CN111450263B - 一种磁共振/荧光双模态纳米探针及其制备方法 - Google Patents

一种磁共振/荧光双模态纳米探针及其制备方法 Download PDF

Info

Publication number
CN111450263B
CN111450263B CN202010369493.1A CN202010369493A CN111450263B CN 111450263 B CN111450263 B CN 111450263B CN 202010369493 A CN202010369493 A CN 202010369493A CN 111450263 B CN111450263 B CN 111450263B
Authority
CN
China
Prior art keywords
spions
thr
peg
dspe
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010369493.1A
Other languages
English (en)
Other versions
CN111450263A (zh
Inventor
吴敏
龚启勇
吕粟
曾凡新
谢若曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West China Hospital of Sichuan University
Original Assignee
West China Hospital of Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West China Hospital of Sichuan University filed Critical West China Hospital of Sichuan University
Priority to CN202010369493.1A priority Critical patent/CN111450263B/zh
Publication of CN111450263A publication Critical patent/CN111450263A/zh
Application granted granted Critical
Publication of CN111450263B publication Critical patent/CN111450263B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1866Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle the nanoparticle having a (super)(para)magnetic core coated or functionalised with a peptide, e.g. protein, polyamino acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种磁共振/荧光双模态纳米探针的制备方法,涉及医学检测技术领域,解决了现有技术中纳米探针单一的成像模式难以获得清晰的图像结果的问题。本发明的制备方法是以超顺磁纳米氧化铁SPIONs为核心,在SPIONs表面修饰近红外荧光分子Cy7、以及靶向多肽和/或其反式镜像结构作为配体构建能够靶向脑胶质母细胞瘤的磁共振/荧光双模态纳米探针。本发明的方法制得的双模态纳米探针可以整合磁共振和荧光成像的优点,提供更清晰的脑部肿瘤的解剖结构信息;成像过程中,引入本发明的方法制得的双模态纳米探针不仅可以提供更清晰的图像结果,还可以特异性的识别目标部位。本发明制得的双模态纳米探针还具有较好的体内稳定性。

Description

一种磁共振/荧光双模态纳米探针及其制备方法
技术领域
本发明涉及生物医学材料技术领域,尤其涉及一种磁共振/荧光双模态纳米探针及其制备方法。
背景技术
由于脑胶质母细胞瘤位置特殊性、异质性及浸润性,术前需要获得高空间分辨率、高灵敏度的图像结果来指导进一步的外科手术。然而,目前临床上常用的影像诊断方法难以达到上述目的。
一方面,穿透血脑屏障(BBB)被认为是纳米药物或探针运输到大脑实质的主要作用目标。目前,为改善纳米递送系统在脑部积累低的困境,研究者们提出了三种递送策略,包括绕过BBB、破坏BBB和利用BBB的内源性运输系统。例如,通过鼻腔注射法可以有效地绕过BBB,药物和纳米颗粒可以直接通过嗅觉神经与三叉神经转移到大脑,并且不会有明显的外周暴露,但是此方法由于其注射体积受限,导致进入脑部的药物或纳米粒子含量较少,应用效率较低。另外,可以通过聚焦超声或磁场加热等物理方法可逆的破坏BBB结构,达到药物输送的目的,但这种方法同时也给其它有害物质进入大脑开启了绿色通道。与上述两种需要外界条件支持才能实现的方法不同的是,第三种方法是利用脑部内源转运体或受体介导,以无创的方式提高纳米颗粒高效的脑部渗透效率,在纳米粒子表面修饰相关转运体、受体特异性的配体、或特异性的抗体,可以使其具有高选择性地通过BBB并靶向于肿瘤部位。
另一方面,现有技术中使用钆类螯合物T1对比剂的增强磁共振检查是临床常用的诊断脑胶质母细胞瘤的方法,但是Gd类对比剂在检测中尚存有很多的缺陷,除了在肿瘤外的血管泄漏会对T1的增强成像有很大影响外,T1增强本身也很难准确地了解术后反应,特别是在评估放疗后假阳性进展或抗血管生成疗法时的假阳性反应等。此外,Gd类小分子对比剂作为MRI中首选的对比剂还具有成像窗口时间短、增强效果较差以及潜在的肾源性纤维化和神经系统沉积等不足。
因此,需要研发新的MRI对比剂改进现有的MRI对比剂在临床应用上的局限性。超顺磁纳米氧化铁(Superparamagnetic iron oxide nanoparticles,SPIONs)作为MRI的T2对比剂具有高灵敏度、低毒性以及良好的生物相容性的特点,有望用于临床研究与应用。但由于脑脊液的高更替率、大脑内皮细胞间的紧密连接以及大脑内皮细胞的低内吞效率等,98%以上的小分子药物和100%的大分子药物不能进入脑实质,导致纳米探针的脑部聚集与纳米药物脑部递送受到严重阻碍。
特异性MR靶向对比剂通过与体内特定的靶点相结合显示活体分子靶点状态,在分子成像研究中具有重要的地位。特异性MR靶向对比剂又称MR分子探针,是在现有非靶向性对比剂的基础上开发的能够显示人体组织生理或病理过程中特异性靶向分子的对比剂,可为临床疾病的早期诊断和治疗,以及研究疾病的发生机制提供分子水平的信息。它们由运载体和显像剂两部分构成,选择针对特定靶点的特异性运载体和良好的MR显像剂,是构建靶向性分子探针的关键因素。因此,将SPIONs与特异性MR靶向对比剂结合,即使用SPIONs作显像剂的特异性MR靶向对比剂有望克服纳米探针脑部递送的多种阻碍,继而获得良好的颅内病灶的MRI图像,为脑胶质母细胞瘤的诊疗提供指导意见。
同时单一成像模式存在显著的局限性,如MRI受到低灵敏度的限制、光学成像受到空间分辨率低和组织渗透能力欠缺的影响,但二者结合的双模态成像可以提供协同和互补的成像信息,做到优势互补。因此,使用磁共振/光学双模态纳米探针将磁共振对比剂与近红外荧光分子(Cy5.5或Cy7等)结合,是未来特异性MR靶向对比剂的重要发展方向。
发明内容
本发明的其中一个目的是提出一种磁共振/荧光双模态纳米探针及其制备方法,解决了现有技术中纳米探针单一的成像模式难以获得清晰的图像结果的技术问题。本发明优选技术方案所能产生的诸多技术效果详见下文阐述。
为实现上述目的,本发明提供了以下技术方案:
本发明的磁共振/荧光双模态纳米探针的制备方法,以超顺磁纳米氧化铁SPIONs为核心,在SPIONs表面修饰近红外荧光分子Cy7、以及靶向多肽和/或其反式镜像结构作为配体构建能够靶向脑胶质母细胞瘤的磁共振/荧光双模态纳米探针。
根据一个优选实施方式,所述靶向多肽为L型氨基酸组成的靶向多肽THR;靶向多肽的反式镜像结构为D型氨基酸组成的靶向多肽的反式镜像序列DTHR。
根据一个优选实施方式,所述的L型氨基酸组成的靶向多肽THR为Ac-THRPPMWSPVWP-OH;所述的D型氨基酸组成的靶向多肽的反式镜像序列DTHR为Ac-PWVPSWMPPRHT-OH。
不限于此,本发明的靶向多肽和/或其反式镜像结构也可以是其余的序列。
根据一个优选实施方式,所述的磁共振/荧光双模态纳米探针的制备方法,以二硬脂酰基磷脂酰乙醇胺-聚乙二醇DSPE-PEG2000 AMINE、超顺磁纳米氧化铁SPIONs、Cy7-NHS分子、L型氨基酸组成的靶向多肽THR和/或D型氨基酸组成的靶向多肽的反式镜像序列DTHR为原料制得双模态纳米探针Peptides/Cy7-PEG-DSPE-SPIONs。优选的二硬脂酰基磷脂酰乙醇胺-聚乙二醇DSPE-PEG2000 AMINE的Mn=2742。
根据一个优选实施方式,制得的双模态纳米探针Peptides/Cy7-PEG-DSPE-SPIONs包括THR/Cy7-PEG-DSPE-SPIONs和/或DTHR/Cy7-PEG-DSPE-SPIONs。
根据一个优选实施方式,所述的磁共振/荧光双模态纳米探针的制备方法包括如下步骤:
S1:制备SPIONs,并通过亲疏水作用将DSPE-PEG2000 AMINE分子包被于SPIONs表面,对带有氨基的PEG化磁性纳米颗粒超声分散预处理,使纳米颗粒在水溶液中均匀分散;通过10KDa超滤管将磁性纳米颗粒水溶液替换为pH=8的0.02M硼酸盐缓冲液。
S2:对L型氨基酸组成的靶向多肽THR和/或D型氨基酸组成的靶向多肽的反式镜像序列DTHR的羧基进行活化。
S3:将活化后的靶向多肽THR和/或D型氨基酸组成的靶向多肽的反式镜像序列DTHR与NH2-PEG-DSPE-SPIONs置于摇床反应2h,结束后用30KDa超滤管分离未反应的靶向多肽,得到PEG化磁性纳米颗粒Peptides/PEG-DSPE-SPIONs溶液。
S4:将Cy7-NHS分子加入上述PEG化磁性纳米颗粒溶液中,4℃避光振荡过夜;孵育结束后,用超滤管去除未反应的染料分子Cy7-NHS,得到Peptides/Cy7-PEG-DSPE-SPIONs探针。
根据一个优选实施方式,所述的磁共振/荧光双模态纳米探针的制备方法采用水热法合成SPIONs。
根据一个优选实施方式,采用水热法合成SPIONs包括如下步骤:
S11:将乙酰丙酮铁、1,2-已二醇、油酸、油酰胺和苄醚混合放入圆底烧瓶中,通入氩气去除反应体系中的空气并搅拌。
S12:将混合物加热到200℃,恒温2h,再加热至300℃,回流1h。
S13:将得到的黑色混合物冷却到室温,用乙醇沉淀产物,离心去除溶剂,并将产物分散至已烷得到SPIONs溶液。
S14:将获得的SPIONs溶液离心去除聚集物。
根据一个优选实施方式,对L型氨基酸组成的靶向多肽THR和/或D型氨基酸组成的靶向多肽的反式镜像序列DTHR的羧基进行活化包括如下步骤:
S21:取L型氨基酸组成的靶向多肽THR和/或D型氨基酸组成的靶向多肽的反式镜像序列DTHR,用pH=5.5的0.02M的MES缓冲液溶解。
S22:加入EDC分子,NHS分子,恒温摇床180rpm、25℃反应25min对靶向多肽序列的羧基进行活化。
S23:用2KDa超滤管去除未反应的EDC和NHS。
本发明的另一方面还提供了一种磁共振/荧光双模态纳米探针。所述的双模态纳米探针是利用本发明任一技术方案所述的双模态纳米探针的制备方法制得的。
本发明提供的磁共振/荧光双模态纳米探针及其制备方法至少具有如下有益技术效果:
本发明的磁共振/荧光双模态纳米探针的制备方法以超顺磁纳米氧化铁SPIONs为核心,在SPIONs表面修饰近红外荧光分子Cy7、以及靶向多肽和/或其反式镜像结构作为配体构建能够靶向脑胶质母细胞瘤的磁共振/荧光双模态成像探针,本发明的方法制得的双模态纳米探针可以整合磁共振和荧光成像的优点,提供更清晰的脑部肿瘤的解剖结构信息;成像过程中,引入本发明的方法制得的双模态纳米探针不仅可以提供更清晰的图像结果,而且还可以特异性的识别目标部位。即本发明的制备方法通过构建能够靶向脑胶质母细胞瘤的磁共振/荧光双模态成像探针,解决了现有技术中纳米探针单一的成像模式难以获得清晰的图像结果的技术问题。
另一方面,本发明的方法构建的能够靶向脑胶质母细胞瘤的磁共振/荧光双模态成像探针,在实现其MRI增强成像功能的同时,赋予探针近红外荧光成像功能,还具有较好的体内稳定性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A和1B分别为实施例1中Transwell构建的体外BBB模型的模式图和实物图,图1C为实施例1中体外构建BBB后的NaFl标准曲线图,图1D为实施例1中内皮细胞间质蛋白ZO-1蛋白免疫荧光染色图;
图2A和2B分别为实施例3中b.End 3细胞对THR/Cy7-PEG-DSPE-SPIONs与DTHR/Cy7-PEG-DSPE-SPIONs探针的摄取情况的流式细胞图;图2C和2D分别为实施例3中U87-MG细胞对THR/Cy7-PEG-DSPE-SPIONs与DTHR/Cy7-PEG-DSPE-SPIONs探针的摄取情况的流式细胞图;图2E和2F分别为实施例3中b.End 3细胞与U87-MG细胞摄取THR/Cy7-PEG-DSPE-SPIONs与DTHR/Cy7-PEG-DSPE-SPIONs探针随时间变化的定量结果图;
图3为实施例5中U87-MG细胞对血清孵育和未孵育的THR/Cy7-PEG-DSPE-SPIONs探针和DTHR/Cy7-PEG-DSPE-SPIONs探针摄取情况的流式细胞图;
图4为实施例5中U87-MG细胞对血清孵育后THR/Cy7-PEG-DSPE-SPIONs探针和DTHR/Cy7-PEG-DSPE-SPIONs探针的摄取情况定量结果图;
图5为实施例7中Luc-U87-MG在裸鼠原位脑胶质母细胞瘤模型的建立结果图,其中,A为未成功建立的模型,B、C和D为成功建立的模型图;
图6为实施例8中的Cy7-PEG-DSPE-SPIONs对照组探针在不同时间点,荷瘤裸鼠中的磁共振成像图,其中,上排为T2加权成像图,下排为磁敏感加权成像(SWI,T2*)图;
图7为实施例8中的THR/Cy7-PEG-DSPE-SPIONs组探针在不同时间点,荷瘤裸鼠中的磁共振成像图,其中,上排为T2加权成像图,下排为磁敏感加权成像(SWI,T2*)图;
图8为实施例8中的DTHR/Cy7-PEG-DSPE-SPIONs组探针在不同时间点,荷瘤裸鼠中的磁共振成像图,其中,上排为T2加权成像图,下排为磁敏感加权成像(SWI,T2*)图;
图9A为实施例9中的Cy7-PEG-DSPE-SPIONs对照组探针与两种Peptides/Cy7-PEG-DSPE-SPIONs实验组探针注射于荷瘤裸鼠24h后的离体近红外荧光成像图,其中,上排图为生物发光成像图,显示肿瘤大小;下排图为近红外荧光成像图,显示探针位置;图9B为实施例9中的三种探针在脑胶质母细胞瘤处的平均荧光强度对比图;
图10为脑组织切片的普鲁士蓝染色结果显示图,其中,下排为上排方框区域放大图,上排标尺:50μm;下排标尺:25μm;
图11A为Peptides/Cy7-PEG-DSPE-SPIONs探针对U87-MG细胞的毒副作用;图11B为Peptides/Cy7-PEG-DSPE-SPIONs探针对HUVEC细胞的毒副作用;
图12为实施例13中尾静脉注射3种探针1天后各主要器官的HE染色情况图,图12的标尺为50μm;
图13为实施例13中尾静脉注射3种探针3天后各主要器官的HE染色情况图,图13的标尺为50μm;
图14为实施例13中尾静脉注射3种探针7天后各主要器官的HE染色情况图,图14的标尺为50μm。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
本发明的磁共振/荧光双模态纳米探针的制备方法具体包括如下过程:
S1:采用水热法合成SPIONs并对其进行预处理。具体如下:
将2mmol乙酰丙酮铁、10mmol 1,2-已二醇、6mmol油酸、6mmol油酰胺和20mL苄醚混合放入圆底烧瓶中,通入氩气去除反应体系中的空气并搅拌。将混合物加热到200℃,恒温2h,再加热至300℃回流1h。将得到的黑色混合物冷却到室温,用乙醇沉淀产物,离心(10000g,10min)去除溶剂,并将产物分散至已烷得到SPIONs溶液。将获得的SPIONs溶液于3000g条件下离心去除聚集物。
通过亲疏水作用将DSPE-PEG2000 AMINE分子包被于SPIONs表面,对带有氨基的PEG化磁性纳米颗粒超声分散预处理,使纳米颗粒在水溶液中均匀分散。通过10KDa超滤管将磁性纳米颗粒水溶液替换为pH=8的0.02M硼酸盐缓冲液。
S2:对靶向多肽的羧基进行活化。具体如下:
对L型氨基酸组成的靶向多肽THR和/或D型氨基酸组成的靶向多肽的反式镜像序列DTHR的羧基进行活化,包括如下步骤:
取2mg L型氨基酸组成的靶向多肽THR和/或D型氨基酸组成的靶向多肽的反式镜像序列DTHR,用pH=5.5的0.02M的MES缓冲液溶解。
加入1mg EDC分子,0.5mg NHS分子,恒温摇床180rpm、25℃反应25min对靶向多肽序列的羧基进行活化。NHS分子可以起到连接的作用。
用2KDa超滤管去除未反应的EDC和NHS(3000rpm,5min,离心两次)。
S3:将活化后的靶向多肽THR和/或D型氨基酸组成的靶向多肽的反式镜像序列DTHR与NH2-PEG-DSPE-SPIONs置于摇床反应2h,结束后用30KDa超滤管分离未反应的靶向多肽,得到PEG化磁性纳米颗粒Peptides/PEG-DSPE-SPIONs溶液。
S4:将Cy7-NHS分子(50μL,1mg/mL)加入上述PEG化磁性纳米颗粒溶液中,4℃避光振荡过夜;孵育结束后,用超滤管去除未反应的染料分子Cy7-NHS,得到Peptides/Cy7-PEG-DSPE-SPIONs探针。
本发明的磁共振/荧光双模态纳米探针,是利用本发明任一技术方案所述的双模态纳米探针的制备方法制得的。
下面以L型氨基酸组成的靶向多肽THR和D型氨基酸组成的靶向多肽的反式镜像序列DTHR为例,结合说明书附图1~14以及实施例1~13,通过对比剂体外BBB穿透特性、体外细胞成像及体内成像等实验对采用本发明的制备方法制得的磁共振/荧光双模态纳米探针进行详细说明。实验中的数据使用Prism 6软件进行统计学分析,实验结果以平均值±标准误表示,使用单因素方差分析比较两组数据间的差异性,p<0.05判定差异具有显著性。
实验材料:
(1)主要材料试剂
Figure GDA0002529842460000081
Figure GDA0002529842460000091
Figure GDA0002529842460000101
(2)主要仪器
Figure GDA0002529842460000102
(3)细胞
b.End 3:小鼠脑血管内皮细胞株,购自中国科学院上海细胞库,液氮保存于实验室。
U87-MG:人脑星形脑胶质母细胞瘤细胞株,购自中国科学院上海细胞库,液氮保存于实验室。
HUVEC:人脐带静脉内皮细胞株,购自中国科学院上海细胞库,液氮保存于实验室。
(4)动物
BAL B/c小鼠,雄性,20±2g,成都达硕实验动物中心提供。
BAL B/c裸鼠,雄性,20±2g,成都达硕实验动物中心提供。
实施例1
本实施例对体外BBB模型构建与评价进行说明。
实验方法:建立体外血脑屏障模型用于评估双模态纳米探针的渗透性。U87-MG细胞与b.End 3细胞均使用含10%胎牛血清及1%青霉素/链霉素的高糖DMEM培养基于37℃、5%CO2条件下培养。在Transwell多聚微孔脂膜的内侧均匀地涂上薄的一层胶原溶液,置于超净台约30min,待其自然干燥后使用。将b.End 3细胞以5×104个细胞/孔的密度接种于24孔的Transwell上室中,两天后,将U87-MG细胞以1×105个细胞/孔的密度接种于Transwell下室中,继续共培养一周。
首先,通过试漏试验检测评价所构建的BBB模型。将Transwell上下室分别加入200μL与900μL的培养基,记录其液面差,继续培养4h后,观察上下两室间液面差是否改变。
紧密连接蛋白ZO-1表达于内皮细胞膜上,呈连续的线状分布,通过ZO-1的免疫组化鉴定判断上室内皮细胞间产生的紧密连接。吸去Transwell上下室培养基,PBS清洗两次,剪下多聚酯膜放入24孔板中进行免疫荧光染色。加入4%多聚甲醛固定细胞30min,PBS清洗3次后,加入5%BSA溶液,室温封闭1h。加入ZO-1兔源一抗(5μg/mL),4℃孵育过夜。去除一抗后,PBS清洗3次,加入FITC标记的山羊抗兔二抗,37℃孵育1h。PBS清洗3次后,加入DAPI染色细胞核,清洗后封片并于共聚集显微镜下观察、采图拍照。
采用荧光素钠评价体外BBB的通透性,用PBS配制荧光素钠(NaFl)系列标准溶液,浓度分别为:0.05、0.10、0.15、0.20、0.25、0.30、0.35、0.40、0.45和0.50μg/mL,用多功能酶标仪测定吸光度值(设定激发波长为485nm,检测波长为535nm)。随后制作NaFl浓度与吸光度值的标准曲线。取上述构建好的BBB模型,吸去Transwell上下室培养基,PBS清洗两次,上室加入200μL NaFl(10μg/mL)溶液,下室加入900μL PBS,于37℃、5%CO2条件下培养30min、60min与90min后取下室溶液100μL于96孔板中,每次均补充下室PBS至900μL,用多功能酶标仪测定通过上室的NaFl的量。通透系数Papp通过公式计算得到:Papp(cm/s)=dQ/dt×1/(A×C0)。其中,dQ/dt为NaFl从Transwell上室向下室转运速率,A为扩散面积,在本实验中为0.33cm2,C0为上室药物初始浓度。
实验结果:体外BBB模型的构建如图1中的A和B所示,Transwell上室加入b.End3脑血管内皮细胞,下室加入U87-MG脑胶质母细胞瘤细胞,共培养后形成BBB模拟屏障。
试漏试验:构建好模型后换液并于4h后进行观察,Transwell小室内外池保持相对稳定的液面差,可以初步认为上室内皮细胞完全紧密连接,BBB模型基本形成。
小鼠脑血管内皮细胞紧密连接蛋白ZO-1的免疫组化鉴定:b.End3细胞之间存在紧密连接,紧密连接蛋白ZO-1表达于细胞膜表面,呈连续线状分布。其免疫荧光检测结果如图1中的D所示,可观察到内皮细胞间的ZO-1蛋白表达。
BBB限制通透性评价:NaFl浓度测定标准曲线为y=6165x+15.76,r2=0.9985,x为浓度,y为吸光度值(如图1中的C所示)。测定30min,60min和90min不同时间点透过上室的NaFl浓度。计算空白小室的NaFl透过率:Papp=67.80×10-6cm/s,BBB模型组:Papp=(11.24±0.73)×10-6cm/s。这一结果表明,BBB模型展现了较强的限制通透性能力。
实施例2
本实施例对本发明的方法制得的双模态纳米探针穿透体外BBB模型性能进行评价。
实验方法:通过实施例1方法成功构建体外BBB模型后,用PBS将Transwell上下室轻轻清洗两遍,在上室加入PBS、Cy7-PEG-DSPE-SPIONs以及两种peptide/Cy7-PEG-DSPE-SPIONs溶液(本实施例所说的两种peptide/Cy7-PEG-DSPE-SPIONs溶液为:THR/Cy7-PEG-DSPE-SPIONs和DTHR/Cy7-PEG-DSPE-SPIONs。同样的,下面的实施例所说的两种peptide/Cy7-PEG-DSPE-SPIONs溶液也是THR/Cy7-PEG-DSPE-SPIONs和DTHR/Cy7-PEG-DSPE-SPIONs,不再重复),每组浓度为10.0μg/mL,共200μL;在下室加入PBS 900μL,孵育60min,取下室缓冲溶液100μL放入PET黑色96孔板,多功能酶标仪测定三次取出的下室溶液的荧光强度,计算通过的探针量,激发波长为720nm,检测波长为820nm。
实验结果:以Cy7-PEG-DSPE-SPIONs作为对照通过测定透过上室的探针溶液来判断两种Peptides/Cy7-PEG-DSPE-SPIONs探针的体外BBB模型的穿透能力。等量加入THR/Cy7-PEG-DSPE-SPIONs与DTHR/Cy7-PEG-DSPE-SPIONs两种探针于Transwell上室60min后,透过上室探针的荧光强度分别为:536.3±94.03和549.5±97.42,实验组与对照组Cy7-PEG-DSPE-SPIONs(158±47.53)相比存在显著性差异(p<0.05),说明靶向多肽修饰后,探针的BBB渗透能力显著提高。
实施例3
本实施例对b.End 3细胞与U87-MG细胞对不同探针摄取定量分析。
实验方法:细胞铺板:U87-MG细胞与b.End 3细胞均使用含10%胎牛血清及1%青霉素/链霉素的高糖DMEM培养基于37℃、5%CO2条件下培养。细胞生长状态良好时,将两种细胞分别铺于12孔板中,每孔密度为1×105个细胞。
流式检测:待细胞贴壁后,加入两种探针溶液(Peptides/Cy7-PEG-DSPE-SPIONs),浓度均为50μg/mL(Fe3O4浓度),将细胞置于37℃、5%CO2条件下继续培养1h、2h,4h,于设定时间点收集细胞做流式检测,设定检测通道为APC-A750,数据结果由流式处理软件Flowjo处理分析。
实验结果:将两种靶向多肽修饰的探针(Peptides/Cy7-PEG-DSPE-SPIONs)分别与b.End3、U87-MG细胞共孵育1、2、4h后,收集细胞进行流式检测,结果如图2所示。结果显示两种细胞对探针的摄取随共培养时间延长而相对增加,表明b.End3与U87-MG两类细胞对探针的摄取情况具有时间效应关系。
实施例4
本实施例对b.End 3细胞与U87-MG细胞对不同探针摄取定性观察。
实验方法:细胞铺板:U87-MG细胞与b.End 3细胞均使用含10%胎牛血清及1%青霉素/链霉素的高糖DMEM培养基于37℃、5%CO2条件下培养。将圆形玻璃片灭菌后置于24孔板内,细胞生长状态良好时,将两种细胞分别铺于孔板中,每孔密度为2.5×104个细胞。
探针预孵育:为探究功能多肽的稳定性,探针在细胞摄取之前预先采用人源血清1∶1比例于37℃摇床共孵育3h(80rpm)。
细胞摄取:待细胞贴壁后,分别加入浓度均为50μg Fe3O4/mL的两种探针溶液(Peptides/Cy7-PEG-DSPE-SPIONs)及其血清预孵育的两种探针溶液(Pre-incubationPeptides/Cy7-PEG-DSPE-SPIONs)继续培养2h和4h,于设定时间去除培养基并用PBS清洗3次后加入4%多聚甲醛固定细胞30min。PBS清洗3次后,加入DAPI染色细胞核,清洗后封片并镜下观察,用光学显微镜采图拍照。
实验结果:使用光学荧光显微镜观察细胞对两种多肽修饰的探针以及其血清预孵育后的探针的摄取情况。将THR/Cy7-PEG-DSPE-SPIONs与DTHR/Cy7-PEG-DSPE-SPIONs两种探针用人血清1∶1比例共孵育3h做预处理后再与细胞共培养2h与4h。实验结果表明两组多肽修饰的探针及其预处理组均能够被细胞有效摄取并分布于细胞质中,其中血清预培养后的探针在相同曝光条件下的红色荧光信号与未处理组相比明显减弱。THR组与DTHR相差不明显。实施例5进一步采用流式细胞仪定量探究了U87-MG细胞对两组探针在血清共孵育后的摄取情况。
实施例5
本实施例对U87-MG细胞对血清预孵育后的两种探针摄取定量分析。
实验方法:细胞铺板:选用U87-MG细胞用于两种带靶向多肽修饰的探针与血清预孵育的探针的摄取情况评价分析。U87-MG细胞使用含10%胎牛血清及1%青霉素/链霉素的高糖DMEM培养基于37℃、5%CO2条件下培养。细胞生长状态良好时,铺于12孔板中,每孔密度为1×105个细胞。
流式检测:待细胞贴壁后,分别加入浓度均为50μg Fe3O4/mL的两种探针溶液(Peptides/Cy7-PEG-DSPE-SPIONs)及其血清预孵育的两种探针溶液(Pre-incubationPeptides/Cy7-PEG-DSPE-SPIONs),将细胞置于37℃、5%CO2条件下继续培养4h后收集细胞做流式检测,设定检测通道为APC-A750,数据结果由流式处理软件Flowjo处理分析。
实验结果:由于修饰的多肽具有靶向功能,能够介导细胞对于纳米探针的摄取,如果其功能被破坏,则细胞对纳米探针的摄取量会显著降低。通过研究人血清与多肽修饰的探针共孵育前后细胞对探针的摄取量,可以判断多肽修饰的探针的稳定性。将U87-MG细胞与各组探针共培养4h后,收集细胞做流式检测,结果如图3所示。U87-MG细胞对血清孵育后THR/Cy7-PEG-SPIONs与DTHR/Cy7-PEG-SPIONs探针的摄取情况定量结果如图4所示。结果表明,血清预处理后的探针摄取量均有所下降,THR组与DTHR组下降不明显,且其二者摄取量相差不明显。此结果也印证了上述荧光观察结果。
实施例6
本实施例对Luc-U87-MG细胞的构建及筛选进行说明。
实验方法:为方便确定原位脑胶质母细胞瘤模型的构建是否成功,以及评价荧光成像效果,本实施例中采用转染荧光素酶(Luciferase)基因的U87-MG细胞用于动物模型构建。该质粒具有抗嘌呤霉素抗性。U87-MG细胞接种于6孔板使用含10%胎牛血清及1%青霉素/链霉素的高糖DMEM培养基于37℃、5%CO2条件下培养。待细胞生长到对数生长期,加入10μL病毒浓缩液(4.85×108个/mL)与2μL感染试剂polybrene(10μg/mL),继续培养48h。更换筛选培养基,嘌呤浓度为1.5μg/mL,筛选获得的Luc-U87-MG混克隆细胞,然后进一步,通过有限稀释法挑选Luc-U87-MG单克隆细胞。将细胞消化下来后连续的10倍稀释并接种于96孔板,最终每孔约为1-1.5个细胞,将获得的单细胞克隆传代于24孔板,待细胞生长密度约为60%后,加入100μL萤光素钾盐(1mg/mL)共孵育2min,通过小动物活体成像仪检测到荧光信号,即表明获得Luc-U87-MG单细胞克隆。
实验结果:因为原位脑胶质母细胞瘤位于颅内,肿瘤细胞是否成功接种,肿瘤的生长情况及大小不能直观的观察到,为更好的判断模型是否构建成功以便接下来进一步的成像研究,采用表达荧光素酶(Luciferase)的U87-MG细胞作为接种细胞。首先通过慢病毒包装质粒将荧光素酶基因转入U87-MG细胞中,利用质粒上的嘌呤抗性基因筛选稳定表达的单细胞克隆获得单克隆Luc-U87-MG细胞株,获得的细胞株与荧光素反应后通过小动物活体成像仪进行检测。
实施例7
本实施例对裸鼠Luc-U87-MG原位脑胶质母细胞瘤模型建立进行说明。
实验方法:选用5-6周龄、体重约20g的BAL B/c裸鼠建立模型。首先,Luc-U87-MG细胞使用含10%胎牛血清及1%青霉素/链霉素的高糖DMEM培养基于37℃、5%CO2条件下培养,待细胞生长状态良好时,胰蛋白酶消化并收集细胞用于原位脑胶质母细胞瘤接种,每只老鼠接种细胞浓度为5×104个(5μL的单细胞悬液)。根据小鼠体重注射麻醉剂戊巴比妥钠(60μg/kg),待小鼠完全麻醉后,将小鼠固定于立体定位仪。碘酒、酒精消毒后,纵向剪开头部皮肤,暴露头骨。以前囟为原点,向右2mm,向前1mm处定位钻孔。用5μL微量注射器吸收Luc-U87-MG细胞悬液,钻孔处向下深入3mm,退针1mm,以0.5μL/min的速度注入细胞。全部注射后,停针10min,退针。对伤口处消毒后,医用缝合线缝合皮肤并消毒,术后连续观察小鼠状态。术后3周,使用小动物活体成像仪观察并确认模型是否成功。
实验结果:原位接种Luc-U87-MG细胞3周后,通过小动物活体成像仪检测是否成功接种。未成功接种的小鼠,其肿瘤细胞并未集中在颅内的注射点位置,并向头颈部以下转移(如图5中的A所示),成功接种的裸鼠则可以观察到肿瘤细胞均聚集在颅内注射位点位置并成瘤(如图5中的B、C和D所示)。
实施例8
本实施例对体内磁共振T2加权成像与SWI(T2*)成像进行说明。
实验方法:选用成功建立原位脑胶质母细胞瘤的荷瘤裸鼠用于磁共振成像研究。磁共振成像选用西门子Siemens Magnetom Trio 3.0T磁共振仪与小鼠线圈进行扫描。成像动物分为3组,每组3只:
阴性对照组(组1):按10mg Fe3O4/kg剂量尾静脉注射非靶向探针Cy7-PEG-DSPE-SPIONs。
实验成像组(组2和组3):按10mg Fe3O4/kg剂量分别尾静脉注射靶向探针THR/Cy7-PEG-DSPE-SPIONs、DTHR/Cy7-PEG-DSPE-SPIONs。取祼鼠经异氟烷麻醉后进行第一次扫描并采集图像,完成后注射探针,随即进行增强扫描并采集图像,取时间点为0h、2h、4h、24h。扫描参数:
T2加权成像:TE=93ms;TR=3000ms;层厚(SL)=1mm;视野(FoV)=66mm×66mm;矩阵大小(matrix size)=256×256,NEX:5;
SWI(T2*)成像:TE=20ms;TR=32ms;层厚(SL)=1mm;视野(FoV)=50mm×50mm;矩阵大小(matrix size)=320×320,NEX:2。
实验结果:选用成功建立原位脑胶质母细胞瘤的裸鼠进行体内成像。荷瘤裸鼠在注射3种探针后T2增强扫描,结果表明Cy7-PEG-DSPE-SPIONs组在T2成像上不能有效地对肿瘤部位增强显影(如图6,T2),而注射其它两组探针(THR/Cy7-PEG-DSPE-SPIONs、DTHR/Cy7-PEG-DSPE-SPIONs)后,在T2成像上可以观察到肿瘤部位较暗(如图7、图8,T2),并且其增强效果随时间减弱。但是由于肿瘤本身在T2平扫时呈现亮信号、正常脑组织呈现暗信号,因此阴性造影剂在对颅内肿瘤的T2增强中存在明显的劣势,增强扫描反而减弱了正常组织与肿瘤组织间的对比。
磁敏感加权成像(SWI,T2*)是一种利用组织磁敏感性不同而成像的一种磁共振成像技术,对局部磁场变化非常敏感,在图像上表现为低信号。因为铁沉积可引起磁场变化,因此在利用靶向多肽修饰的SPIONs探针来检测脑部肿瘤时采用SWI技术,并与T2加权成像做了对比。结果表明,SWI能够清晰地勾勒出肿瘤轮廓,增强正常组织与肿瘤组织间的对比度(如图6~8,T2*)。
SWI在注射后的0min(实际操作时,扫描一个T2序列4.5min,扫描一个SWI序列7.5min)后,可以看到肿瘤部分出现明显的信号变化,暗信号会随时间推移而逐渐减弱。在24h后,采用SWI序列扫描仍可在肿瘤部位检测到SPIONs的聚集,而T2加权成像做不到长时间的监测。两种多肽修饰的探针与未靶向修饰的探针相对比,其靶向成像能力及聚集能力较强。如图6所示,Cy7-PEG-DSPE-SPIONs组在小鼠脑部肿瘤聚集程度低,对比成像效果差。注射THR、DTHR多肽组探针的荷瘤裸鼠,脑胶质母细胞瘤部位在长时间内(24h)均可检测到探针的滞留(如图7、图8)。
实施例9
本实施例对离体器官的荧光成像进行说明。
实验方法:使用小动物活体成像对成功建立原位脑胶质母细胞瘤的荷瘤裸鼠进行生物发光成像及近红外荧光成像研究。颅内肿瘤近红外荧光成像需要开颅进行,因此,选用离体成像的方式进行。实验分组同实施例8,共分为3组。尾静脉材料注射24h后,腹腔注射一定量的萤光素钾盐溶液(150mg/kg),待反应15min后,将实验动物用生理盐水和4%多聚甲醛心脏灌注后取其大脑组织以及其它主要器官(心、肝、脾、肺、肾),随后采用小动物活体成像系统观察脑胶质母细胞瘤原位显影情况以及材料在各器官的分布情况(近红外荧光成像设定激发波长为720nm,检测820nm的发射波长)。
实验结果:利用小动物活体成像仪进行离体荧光成像来评估探针的近红外荧光成像效果。Cy7-PEG-DSPE-SPIONs对照组探针与两种Peptides/Cy7-PEG-DSPE-SPIONs实验组探针注射于荷瘤裸鼠24h后,通过生物发光成像(BLI)检测不同组的脑胶质母细胞瘤大小,通过近红外荧光成像检测不同组探针在肿瘤位置的聚集量(如图9A所示)。最后计算平均荧光强度(总荧光强度/生物发光光子数)评估探针在肿瘤位置的平均聚集量。结果表明,Cy7-PEG-DSPE-SPIONs探针组在肿瘤部位聚集程度最弱,与多肽靶向组对比具有显著性差异(p<0.05)。THR/Cy7-PEG-DSPE-SPIONs、DTHR/Cy7-PEG-DSPE-SPIONs探针组在肿瘤部位的平均荧光强度明显高于Cy7-PEG-DSPE-SPIONs对照组,且差异具有显著性(p<0.05)(如图9B所示)。
实施例10
本实施例对本发明的方法制得的探针在荷瘤脑部的定位进行说明。
实验方法:将扫描完成后的实验动物用生理盐水和4%多聚甲醛心脏灌注后取其大脑组织,并用固定液持续固定2天,然后转入浓度为30%的蔗糖溶液中脱水,持续脱水3次,完全脱水后,将脑组织用OCT包埋剂包埋置于恒冷切片机进行冰冻切片,切片时保持大脑的矢状位平行于刀片处,厚度为8μm,将切片置于阳离子防脱载玻片上,切片晾干后用清水冲洗2min,再用超纯水冲洗2min。取等体积普鲁士蓝A液(2%HCl溶液)和B液(2%亚铁氰化钾溶液)混合配制成染液,将组织切片染色孵育30min,随后超纯水清洗2次,每次3min。加入复染液(2%核固红染料)染色1min,染色结束后,纯水清洗,晾干,中性树脂封片,采用光学显微镜观察探针在脑部的具体分布位置。
实验结果:将上述已固定的大脑组织做进一步切片处理后,采用普鲁士蓝染色检测探针在脑部及肿瘤位置的分布情况。通过染色分析,三种探针在肿瘤边缘均有聚集,如图10所示。从图10还可以观察到多肽组修饰的两种探针聚集程度高于对照组。结果与MR成像结果一致,探针能够有效地聚集于肿瘤的边界。
实施例11
本实施例对本发明的方法制得的探针在荷瘤小鼠内的组织分布进行说明。
实验方法:取健康的BAL B/c小鼠,随机分成4组,设为生理盐水对照组和实验组(Cy7-PEG-DSPE-SPIONs、THR/Cy7-PEG-DSPE-SPIONs、DTHR/Cy7-PEG-DSPE-SPIONs),每组3只,按10mg Fe3O4/kg经尾静脉将探针溶液或等体积的生理盐水分别注射量于相应小鼠体内,24h后处死,任意取各组中2只小鼠的器官(脑、心、肝、脾、肺、肾)固定,各器官取0.2g剪碎,加入1mL双氧水,2mL硝酸消化两天,120℃油浴,直至无沉淀,蒸干后,加入5mL的2%HNO3溶液定容,超声处理20min后,取4mL溶液到EP管中,用ICP-MS方法测定Fe含量。
实验结果:探针在体内主要器官的分布与含量通过ICP-MS与荧光分析测定。在注射探针24h后灌注取小鼠的主要器官(心、肝、脾、肺、肾、脑)用小动物活体成像仪进行离体荧光成像。总荧光强度分析结果表明,纳米探针主要集中于肝脏与肾脏这两大代谢器官。通过ICP-MS进一步定量分析,虽然总量上来看纳米探针在肝、肾部位有明显的聚集,但从Fe质量分数上分析,脾脏的Fe质量比最高,这可能与它作为铁代谢器官有一定关系。
实施例12
本实施例对本发明的方法制得的双模态纳米探针对细胞的毒副作用进行说明。
实验方法:U87-MG细胞与HUVEC细胞均使用含10%胎牛血清及1%青霉素/链霉素的高糖DMEM培养基于37℃、5%CO2条件下培养。采用CCK-8试剂盒对Peptides/Cy7-PEG-DSPE-SPIONs探针体外细胞毒性进行分析。将U87-MG细胞与HUVEC细胞按每孔1×104个细胞分别接种于96孔板中,培养24h后,加入含有Fe浓度分别为0.000,3.125,6.250,12.500,25.000,50.000μg/mL的探针培养基继续培养24h。PBS清洗两次,每孔加入100μL CCK-8试剂(原液:10μL,培养基:90μL配制)。孵育1.5h后,酶标仪检测在450nm的吸光度。
实验结果:通过研究Peptides/Cy7-PEG-DSPE-SPIONs对脑胶质母细胞瘤细胞(U87-MG)以及正常内皮细胞(HUVEC)的增殖能力的影响来评价其对细胞的毒副作用。将不同浓度的两种Peptides/Cy7-PEG-DSPE-SPIONs探针加入细胞中,共孵育24h后,用CCK-8试剂盒检测其对细胞增殖能力的影响,结果如图11所示。在0-50μg Fe3O4/mL浓度范围内,探针共孵育的U87-MG/HUVEC的增殖能力与空白组相比没有显著性差异(p>0.05)。这表明本发明的双模态纳米探针对细胞无明显毒副作用。
实施例13
本实施例对本发明的方法制得的双模态纳米探针的体内初步安全性评估进行说明。
实验方法:取健康的BAL B/c小鼠,随机分成4组,分为设为生理盐水对照组和实验组(Cy7-PEG-DSPE-SPIONs、THR/Cy7-PEG-DSPE-SPIONs、DTHR/Cy7-PEG-DSPE-SPIONs),每组9只。按10mg Fe3O4/kg剂量经尾静脉将探针溶液或等体积的生理盐水分别注射量于小鼠体内,于注射后第1、3、7天处死每组中的3只小鼠,并取其器官(心、肝、脾、肺、肾)固定,随后进行石蜡切片,苏木精-伊红(HE)染色,并用光学显微镜进行组织病理学观察。
实验结果:如图12~14所示,尾静脉注射3种探针(Cy7-PEG-DSPE-SPIONs,THR/Cy7-PEG-DSPE-SPIONs、DTHR/Cy7-PEG-DSPE-SPIONs),在第1、3、7天后,通过对不同组的主要器官(心、肝、脾、肺、肾)的HE染色切片结果分析可得,静脉注射不同探针的实验组与对照组相比没有明显的病理特征。这表明所构建的各类探针在体内不具有长时间的系统性毒性,体内安全性良好。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (5)

1.一种磁共振/荧光双模态纳米探针的制备方法,其特征在于,所述方法是以超顺磁纳米氧化铁SPIONs为核心,在SPIONs表面修饰近红外荧光分子Cy7、以及靶向多肽和/或其反式镜像结构作为配体构建能够靶向脑胶质母细胞瘤的磁共振/荧光双模态纳米探针,其中,
所述靶向多肽为L型氨基酸组成的靶向多肽THR;靶向多肽的反式镜像结构为D型氨基酸组成的靶向多肽的反式镜像序列DTHR;
所述的L型氨基酸组成的靶向多肽THR为Ac-THRPPMWSPVWP-OH;所述的D型氨基酸组成的靶向多肽的反式镜像序列DTHR为Ac-PWVPSWMPPRHT-OH;
并且所述方法是以二硬脂酰基磷脂酰乙醇胺-聚乙二醇DSPE-PEG2000AMINE、超顺磁纳米氧化铁SPIONs、Cy7-NHS分子、L型氨基酸组成的靶向多肽THR和/或D型氨基酸组成的靶向多肽的反式镜像序列DTHR为原料制得双模态纳米探针Peptides/Cy7-PEG-DSPE-SPIONs;
制得的双模态纳米探针Peptides/Cy7-PEG-DSPE-SPIONs包括THR/Cy7-PEG-DSPE-SPIONs和/或DTHR/Cy7-PEG-DSPE-SPIONs;
所述方法包括如下步骤:
S1:制备SPIONs,并通过亲疏水作用将DSPE-PEG2000 AMINE分子包被于SPIONs表面,对带有氨基的PEG化磁性纳米颗粒超声分散预处理,使纳米颗粒在水溶液中均匀分散;通过10KDa超滤管将磁性纳米颗粒水溶液替换为pH=8的0.02M硼酸盐缓冲液;
S2:对L型氨基酸组成的靶向多肽THR和/或D型氨基酸组成的靶向多肽的反式镜像序列DTHR的羧基进行活化;
S3:将活化后的靶向多肽THR和/或D型氨基酸组成的靶向多肽的反式镜像序列DTHR与NH2-PEG-DSPE-SPIONs置于摇床反应2h,结束后用30KDa超滤管分离未反应的靶向多肽,得到PEG化磁性纳米颗粒Peptides/PEG-DSPE-SPIONs溶液;
S4:将Cy7-NHS分子加入上述PEG化磁性纳米颗粒溶液中,4℃避光振荡过夜;孵育结束后,用超滤管去除未反应的染料分子Cy7-NHS,得到Peptides/Cy7-PEG-DSPE-SPIONs探针。
2.根据权利要求1所述的磁共振/荧光双模态纳米探针的制备方法,其特征在于,所述方法采用水热法合成SPIONs。
3.根据权利要求2所述的磁共振/荧光双模态纳米探针的制备方法,其特征在于,采用水热法合成SPIONs包括如下步骤:
S11:将乙酰丙酮铁、1,2-已二醇、油酸、油酰胺和苄醚混合放入圆底烧瓶中,通入氩气去除反应体系中的空气并搅拌;
S12:将混合物加热到200℃,恒温2h,再加热至300℃,回流1h;
S13:将得到的黑色混合物冷却到室温,用乙醇沉淀产物,离心去除溶剂,并将产物分散至已烷得到SPIONs溶液;
S14:将获得的SPIONs溶液离心去除聚集物。
4.根据权利要求1所述的磁共振/荧光双模态纳米探针的制备方法,其特征在于,对L型氨基酸组成的靶向多肽THR和/或D型氨基酸组成的靶向多肽的反式镜像序列DTHR的羧基进行活化包括如下步骤:
S21:取L型氨基酸组成的靶向多肽THR和/或D型氨基酸组成的靶向多肽的反式镜像序列DTHR,用pH=5.5的0.02M的MES缓冲液溶解;
S22:加入EDC分子,NHS分子,恒温摇床180rpm、25℃反应25min对靶向多肽序列的羧基进行活化;
S23:用2KDa超滤管去除未反应的EDC和NHS。
5.一种磁共振/荧光双模态纳米探针,其特征在于,所述的双模态纳米探针是采用权利要求1至4之一所述的制备方法制得的。
CN202010369493.1A 2020-05-03 2020-05-03 一种磁共振/荧光双模态纳米探针及其制备方法 Active CN111450263B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010369493.1A CN111450263B (zh) 2020-05-03 2020-05-03 一种磁共振/荧光双模态纳米探针及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010369493.1A CN111450263B (zh) 2020-05-03 2020-05-03 一种磁共振/荧光双模态纳米探针及其制备方法

Publications (2)

Publication Number Publication Date
CN111450263A CN111450263A (zh) 2020-07-28
CN111450263B true CN111450263B (zh) 2021-03-02

Family

ID=71670592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010369493.1A Active CN111450263B (zh) 2020-05-03 2020-05-03 一种磁共振/荧光双模态纳米探针及其制备方法

Country Status (1)

Country Link
CN (1) CN111450263B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112451685B (zh) * 2020-11-13 2023-04-21 四川大学华西医院 一种具有光声显影和光热治疗功能的复合纳米颗粒
CN112546224A (zh) * 2020-12-22 2021-03-26 暨南大学 基于超小磁性纳米颗粒的双模态非小细胞肺癌靶向纳米探针的制备方法
CN112641958A (zh) * 2020-12-29 2021-04-13 中国科学院自动化研究所 Met靶向分子探针及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743893A (en) * 1986-06-04 1988-05-10 Anthony Gentile Equi crane anti-tipping device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743893A (en) * 1986-06-04 1988-05-10 Anthony Gentile Equi crane anti-tipping device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《MR靶向分子成像在胰腺癌早期诊断中的研究进展》;李登峰;《国际医学放射学杂志》;20200131;第43卷(第1期);全文 *
《Plectin-1 Targeted Dual-modality Nanoparticles for Pancreatic Cancer Imaging》;Xiao Chen;《EBioMedicine》;20180315;第30卷;摘要 *
Macarena Sa'nchez-Navarro.《Blood–brain barrier peptide shuttles》.《Current Opinion in Chemical Biology》.2017,第38卷 *

Also Published As

Publication number Publication date
CN111450263A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
CN111450264B (zh) 一种靶向脑胶质母细胞瘤的双模态纳米探针及其制备方法
CN111450263B (zh) 一种磁共振/荧光双模态纳米探针及其制备方法
CN102406949B (zh) 一种靶向示踪的多模式诊断纳米影像药物
Zhang et al. Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles
CN103083689B (zh) 一种用于脑肿瘤诊断的跨血脑屏障靶向多模态纳米药物
CN106267241B (zh) 一种多功能多模态肿瘤特异性靶向相变型纳米微球光声造影剂及其应用
US20150093335A1 (en) Cell-targeted magnetic nano-material and biomedical uses thereof
JP2010516760A (ja) 酸化マンガンナノ粒子を含む磁気共鳴映像t1造影剤
CN103505746B (zh) 一种胶质瘤靶向磁共振和荧光双模式成像对比剂及制备方法
US8834844B2 (en) Chemical exchange saturation transfer based MRI using reporter genes and MRI methods related thereto
Morse et al. Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound
Patil et al. Single-and multi-arm gadolinium MRI contrast agents for targeted imaging of glioblastoma
CN109395101A (zh) 靶向血脑屏障和脑胶质瘤的磁共振对比剂的制备方法
CN110354281B (zh) 一种双靶向多模态分子影像探针及其制备方法和应用
CN106880846B (zh) 一种肿瘤靶向多功能纳米递药系统及制备方法和用途
Abraham et al. Aptamer-targeted calcium phosphosilicate nanoparticles for effective imaging of pancreatic and prostate cancer
CN102350002B (zh) 一种胶质瘤靶向分子磁共振对比剂及其制备方法和应用
Cai et al. A transferrin-target magnetic/fluorescent dual-mode probe significantly enhances the diagnosis of non-small cell lung cancer
CN111632155B (zh) 丝胶-钆pH响应性靶向肿瘤核磁共振造影剂的制备方法
CN106310297B (zh) 多功能高分子前药纳米递药系统及制备方法和用途
Su et al. In vivo magnetic resonance and fluorescence dual-modality imaging of tumor angiogenesis in rats using GEBP11 peptide targeted magnetic nanoparticles
CN112870387B (zh) 一种磁性纳米药物载体及其制备方法和应用
CN113786496A (zh) 一种靶向药物纳米体系及其制备方法和应用
CN114366822A (zh) 一种主动靶向多模态分子影像探针及其制备方法和应用
Bai et al. A novel method to construct dual-targeted magnetic nanoprobes by modular assembling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant