距125mm,工作气压0.4-0.7Pa,溅射前以20sccm的氩气清洗靶材半小时;氧化铝溅射功率100W,溅射速率为0.15A/s;2) The alumina ceramic encapsulation layer is prepared by a magnetron sputtering method, and the specific steps are: sputtering alumina on the molybdenum oxide protective layer with a thickness of about 350 nm, wherein the magnetron sputtering process parameters are: the purity of all target materials 99.9%, round target size is three inches (76.2mm), all using radio frequency, sputtering at room temperature, no additional heating, background vacuum 8×10 -4 Pa, argon flow rate 20sccm, target spacing 125mm, working pressure 0.4 -0.7Pa, the target was cleaned with 20sccm argon for half an hour before sputtering; the alumina sputtering power was 100W, and the sputtering rate was 0.15A/s;

3)用飞秒激光器,将功率设置为18w,频率设置为100Hz,去除电池周围的0.5cm钙钛矿薄膜,并用少许DMF擦拭电池四周,去除残留的钙钛矿;3) Using a femtosecond laser, set the power to 18w and the frequency to 100Hz, remove the 0.5cm perovskite film around the battery, and wipe the surrounding area of the battery with a little DMF to remove the remaining perovskite;

4)制备边封层,具体步骤为:在得到的钙钛矿太阳能电池有钙钛矿薄膜侧的四周边缘处粘贴上厚度为3mm、宽度为5mm的黑色PIB封装胶,即边封层,然后,将钠钙封装玻璃粘贴在PIB边封层上,得到初步封装电池;4) preparing the edge seal layer, the specific steps are: paste a black PIB encapsulant with a thickness of 3mm and a width of 5mm on the surrounding edges of the perovskite film side of the obtained perovskite solar cell, that is, the edge seal layer, and then , paste the soda-lime encapsulation glass on the PIB edge sealing layer to obtain a preliminary encapsulated battery;

5)层压封装,具体步骤为:将初步封装电池放置于层压机中,在温度150℃、压强差为10kPa的条件下加热加压处理5min,得到封装好的有效防止铅泄露的钙钛矿太阳能电池。5) Lamination packaging, the specific steps are as follows: place the preliminary packaged battery in a laminator, heat and pressurize for 5 minutes under the conditions of a temperature of 150 ° C and a pressure difference of 10 kPa, to obtain a packaged perovskite that can effectively prevent lead leakage Mine solar cells.

对本实施例制备好的防铅泄露的钙钛矿太阳能电池组件进行抗冲击性能和铅泄露性能测试。The impact resistance and lead leakage performance of the lead leakage-preventing perovskite solar cell components prepared in this example were tested.

其中,抗冲击性能具体通过以下方法进行:使用130g钢球进行抗冲击性能测试,钢球在15cm高度处自由下落,冲击本实施例的器件会导致其产生裂纹;Wherein, the impact resistance is specifically carried out by the following method: use 130g steel balls for impact resistance test, the steel balls fall freely at a height of 15cm, and impacting the device of this embodiment will cause cracks to occur;

铅泄露性能具体通过以下方法进行:将有星状裂纹的器件置于45℃,Ph为5.6的模拟酸雨溶液中进行铅泄露情况试验,测得此封装条件下,铅的泄露率仅为0.084%,防铅泄露效果显著。The lead leakage performance is specifically carried out by the following method: The lead leakage test is carried out by placing the device with star-shaped cracks in a simulated acid rain solution with a Ph of 5.6 at 45 ° C. It is measured that the lead leakage rate is only 0.084% under this packaging condition , The anti-lead leakage effect is remarkable.

实施例2Example 2

结合图2所示,本实施例的钙钛矿太阳能电池的防铅泄露封装结构与实施例1的区别在于:本实施例的防铅泄露封装结构还包括粘合层11,其中,粘合层11为环氧丙烷(PO)粘合层,其位于封装玻璃9与陶瓷封装层7和边封层8形成的空腔10中,可紧密粘结组件与封装玻璃9,减少钙钛矿太阳能电池组件在物理冲击下的损坏几率,同时可在太阳电池破损的条件下有效阻止钙钛矿材料中的铅向环境扩散的速率,从而使得钙钛矿组件的抗冲击能力有效提高,并可有效防止组件中的铅泄露到环境中。As shown in FIG. 2 , the difference between the lead leakage prevention packaging structure of the perovskite solar cell of this embodiment and the first embodiment is that the lead leakage prevention packaging structure of this embodiment further includes an adhesive layer 11 , wherein the adhesive layer 11 is a propylene oxide (PO) adhesive layer, which is located in the cavity 10 formed by the encapsulation glass 9, the ceramic encapsulation layer 7 and the edge seal layer 8, and can tightly bond the component and the encapsulation glass 9 to reduce the number of perovskite solar cells. The damage probability of the component under physical impact, and at the same time, it can effectively prevent the diffusion rate of lead in the perovskite material to the environment under the condition of solar cell damage, so that the impact resistance of the perovskite component can be effectively improved, and can effectively prevent Lead from components leaks into the environment.

采用本实施例的防铅泄露封装结构对钙钛矿太阳能电池进行封装时,即基于氧化钼保护层、陶瓷封装层、环氧丙烷粘合层及PIB边封联用的钙钛矿太阳能电池防铅泄露封装技术,其具体封装方法,包括以下步骤:When the perovskite solar cell is encapsulated by the lead leakage-preventing encapsulation structure of this embodiment, the perovskite solar cell based on the molybdenum oxide protective layer, the ceramic encapsulation layer, the propylene oxide adhesive layer and the PIB edge sealing Lead leakage packaging technology, and its specific packaging method, including the following steps:

1)取制备好正负极的钙钛矿太阳能电池器件,在正极(Au电极)上采用热蒸镀方法制备一层氧化钼保护层,具体步骤如下:待蒸镀仪真空抽至2.5×10-4Pa后开始蒸镀,热蒸发功率为90W,蒸发速率0.2A/s,将氧化钼蒸镀至Au电极上,厚度约为50nm;1) Take the perovskite solar cell device with the prepared positive and negative electrodes, and use the thermal evaporation method to prepare a molybdenum oxide protective layer on the positive electrode (Au electrode). The evaporation starts after -4 Pa, the thermal evaporation power is 90W, the evaporation rate is 0.2A/s, and the molybdenum oxide is evaporated on the Au electrode with a thickness of about 50nm;

2)采用磁控溅射法制备氧化铝陶瓷封装层,具体步骤为:将氧化铝溅射至氧化钼保护层上,厚度约为350nm,其中,磁控溅射工艺参数为:所有靶材纯度99.9%,圆靶大小为三英寸(76.2mm),均采用射频,室温下溅射,无额外加热,本底真空8×10-4Pa,氩气流量为20sccm,靶间距125mm,工作气压0.4-0.7Pa,溅射前以20sccm的氩气清洗靶材半小时;氧化铝溅射功率100W,溅射速率为0.15A/s;2) The alumina ceramic encapsulation layer is prepared by a magnetron sputtering method, and the specific steps are: sputtering alumina on the molybdenum oxide protective layer with a thickness of about 350 nm, wherein the magnetron sputtering process parameters are: the purity of all target materials 99.9%, round target size is three inches (76.2mm), all using radio frequency, sputtering at room temperature, no additional heating, background vacuum 8×10 -4 Pa, argon flow rate 20sccm, target spacing 125mm, working pressure 0.4 -0.7Pa, the target was cleaned with 20sccm argon for half an hour before sputtering; the alumina sputtering power was 100W, and the sputtering rate was 0.15A/s;

3)用飞秒激光器,将功率设置为18w,频率设置为100Hz,去除电池周围的0.5cm钙钛矿薄膜,并用少许DMF擦拭电池四周,去除残留的钙钛矿;3) Using a femtosecond laser, set the power to 18w and the frequency to 100Hz, remove the 0.5cm perovskite film around the battery, and wipe the surrounding area of the battery with a little DMF to remove the remaining perovskite;

4)制备边封层与粘合层,具体步骤为:在得到的钙钛矿太阳能电池有钙钛矿薄膜侧的四周边缘处粘贴上厚度为3mm、宽度为5mm的黑色PIB封装胶,即边封层,并按钙钛矿太阳能电池大小裁剪PO(环氧丙烷)胶膜,即粘合层,将其置于钙钛矿太阳能电池的氧化铝陶瓷封装层上,然后,将钠钙封装玻璃粘贴在PIB边封层和PO粘合层上,得到初步封装电池;4) Prepare the edge sealing layer and the adhesive layer, the specific steps are: paste a black PIB encapsulant with a thickness of 3 mm and a width of 5 mm on the surrounding edges of the perovskite film side of the obtained perovskite solar cell, that is, the edge seal layer, and cut the PO (propylene oxide) film according to the size of the perovskite solar cell, that is, the adhesive layer, and place it on the alumina ceramic encapsulation layer of the perovskite solar cell. Then, the soda-lime encapsulation glass Paste it on the PIB side seal layer and the PO adhesive layer to obtain a preliminary packaged battery;

5)层压封装,具体步骤为:将初步封装电池放置于层压机中,在温度150℃、压强差为10kPa的条件下加热加压处理5min,得到封装好的有效防止铅泄露的钙钛矿太阳能电池。5) Lamination packaging, the specific steps are as follows: place the preliminary packaged battery in a laminator, heat and pressurize for 5 minutes under the conditions of a temperature of 150 ° C and a pressure difference of 10 kPa, to obtain a packaged perovskite that can effectively prevent lead leakage Mine solar cells.

对本实施例制备好的防铅泄露的钙钛矿太阳能电池组件进行抗冲击性能和铅泄露性能测试。The impact resistance and lead leakage performance of the lead leakage-preventing perovskite solar cell components prepared in this example were tested.

其中,抗冲击性能具体通过以下方法进行:使用130g钢球进行抗冲击性能测试,钢球在30cm高度处自由下落,冲击本实施例的器件才会导致其产生裂纹;Wherein, the impact resistance is specifically carried out by the following method: use 130g steel balls for impact resistance test, the steel balls fall freely at a height of 30cm, and only when the device of this embodiment is impacted will it cause cracks;

铅泄露性能具体通过以下方法进行:将有星状裂纹的器件置于45℃,Ph为5.6的模拟酸雨溶液中进行铅泄露情况试验,测得此封装条件下,铅的泄露率仅为0.00036%,防铅泄露效果显著。The lead leakage performance is specifically carried out by the following method: the device with star-shaped cracks is placed in a simulated acid rain solution with a Ph of 5.6 at 45 ° C to conduct a lead leakage test. It is measured that the lead leakage rate is only 0.00036% under this packaging condition , The anti-lead leakage effect is remarkable.

实施例3Example 3

结合图3所示,本实施例的钙钛矿太阳能电池的防铅泄露封装结构与实施例1的区别在于:本实施例的防铅泄露封装结构还包括粘合层11,其中,粘合层11和边封层8为一体化的紫外固化胶,即位于封装玻璃9与陶瓷封装层7和边封层8形成的空腔10中的粘合层11与钙钛矿太阳能电池四周的边封层8均由紫外固化胶制得,且制备过程中一体成型。As shown in FIG. 3 , the difference between the lead leakage prevention package structure of the perovskite solar cell of this embodiment and the first embodiment is that the lead leakage prevention package structure of this embodiment further includes an adhesive layer 11 , wherein the adhesive layer 11 and the edge seal layer 8 are integrated UV curing adhesives, that is, the adhesive layer 11 in the cavity 10 formed by the encapsulation glass 9 and the ceramic encapsulation layer 7 and the edge seal layer 8 and the edge seal around the perovskite solar cell. The layers 8 are all made of UV-curable glue, and are integrally formed during the preparation process.

本实施例采用紫外固化胶化制备一体化的边封层8和粘合层11,可在减少钙钛矿太阳能电池组件在物理冲击下的破损率,并在太阳电池破损的条件下有效阻止钙钛矿材料中的铅向环境扩散的速率的同时,简化结构,从而有效提高封装效率。In this embodiment, the integrated edge sealing layer 8 and the adhesive layer 11 are prepared by UV curing gelation, which can reduce the damage rate of the perovskite solar cell module under physical impact, and effectively prevent the perovskite solar cell module from being damaged under the condition of solar cell damage. At the same time of the diffusion rate of lead in the titanium ore material to the environment, the structure is simplified, thereby effectively improving the packaging efficiency.

采用本实施例的防铅泄露封装结构对钙钛矿太阳能电池进行封装时,即基于氧化钼保护层、陶瓷封装层及紫外固化粘合层联用的钙钛矿太阳能电池防铅泄露封装技术,其具体封装方法,包括以下步骤:When the perovskite solar cell is encapsulated by the lead-leakage-preventing encapsulation structure of the present embodiment, that is, the lead-leakage-preventing encapsulation technology of the perovskite solar cell based on the combination of a molybdenum oxide protective layer, a ceramic encapsulation layer and an ultraviolet curing adhesive layer, The specific packaging method includes the following steps:

1)取制备好正负极的钙钛矿太阳能电池器件,在正极(Au电极)上采用热蒸镀方法制备一层氧化钼保护层,具体步骤如下:待蒸镀仪真空抽至2.5×10-4Pa后开始蒸镀,热蒸发功率为90W,蒸发速率0.2A/s,将氧化钼蒸镀至Au电极上,厚度约为50nm;1) Take the perovskite solar cell device with the prepared positive and negative electrodes, and use the thermal evaporation method to prepare a molybdenum oxide protective layer on the positive electrode (Au electrode). The evaporation starts after -4 Pa, the thermal evaporation power is 90W, the evaporation rate is 0.2A/s, and the molybdenum oxide is evaporated on the Au electrode with a thickness of about 50nm;

2)采用磁控溅射法制备氧化铝陶瓷封装层,具体步骤为:将氧化铝溅射至氧化钼保护层上,厚度约为350nm,其中,磁控溅射工艺参数为:所有靶材纯度99.9%,圆靶大小为三英寸(76.2mm),均采用射频,室温下溅射,无额外加热,本底真空8×10-4Pa,氩气流量为20sccm,靶间距125mm,工作气压0.4-0.7Pa,溅射前以20sccm的氩气清洗靶材半小时;氧化铝溅射功率100W,溅射速率为0.15A/s;2) The alumina ceramic encapsulation layer is prepared by a magnetron sputtering method, and the specific steps are: sputtering alumina on the molybdenum oxide protective layer with a thickness of about 350 nm, wherein the magnetron sputtering process parameters are: the purity of all target materials 99.9%, round target size is three inches (76.2mm), all using radio frequency, sputtering at room temperature, no additional heating, background vacuum 8×10 -4 Pa, argon flow rate 20sccm, target spacing 125mm, working pressure 0.4 -0.7Pa, the target was cleaned with 20sccm argon for half an hour before sputtering; the alumina sputtering power was 100W, and the sputtering rate was 0.15A/s;

3)用飞秒激光器,将功率设置为18w,频率设置为100Hz,去除电池周围的0.5cm钙钛矿薄膜,并用少许DMF擦拭电池四周,去除残留的钙钛矿;3) Using a femtosecond laser, set the power to 18w and the frequency to 100Hz, remove the 0.5cm perovskite film around the battery, and wipe the surrounding area of the battery with a little DMF to remove the remaining perovskite;

4)制备紫外固化全封装粘合层,即一体化的边封层与粘合层,具体步骤为:在得到的钙钛矿太阳能电池有钙钛矿薄膜侧滴3-5滴紫外固化封装胶,并用刮刀涂布使液体均匀分散在钙钛矿太阳能电池器件的四周以及氧化铝陶瓷封装层上,然后,将钠钙封装玻璃粘贴在涂布于氧化铝陶瓷封装层上的紫外固化封装胶上,得到初步封装电池;4) preparing a UV-curable full-package adhesive layer, that is, an integrated edge sealing layer and an adhesive layer, the specific steps are as follows: drop 3-5 drops of UV-curable encapsulant on the perovskite film side of the obtained perovskite solar cell , and coating with a doctor blade to make the liquid evenly dispersed around the perovskite solar cell device and on the alumina ceramic encapsulation layer, and then paste the soda lime encapsulation glass on the UV-curable encapsulant coated on the alumina ceramic encapsulation layer , to obtain a preliminary encapsulated battery;

5)紫外固化封装,具体步骤为:将初步封装电池放置于紫外固化机中照射3min,得到封装好的有效防止铅泄露的钙钛矿太阳能电池。5) UV curing packaging, the specific steps are as follows: placing the preliminary packaged battery in a UV curing machine for 3 minutes to obtain a packaged perovskite solar cell that can effectively prevent lead leakage.

对本实施例制备好的防铅泄露的钙钛矿太阳能电池组件进行抗冲击性能和铅泄露性能测试。The impact resistance and lead leakage performance of the lead leakage-preventing perovskite solar cell components prepared in this example were tested.

其中,抗冲击性能具体通过以下方法进行:使用130g钢球进行抗冲击性能测试,钢球在35cm高度处自由下落,冲击本实施例的器件才会导致其产生裂纹;Wherein, the impact resistance is specifically carried out by the following method: use 130g steel balls for impact resistance test, the steel balls fall freely at a height of 35cm, and only when the device of this embodiment is impacted will it cause cracks;

铅泄露性能具体通过以下方法进行:将有星状裂纹的器件置于45℃,Ph为5.6的模拟酸雨溶液中进行铅泄露情况试验,测得此封装条件下,铅的泄露率仅为0.0027%,防铅泄露效果显著。The lead leakage performance is specifically carried out by the following method: The lead leakage test is carried out by placing the device with star-shaped cracks in a simulated acid rain solution with a Ph of 5.6 at 45°C. The measured lead leakage rate is only 0.0027% under this packaging condition. , The anti-lead leakage effect is remarkable.

结合图4所示,对本发明实施例1-3中仅进行前两步封装的钙钛矿太阳能电池组件进行电池性能测试,即对仅采用50nm厚的氧化钼保护层、经过氧化铝陶瓷封装层封装的器件进行电池性能测试,并将其与采用50nm厚的氧化钼保护层、经过氧化硅陶瓷封装层的器件,以及采用50nm厚的氧化钼保护层、经过氮化硅陶瓷封装层的器件进行对比。其中,磁控溅射法制备氧化硅陶瓷封装层的氧化硅溅射功率70W,溅射速率为0.15A/s;磁控溅射法制备氮化硅陶瓷封装层的氮化硅溅射功率为60W,溅射速率为0.1A/s。With reference to FIG. 4 , the battery performance test was carried out on the perovskite solar cell components that were only encapsulated in the first two steps in Examples 1-3 of the present invention. The encapsulated devices were tested for battery performance and compared with devices with a 50nm thick molybdenum oxide protective layer and a silicon oxide ceramic encapsulation layer, and a 50nm thick molybdenum oxide protective layer with a silicon nitride ceramic encapsulation layer. Compared. Among them, the silicon oxide sputtering power of the magnetron sputtering method to prepare the silicon oxide ceramic encapsulation layer is 70W, and the sputtering rate is 0.15A/s; the silicon nitride sputtering power of the magnetron sputtering method to prepare the silicon nitride ceramic encapsulation layer is 60W, sputtering rate is 0.1A/s.

测试结果表明,本发明实施例1-3中仅采用50nm厚的氧化钼保护层、经过氧化铝陶瓷封装层封装的器件性能保持较好,基本没有衰减,48h后还能保持初始效率的95.5%;采用50nm厚的氧化钼保护层、经过氧化硅陶瓷封装层封装的器件在30℃、30%RH、无光照条件下放置48h后可保持初始效率的49%;采用50nm厚的氧化钼保护层、经过氮化硅陶瓷封装层封装的器件在30℃、30%RH、无光照条件下放置24h后可保持90%的初始效率,48h后可保持初始效率的67%。The test results show that in Examples 1-3 of the present invention, only the 50nm thick molybdenum oxide protective layer is used, and the performance of the device encapsulated by the alumina ceramic encapsulation layer is maintained well, and there is basically no attenuation, and 95.5% of the initial efficiency can be maintained after 48h. ;The device with 50nm thick molybdenum oxide protective layer and encapsulated by silicon oxide ceramic encapsulation layer can keep 49% of the initial efficiency after being placed under 30℃, 30%RH, no light for 48h; using 50nm thick molybdenum oxide protective layer , The device encapsulated by the silicon nitride ceramic encapsulation layer can maintain 90% of the initial efficiency after 24 hours at 30 ° C, 30% RH, and no light conditions, and can maintain 67% of the initial efficiency after 48 hours.

结合图5所示,对本发明实施例1-3中仅进行第一步封装的钙钛矿太阳能电池组件进行器件性能损失率测试,即对仅采用50nm厚的氧化钼保护层封装的器件进行器件性能损失率测试,并将其与采用10nm、30nm、60nm厚的氧化钼保护层封装的器件,以及未进行氧化钼保护层封装的钙钛矿太阳能电池进行对比,测试结果如表1所示。With reference to FIG. 5 , the device performance loss rate test was carried out on the perovskite solar cell components that were only encapsulated in the first step in Examples 1-3 of the present invention, that is, the device performance loss rate test was carried out on the devices encapsulated only with a 50 nm thick molybdenum oxide protective layer. The performance loss rate was tested and compared with devices encapsulated with molybdenum oxide protective layers with thickness of 10 nm, 30 nm and 60 nm, and perovskite solar cells without encapsulation with molybdenum oxide protective layers. The test results are shown in Table 1.

由表1可知,本发明实施例1-3中仅进行第一步封装的钙钛矿太阳能电池组件以及采用10nm、30nm、60nm厚的氧化钼保护层封装的器件的性能损失率均低于未经氧化钼保护层的钙钛矿太阳能电池,且当氧化钼保护层厚度为50nm时,保护效果最佳。It can be seen from Table 1 that in Examples 1-3 of the present invention, the performance loss rates of the perovskite solar cell modules that are only encapsulated in the first step and the devices encapsulated with molybdenum oxide protective layers with thicknesses of 10 nm, 30 nm, and 60 nm are lower than those of the non-volatile solar cells. The perovskite solar cell with the molybdenum oxide protective layer has the best protection effect when the thickness of the molybdenum oxide protective layer is 50 nm.

表1Table 1

Figure BDA0002478705060000111
Figure BDA0002478705060000111

需要说明的是,本发明也可采用ALD(原子层沉积)将陶瓷封装层沉积在保护层上,防止外界水汽进入组件并阻止钙钛矿组件中的铅泄露到环境中。It should be noted that the present invention can also use ALD (atomic layer deposition) to deposit the ceramic encapsulation layer on the protective layer to prevent external water vapor from entering the component and prevent lead in the perovskite component from leaking into the environment.

以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention. within.

Claims (10)

1.一种钙钛矿太阳能电池的防铅泄露封装结构,所述钙钛矿太阳能电池包括依次叠加设置的导电玻璃(1)、电子传输层(2)、钙钛矿吸光层(3)、空穴传输层(4)、金属电极(5),其特征在于,所述防铅泄露封装结构包括保护层(6)、陶瓷封装层(7)、边封层(8)、封装玻璃(9);所述保护层(6)热蒸镀在所述金属电极(5)上;所述陶瓷封装层(7)溅射或沉积在所述保护层(6)上;所述边封层(8)层压在所述钙钛矿太阳能电池的四周;所述封装玻璃(9)通过粘贴所述边封层(8)设置在所述陶瓷封装层(7)的上方,并与所述陶瓷封装层(7)和所述边封层(8)形成空腔(10)。1. An anti-lead leakage encapsulation structure of a perovskite solar cell, the perovskite solar cell comprising a conductive glass (1), an electron transport layer (2), a perovskite light-absorbing layer (3), A hole transport layer (4) and a metal electrode (5), characterized in that the lead leakage prevention packaging structure comprises a protective layer (6), a ceramic packaging layer (7), an edge sealing layer (8), and a packaging glass (9). ); the protective layer (6) is thermally evaporated on the metal electrode (5); the ceramic encapsulation layer (7) is sputtered or deposited on the protective layer (6); the edge seal layer ( 8) Laminate around the perovskite solar cell; the encapsulation glass (9) is arranged above the ceramic encapsulation layer (7) by pasting the edge seal layer (8), and is connected to the ceramic encapsulation layer (7). The encapsulation layer (7) and the edge sealing layer (8) form a cavity (10). 2.根据权利要求1所述的钙钛矿太阳能电池的防铅泄露封装结构,其特征在于,所述防铅泄露封装结构还包括粘合层(11);所述粘合层(11)位于所述封装玻璃(9)与所述陶瓷封装层(7)和所述边封层(8)形成的所述空腔(10)中。2. The lead-leakage-preventing package structure of a perovskite solar cell according to claim 1, wherein the lead-leakage-preventing package structure further comprises an adhesive layer (11); the adhesive layer (11) is located on the in the cavity (10) formed by the packaging glass (9), the ceramic packaging layer (7) and the edge sealing layer (8). 3.根据权利要求2所述的钙钛矿太阳能电池的防铅泄露封装结构,其特征在于,所述粘合层(11)为环氧丙烷粘合层、乙烯—醋酸乙烯共聚物粘合层中的一种。3. The anti-lead leakage encapsulation structure of perovskite solar cell according to claim 2, wherein the adhesive layer (11) is a propylene oxide adhesive layer, an ethylene-vinyl acetate copolymer adhesive layer one of the. 4.根据权利要求1所述的钙钛矿太阳能电池的防铅泄露封装结构,其特征在于,所述防铅泄露封装结构还包括粘合层(11);所述粘合层(11)位于所述封装玻璃(9)与所述陶瓷封装层(7)和所述边封层(8)形成的所述空腔(10)中,且所述粘合层(11)与所述边封层(8)一体化设置。4. The lead-leakage-proof encapsulation structure of a perovskite solar cell according to claim 1, wherein the lead-leakage-prevention encapsulation structure further comprises an adhesive layer (11); the adhesive layer (11) is located on the in the cavity (10) formed by the encapsulation glass (9), the ceramic encapsulation layer (7) and the edge seal layer (8), and the adhesive layer (11) and the edge seal The layer (8) is integrally arranged. 5.根据权利要求4所述的钙钛矿太阳能电池的防铅泄露封装结构,其特征在于,所述粘合层(11)与所述边封层(8)为一体化的紫外固化胶。5 . The lead leakage-preventing packaging structure of perovskite solar cells according to claim 4 , wherein the adhesive layer ( 11 ) and the edge sealing layer ( 8 ) are integrated UV curing adhesives. 6 . 6.根据权利要求1所述的钙钛矿太阳能电池的防铅泄露封装结构,其特征在于,所述保护层(6)为氧化钼保护层。6 . The lead leakage-preventing packaging structure of a perovskite solar cell according to claim 1 , wherein the protective layer ( 6 ) is a molybdenum oxide protective layer. 7 . 7.根据权利要求1所述的钙钛矿太阳能电池的防铅泄露封装结构,其特征在于,所述陶瓷封装层(7)为氧化铝陶瓷封装层、氧化硅陶瓷封装层、氮化硅陶瓷封装层中的一种。7. The anti-lead leakage encapsulation structure of perovskite solar cell according to claim 1, wherein the ceramic encapsulation layer (7) is an alumina ceramic encapsulation layer, a silicon oxide ceramic encapsulation layer, a silicon nitride ceramic encapsulation layer One of the encapsulation layers. 8.根据权利要求1所述的钙钛矿太阳能电池的防铅泄露封装结构,其特征在于,所述封装玻璃(9)为钠钙封装玻璃、超白封装玻璃、钢化封装玻璃中的一种。8. The anti-lead leakage encapsulation structure of perovskite solar cell according to claim 1, wherein the encapsulation glass (9) is one of soda lime encapsulation glass, ultra-white encapsulation glass, and tempered encapsulation glass . 9.根据权利要求1所述的钙钛矿太阳能电池的防铅泄露封装结构,其特征在于,所述边封层(8)为聚异丁烯边封层。9 . The anti-lead leakage encapsulation structure of a perovskite solar cell according to claim 1 , wherein the edge sealing layer ( 8 ) is a polyisobutylene edge sealing layer. 10 . 10.权利要求1至9任一项所述的防铅泄露封装结构的封装方法,其特征在于,包括以下步骤:10. The method for encapsulating a lead-leakage-preventing encapsulation structure according to any one of claims 1 to 9, wherein the method comprises the following steps: 1)在所述钙钛矿太阳能电池的所述金属电极(5)上热蒸镀所述保护层(6),其中,热蒸镀的工艺参数为:真空压强为:2.5×10-4Pa,热蒸发功率:90W,蒸发速率:0.2A/s;1) Thermally vapor-depositing the protective layer (6) on the metal electrode (5) of the perovskite solar cell, wherein the process parameters of thermal vapor deposition are: vacuum pressure: 2.5×10 -4 Pa , Thermal evaporation power: 90W, evaporation rate: 0.2A/s; 2)采用磁控溅射法将所述陶瓷封装层(7)溅射在所述保护层(6)上,其中,磁控溅射工艺参数为:靶材纯度:99.9%,溅射温度:室温,本底真空:8×10-4Pa,氩气流量:20sccm,靶间距:125mm,工作气压:0.4-0.7Pa,溅射功率:60-100W,溅射速率:0.1-0.15A/s;2) The ceramic encapsulation layer (7) is sputtered on the protective layer (6) by a magnetron sputtering method, wherein the magnetron sputtering process parameters are: target purity: 99.9%, sputtering temperature: Room temperature, background vacuum: 8×10 -4 Pa, argon flow rate: 20sccm, target spacing: 125mm, working pressure: 0.4-0.7Pa, sputtering power: 60-100W, sputtering rate: 0.1-0.15A/s ; 3)在所述钙钛矿太阳能电池有钙钛矿薄膜侧的四周边缘处粘贴所述边封层(8),并将所述封装玻璃(9)粘贴在所述边封层(8)上,得到初步封装电池;3) pasting the edge seal layer (8) on the peripheral edge of the perovskite solar cell on the side with the perovskite film, and pasting the encapsulation glass (9) on the edge seal layer (8) , to obtain a preliminary encapsulated battery; 4)通过层压方法对所述初步封装电池进行处理,得到防铅泄露的钙钛矿太阳能电池,其中,层压工艺为:温度:150℃,压强差:10kPa,加热加压处理时间:5min。4) The preliminary encapsulated battery is processed by a lamination method to obtain a lead leakage-proof perovskite solar cell, wherein the lamination process is: temperature: 150° C., pressure difference: 10kPa, heating and pressure treatment time: 5min .
CN202010372089.XA 2020-05-06 2020-05-06 Lead leakage prevention packaging structure of perovskite solar cell and packaging method thereof Pending CN111463351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010372089.XA CN111463351A (en) 2020-05-06 2020-05-06 Lead leakage prevention packaging structure of perovskite solar cell and packaging method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010372089.XA CN111463351A (en) 2020-05-06 2020-05-06 Lead leakage prevention packaging structure of perovskite solar cell and packaging method thereof

Publications (1)

Publication Number Publication Date
CN111463351A true CN111463351A (en) 2020-07-28

Family

ID=71678688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010372089.XA Pending CN111463351A (en) 2020-05-06 2020-05-06 Lead leakage prevention packaging structure of perovskite solar cell and packaging method thereof

Country Status (1)

Country Link
CN (1) CN111463351A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701227A (en) * 2021-01-27 2021-04-23 华中科技大学鄂州工业技术研究院 Perovskite solar cell device and packaging method thereof
CN112909179A (en) * 2021-01-21 2021-06-04 南开大学 Packaging method of perovskite solar cell
CN113035988A (en) * 2021-05-13 2021-06-25 中山市武汉理工大学先进工程技术研究院 Perovskite solar cell module capable of effectively relieving hot spot effect
CN115073975A (en) * 2022-06-16 2022-09-20 武汉理工大学 Biodegradable solid lead packaging coating applied to perovskite solar cell and preparation and packaging methods thereof
WO2024082118A1 (en) * 2022-10-18 2024-04-25 宁德时代新能源科技股份有限公司 Solar cell module and electric device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229327A (en) * 2016-08-02 2016-12-14 天津工业大学 A kind of flexible large area perovskite solar module and preparation method thereof
CN106953015A (en) * 2017-04-01 2017-07-14 武汉理工大学 A method for preparing high-efficiency large-area perovskite solar cells
US20170236652A1 (en) * 2014-10-14 2017-08-17 Sekisui Chemical Co., Ltd. Solar cell
CN207009482U (en) * 2017-06-02 2018-02-13 姚冀众 A kind of perovskite solar cell module of encapsulation
CN108155293A (en) * 2017-12-30 2018-06-12 凯盛光伏材料有限公司 A kind of copper indium gallium selenide perovskite lamination solar cell and preparation method thereof
US20180248061A1 (en) * 2017-02-24 2018-08-30 Epic Battery Inc. Stable perovskite solar cell
CN108539022A (en) * 2018-03-30 2018-09-14 武汉理工大学 The low damage perovskite solar cell of one kind and its packaging method
CN207967053U (en) * 2017-12-30 2018-10-12 凯盛光伏材料有限公司 A kind of copper indium gallium selenide perovskite lamination solar cell
CN108987585A (en) * 2017-06-02 2018-12-11 姚冀众 A kind of the perovskite solar cell module and its packaging method of encapsulation
CN109216556A (en) * 2018-08-31 2019-01-15 武汉理工大学 A kind of perovskite solar battery of specific structure and preparation method thereof
CN109411611A (en) * 2018-11-28 2019-03-01 中国华能集团有限公司 A kind of perovskite solar cell encapsulation structure and packaging method
US20190112469A1 (en) * 2016-03-30 2019-04-18 Zeon Corporation Sealant composition for organic solar cell, sealant for organic solar cell, electrode for organic solar cell and organic solar cell
CN110010767A (en) * 2019-03-26 2019-07-12 华中科技大学鄂州工业技术研究院 Thin-film encapsulation method of perovskite solar cell and corresponding battery device
CN110246926A (en) * 2019-05-30 2019-09-17 辽宁科技大学 A kind of magnetically controlled sputter method preparing full-inorganic perovskite solar battery
CN110571335A (en) * 2019-08-08 2019-12-13 北京曜能科技有限公司 Perovskite photovoltaic module, preparation method and application
CN110660918A (en) * 2018-06-28 2020-01-07 湖北万度光能有限责任公司 Perovskite solar cell packaging method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170236652A1 (en) * 2014-10-14 2017-08-17 Sekisui Chemical Co., Ltd. Solar cell
US20190112469A1 (en) * 2016-03-30 2019-04-18 Zeon Corporation Sealant composition for organic solar cell, sealant for organic solar cell, electrode for organic solar cell and organic solar cell
CN106229327A (en) * 2016-08-02 2016-12-14 天津工业大学 A kind of flexible large area perovskite solar module and preparation method thereof
US20180248061A1 (en) * 2017-02-24 2018-08-30 Epic Battery Inc. Stable perovskite solar cell
CN106953015A (en) * 2017-04-01 2017-07-14 武汉理工大学 A method for preparing high-efficiency large-area perovskite solar cells
CN108987585A (en) * 2017-06-02 2018-12-11 姚冀众 A kind of the perovskite solar cell module and its packaging method of encapsulation
CN207009482U (en) * 2017-06-02 2018-02-13 姚冀众 A kind of perovskite solar cell module of encapsulation
CN108155293A (en) * 2017-12-30 2018-06-12 凯盛光伏材料有限公司 A kind of copper indium gallium selenide perovskite lamination solar cell and preparation method thereof
CN207967053U (en) * 2017-12-30 2018-10-12 凯盛光伏材料有限公司 A kind of copper indium gallium selenide perovskite lamination solar cell
CN108539022A (en) * 2018-03-30 2018-09-14 武汉理工大学 The low damage perovskite solar cell of one kind and its packaging method
CN110660918A (en) * 2018-06-28 2020-01-07 湖北万度光能有限责任公司 Perovskite solar cell packaging method
CN109216556A (en) * 2018-08-31 2019-01-15 武汉理工大学 A kind of perovskite solar battery of specific structure and preparation method thereof
CN109411611A (en) * 2018-11-28 2019-03-01 中国华能集团有限公司 A kind of perovskite solar cell encapsulation structure and packaging method
CN110010767A (en) * 2019-03-26 2019-07-12 华中科技大学鄂州工业技术研究院 Thin-film encapsulation method of perovskite solar cell and corresponding battery device
CN110246926A (en) * 2019-05-30 2019-09-17 辽宁科技大学 A kind of magnetically controlled sputter method preparing full-inorganic perovskite solar battery
CN110571335A (en) * 2019-08-08 2019-12-13 北京曜能科技有限公司 Perovskite photovoltaic module, preparation method and application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909179A (en) * 2021-01-21 2021-06-04 南开大学 Packaging method of perovskite solar cell
CN112701227A (en) * 2021-01-27 2021-04-23 华中科技大学鄂州工业技术研究院 Perovskite solar cell device and packaging method thereof
CN113035988A (en) * 2021-05-13 2021-06-25 中山市武汉理工大学先进工程技术研究院 Perovskite solar cell module capable of effectively relieving hot spot effect
CN115073975A (en) * 2022-06-16 2022-09-20 武汉理工大学 Biodegradable solid lead packaging coating applied to perovskite solar cell and preparation and packaging methods thereof
WO2024082118A1 (en) * 2022-10-18 2024-04-25 宁德时代新能源科技股份有限公司 Solar cell module and electric device

Similar Documents

Publication Publication Date Title
CN111463351A (en) Lead leakage prevention packaging structure of perovskite solar cell and packaging method thereof
CN109411611B (en) Perovskite solar cell packaging structure and packaging method
CN101188258B (en) Method of manufacturing single crystal silicon solar cell and single crystal silicon solar cell
CN102017105B (en) Hermetically-sealed packages for electronic components having reduced unused areas
KR101341199B1 (en) Fabrication method of single crystal silicon solar battery and single crystal silicon solar battery
JPH0936405A (en) Solar cell module and method of manufacturing the same
CN108539022A (en) The low damage perovskite solar cell of one kind and its packaging method
TWI415273B (en) Single crystal silicon solar cell manufacturing methods and single crystal silicon solar cells
CN112701227B (en) Perovskite solar cell device and packaging method thereof
CN104766899A (en) A kind of encapsulation material of solar cell assembly and solar cell assembly
CN106711263A (en) Solar cell module and manufacturing method thereof
CN101989636A (en) Solar cell module and method of manufacturing the same
CN102263167A (en) Method for passivating edge of monocrystalline silicon solar cell, monocrystalline silicon solar cell and manufacturing method thereof and photovoltaic module
CN108807695A (en) A kind of perovskite heat-seal method used for solar batteries and component
CN101859809B (en) Solar cell encapsulation structure and preparation method thereof
CN108198904A (en) A kind of packaging method of perovskite/silicon heterogenous stacked solar cell, cascade solar cell
CN113809237B (en) Perovskite/crystalline silicon laminated solar cell device assembled by independent sub-cells and preparation method thereof
JPH11112007A (en) Solar cell module and its manufacture
CN118574436A (en) Encapsulation structure, encapsulation method and application of perovskite solar cell
CN112687828A (en) Perovskite solar cell packaging method
CN103155175A (en) Thin layered solar module having a composite wafer structure
CN103904149B (en) The encapsulating structure and method of a kind of crystal silicon solar batteries
CN116344655A (en) Heterojunction solar cell and its preparation method
CN115425154A (en) Preparation method of perovskite solar cell module
CN210200736U (en) AMOLED packaging structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200728

RJ01 Rejection of invention patent application after publication