CN111446313A - 一种量子阱结构及其生长方法 - Google Patents

一种量子阱结构及其生长方法 Download PDF

Info

Publication number
CN111446313A
CN111446313A CN202010165902.6A CN202010165902A CN111446313A CN 111446313 A CN111446313 A CN 111446313A CN 202010165902 A CN202010165902 A CN 202010165902A CN 111446313 A CN111446313 A CN 111446313A
Authority
CN
China
Prior art keywords
barrier layer
temperature
gaas
layer
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010165902.6A
Other languages
English (en)
Other versions
CN111446313B (zh
Inventor
王海珠
王曲惠
范杰
邹永刚
马晓辉
石琳琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN202010165902.6A priority Critical patent/CN111446313B/zh
Publication of CN111446313A publication Critical patent/CN111446313A/zh
Application granted granted Critical
Publication of CN111446313B publication Critical patent/CN111446313B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本申请属于半导体材料技术领域,特别是涉及一种量子阱结构及其生长方法。为了获得高质量的InGaAs量子阱,一般采用GaAsP应变补偿垒层的方法,但会带来超出预期的发光峰。并且就算保持了总应变为零,仍会造成InGaAs/GaAsP界面粗糙化,引发局部微观缺陷,这同样会弱化量子阱的性能。如果直接采用GaAs做势垒层,生长温度的选择成了挑战。本申请提供了一种量子阱结构,包括依次层叠的衬底、缓冲层、下势垒层、势阱层和上势垒层;所述上势垒层包括低温势垒层和高温势垒层,所述势阱层、所述低温势垒层与所述高温势垒层依次层叠。优化低温、高温势垒层的厚度分配和生长温度,提高量子阱材料的生长质量。

Description

一种量子阱结构及其生长方法
技术领域
本申请属于半导体材料技术领域,特别是涉及一种量子阱结构及其生长方法。
背景技术
量子阱(quantum well)是指与电子的德布罗意波长可比的微观尺度上的势阱。量子阱的基本特征是由于量子阱宽度(与电子的德布罗意波长可比的尺度)的限制,导致载流子波函数在一维方向上的局域化,量子阱中因为有源层的厚度仅在电子平均自由程内,阱壁具有很强的限制作用,使得载流子只在与阱壁平行的平面内具有二维自由度,在垂直方向,使得导带和价带分裂成子带。量子阱中的电子态、声子态和其他元激发过程以及它们之间的相互作用,与三维体状材料中的情况有很大差别。在具有二维自由度的量子阱中,电子和空穴的态密度与能量的关系为台阶形状,而不是象三维体材料那样的抛物线形状。
通过MOCVD以及MBE等沉积手段获得的以InGaAs为势阱的量子阱结构,作为一种二维材料结构,由于其量子约束效应,被广泛应用于半导体激光器,光电探测器,太阳能电池等领域。然而,InGaAs的晶格常数与In的含量成正比例关系,晶格失配带来的失配应变一旦积累到引发塑性形变的程度,就会引发失配位错等缺陷。
为了获得高质量的InGaAs量子阱,有人采用GaAsP应变补偿垒层的方法,但是在InGaAs与GaAsP的界面处极易形成InGaAsP四元化合物,带来超出预期的发光峰。并且InGaAs/GaAsP材料体系的晶格失配远远大于InGaAs/GaAs,就算保持了总应变为零,仍会造成界面粗糙化,引发局部微观缺陷,同样会弱化InGaAs量子阱的性能。如果直接采用GaAs做势垒层,生长温度的选择成了挑战。高温条件并不适于InGaAs材料的沉积,造成In原子的解吸附与蒸发,大大降低了In的并入率,一方面In组分损失会造成波长相较于预期发生蓝移,另一方面,表面出现大量In空位等缺陷,不平整的界面将影响后续薄膜的沉积。然而,较高的生长温度十分有利于获得高质量的GaAs材料,可以减少杂质的掺入并提高原子有序性,因此为了保护In原子,大多选取一折中温度,从而忽视GaAs层低温生长引发杂质掺入等问题。
发明内容
1.要解决的技术问题
基于为了获得高质量的InGaAs量子阱,有人采用GaAsP应变补偿垒层的方法,但是在InGaAs与GaAsP的界面处极易形成InGaAsP四元化合物,带来超出预期的发光峰。并且InGaAs/GaAsP材料体系的晶格失配远远大于InGaAs/GaAs,就算保持了总应变为零,仍会造成界面粗糙化,引发局部微观缺陷,同样会弱化InGaAs量子阱的性能。如果直接采用GaAs做势垒层,生长温度的选择成了挑战。高温条件并不适于InGaAs材料的沉积,造成In原子的解吸附与蒸发,大大降低了In的并入率,一方面In组分损失会造成波长相较于预期发生蓝移,另一方面,表面出现大量In空位等微观缺陷,不平整的界面将影响后续薄膜的沉积。然而,较高的生长温度十分有利于获得高质量的GaAs材料,可以减少杂质的掺入并提高原子有序性,因此为了保护In原子,大多选取一折中温度,进而忽视GaAs层低温生长引发杂质掺入等问题,本申请提供了一种量子阱结构及其生长方法。
2.技术方案
为了达到上述的目的,本申请提供了一种量子阱结构,包括依次层叠的衬底、缓冲层、下势垒层、势阱层和上势垒层;
所述上势垒层包括低温势垒层和高温势垒层,所述势阱层、所述低温势垒层与所述高温势垒层依次层叠。
本申请提供的另一种实施方式为:所述量子阱结构为InGaAs/GaAs量子阱结构。
本申请提供的另一种实施方式为:所述衬底为GaAs衬底、所述缓冲层为GaAs缓冲层、所述下势垒层为GaAs下势垒层、所述势阱层为InGaAs势阱层和所述低温势垒层为GaAs低温势垒层,所述高温势垒层为GaAs高温势垒层。
本申请提供的另一种实施方式为:所述GaAs低温势垒层生长温度为540℃~600℃。
本申请提供的另一种实施方式为:所述GaAs高温势垒层生长温度为600℃~700℃。
本申请提供的另一种实施方式为:所述GaAs低温势垒层厚度为1nm~5nm。
本申请提供的另一种实施方式为:所述InGaAs势阱层中In组分占比为0.15~0.3。
本申请提供的另一种实施方式为:所述InGaAs势阱层厚度为5~10nm。
本申请提供的另一种实施方式为:所述量子阱结构采取变温生长法获得。
本申请还提供一种量子阱结构生长方法,所述生长方法包括如下步骤:
a.将GaAs衬底置于外延生长装置中;
b.将温度升至700℃,对所述GaAs衬底去氧化物;
c.将温度降至T1,在所述衬底上叠层生长GaAs缓冲层;
d.在所述GaAs缓冲层上生长GaAs下势垒层;
e.将温度降至T2,在所述GaAs下势垒层上生长InGaAs势阱层;
f.在所述InGaAs势阱层上生长GaAs低温势垒层,厚度为h1 nm;
g.将温度升至T3,在所述GaAs低温势垒层上生长GaAs高温势垒层,厚度为h2 nm。
本申请提供的另一种实施方式为:所述外延生长装置为金属有机化学气相外延(MOCVD)。
本申请提供的另一种实施方式为:所述温度T1>T2,所述温度T3>T2
3.有益效果
与现有技术相比,本申请提供的一种量子阱结构及其生长方法的有益效果在于:
本申请提供的量子阱结构及其生长方法,采用新的InGaAs/GaAs量子阱结构及其生长方法,在不破坏InGaAs势阱层生长表面的同时最大化高质量GaAs势垒层的存在,以期获得高质量的InGaAs/GaAs量子阱材料。
本申请提供的量子阱结构及其生长方法,针对InGaAs量子阱结构及其生长方法,选择GaAs材料作为势垒层,将GaAs上势垒层分为低温生长势垒层和高温生长势垒层,通过优化势阱层和低温势垒层的生长温度,优化低温、高温势垒层的厚度分配,做到在保护InGaAs势阱层的同时,提高GaAs材料的生长质量,进而提高量子阱结构的结晶质量及光学特性。
附图说明
图1是本申请的一种量子阱结构的结构示意图;
图2是等温生长GaAs上势垒层的InGaAs/GaAs量子阱结构的原子力显微镜测试结果示意图;
图3是变温生长GaAs上势垒层的InGaAs/GaAs量子阱结构的原子力显微镜测试结果示意图;
图4是等温生长GaAs上势垒层及变温生长GaAs上势垒层的InGaAs/GaAs量子阱结构的光致发光光谱示意图;
图5是等温生长GaAs上势垒层及变温生长GaAs上势垒层的InGaAs/GaAs量子阱结构的X射线衍射测试示意图;
图6为变温生长GaAs上势垒层的InGaAs/GaAs量子阱结构的原子力显微镜测试结果示意图;
图7为变温生长GaAs上势垒层的InGaAs/GaAs量子阱结构的原子力显微镜测试结果示意图;
图8为变温生长GaAs上势垒层的InGaAs/GaAs量子阱结构的原子力显微镜测试结果示意图;
图9为为变温生长GaAs上势垒层的InGaAs/GaAs量子阱结构的原子力显微镜测试结果示意图;
图10为变温生长GaAs上势垒层的InGaAs/GaAs量子阱结构的X射线衍射测试示意图;
图11为为变温生长GaAs上势垒层的InGaAs/GaAs量子阱结构的原子力显微镜测试结果示意图;
图12为为变温生长GaAs上势垒层的InGaAs/GaAs量子阱结构的原子力显微镜测试结果示意图;
图13为为变温生长GaAs上势垒层的InGaAs/GaAs量子阱结构的原子力显微镜测试结果示意图;
图中:1-衬底、2-缓冲层、3-下势垒层、4-势阱层、5-低温势垒层、6-高温势垒层。
具体实施方式
在下文中,将参考附图对本申请的具体实施例进行详细地描述,依照这些详细的描述,所属领域技术人员能够清楚地理解本申请,并能够实施本申请。在不违背本申请原理的情况下,各个不同的实施例中的特征可以进行组合以获得新的实施方式,或者替代某些实施例中的某些特征,获得其它优选的实施方式。
一般在谈到半导体的PN结时,就会联系到势垒,这涉及半导体的基础内容。简单地说,所谓势垒也称位垒,就是在PN结由于电子、空穴的扩散所形成的阻挡层,两侧的势能差,就称为势垒。
参见图1~13,本申请提供一种量子阱结构,包括依次层叠的衬底1、缓冲层2、下势垒层3、势阱层4和上势垒层;
所述上势垒层包括低温势垒层5和高温势垒层6,所述势阱层4、所述低温势垒层5与所述高温势垒层6依次层叠。
将GaAs上势垒层分为低温生长势垒层及高温生长势垒层,如图1。利用MOCVD技术在GaAs衬底上沉积一层GaAs缓冲层,为了获得较好的生长质量,选择较高的生长温度T1,约600~700℃,随后生长InGaAs势阱层,考虑到In的高温不稳定性,将生长温度降低至T2(T2<600℃),之后在同一温度下立刻沉积GaAs,厚度为h1nm,目的是保护In原子,以免其在升温过程中发生解吸附和蒸发现象,将这一层称为GaAs低温势垒层。之后在这一层的表面进行升温过程,至T3,约600~700℃,继续生长GaAs高温势垒层,厚度为h2nm。
进一步地,所述量子阱结构为InGaAs/GaAs量子阱结构。
进一步地,所述衬底1为GaAs衬底、所述缓冲层2为GaAs缓冲层、所述下势垒层3为GaAs下势垒层、所述势阱层4为InGaAs势阱层和所述低温势垒层5为GaAs低温势垒层,所述高温势垒层6为GaAs高温势垒层。
进一步地,所述GaAs低温势垒层生长温度为540℃~600℃。
进一步地,所述GaAs高温势垒层生长温度为600℃~700℃。
进一步地,所述GaAs低温势垒层厚度为1nm~5nm。
进一步地,所述GaAs高温势垒层厚度没有特别的限制,几毫米到几百毫米均可。
进一步地,所述InGaAs势阱层中In组分占比为0.15~0.3。
进一步地,所述InGaAs势阱层厚度为5~10nm。
进一步地,所述量子阱结构采取变温生长法获得。
本申请还提供一种量子阱结构生长方法,所述生长方法包括如下步骤:
a.将GaAs衬底置于外延生长装置中;
b.将温度升至700℃,对所述GaAs衬底去氧化物;
c.将温度降至T1,在所述衬底上叠层生长GaAs缓冲层;
d.在所述GaAs缓冲层上生长GaAs下势垒层;
e.将温度降至T2,在所述GaAs下势垒层上生长InGaAs势阱层;
f.在所述InGaAs势阱层上生长GaAs低温势垒层,厚度为h1 nm;
g.将温度升至T3,在所述GaAs低温势垒层上生长GaAs高温势垒层,厚度为h2 nm。
进一步地,所述外延生长装置为金属有机化学气相外延。
进一步地,所述温度T1>T2,所述温度T3>T2
图3中T2为540℃,图5中T2分别为540,560,580,600℃,图6中T2为560℃,图7中T2为580℃,图8中T2为600℃,图9中,T2为580℃,h1为1nm,h2为19nm,图10中T2为580℃,h1分别为1,2,3,5nm,h2分别为19,18,17,15nm,图11中,T2为580℃,h1为2nm,h2为18nm,图12中T2为580℃,h1为3nm,h2为17nm,图13中T2为580℃,h1为5nm,h2为15nm。
实施例一
本实施例中,InGaAs/GaAs量子阱结构由MOCVD设备生长获得,其中GaAs下势垒层生长温度T1为650℃,势阱层为In0.25GaAs,厚度为8nm,生长温度为T2为540℃。GaAs上势垒层的生长温度同为540℃,厚度为20nm,即此实施例中不采取GaAs上势垒层变温生长,而是等温生长,T2=T3=540℃。图2为等温生长GaAs上势垒层表面的原子力显微镜测试结果,表面粗糙度为0.143nm,表面台阶间距较小,约为32nm,同时有很多小型二维岛分布在这些台面上,表明此时二维层状生长模式及台阶流生长模式并存。然而,台阶流生长模式是获得完整晶格结构和平整外延表面的最佳生长模式。图4为InGaAs/GaAs量子阱结构的光致发光光谱图,发光强度为7.97。图5为InGaAs/GaAs量子阱结构的X射线衍射测试结果,InGaAs的衍射峰极弱,表明此时InGaAs势阱层结晶质量并不好。
实施例二
本实施例中,InGaAs/GaAs量子阱结构由MOCVD设备生长获得,其中GaAs下势垒层生长温度T1为650℃,势阱层为In0.25GaAs,生长温度T2为540℃,GaAs低温势垒层生长温度同为540℃,厚度h1为2nm,GaAs高温势垒层生长温度T3为650℃,厚度h2为18nm。图3为变温生长GaAs上势垒层表面的原子力显微镜测试结果,表面粗糙度为0.128nm,表面台阶间距较宽,约为49nm,台阶面上只有少量二维岛屿,且尺寸较大,表明此时大多数原子选择台阶流生长模式,极少数选择二维层状生长模式。可以看出,温度影响原子对成核位置的选择。从热力学角度看,高温给原子提供了更大的能量,增加了扩散长度,让原子有足够能量迁移到台阶边缘,此时台阶流生长模式占据主要位置,只有少部分原子选择层状生长模式,这些岛屿最终也将与大台阶汇合。而当生长温度较低时,吸附在台面上的原子并没有足够的动能进行充分迁移,更多的是在台面上选择就近的成核位置成键,形成许多小型二维岛屿,即实施例一中的情况,导致台阶推进速率相较缓慢,台阶间距窄。图4为InGaAs/GaAs量子阱结构的光致发光光谱图,发光强度为14.87,约为实施例一中的2倍,因为高温生长的GaAs势垒层,材料非辐射复合中心减少,量子阱结构的光学特性得到了改善。图5为InGaAs/GaAs量子阱结构的X射线衍射测试结果,InGaAs的衍射峰与实施例一中比变强,表明此时InGaAs势阱层结晶质量有所改善,因为变温生长这种生长方法在将温度由T2升至T3的过程,使较低温度下获得的InGaAs势阱层及GaAs势垒层发生了弛豫现象,消除了某些材料缺陷。
实施例三
本实施例中,InGaAs/GaAs量子阱结构由MOCVD设备生长获得,其中GaAs下势垒层生长温度T1为650℃,势阱层为In0.25GaAs,生长温度T2为560℃,GaAs低温势垒层生长温度同为560℃,厚度h1为2nm,GaAs高温势垒层生长温度T3为650℃,厚度h2为18nm。图6为变温生长GaAs上势垒层表面的原子力显微镜测试结果,表面台阶等距,间隔约为30nm,且无二维岛屿存在,表明此时完全转变为台阶流生长模式。图5为InGaAs/GaAs量子阱结构的X射线衍射测试结果,InGaAs的衍射峰出现了干涉条纹,表明此时InGaAs势阱层的结晶质量进一步得到了改善。
实施例四
本实施例中,InGaAs/GaAs量子阱结构由MOCVD设备生长获得,其中GaAs下势垒层生长温度T1为650℃,势阱层为In0.25GaAs,生长温度T2为580℃,GaAs低温势垒层生长温度同为580℃,厚度h1为2nm,GaAs高温势垒层生长温度T3为650℃,厚度h2为18nm。图7为变温生长GaAs上势垒层表面的原子力显微镜测试结果,表面台阶等距,间隔约为30nm,且无二维岛屿存在,表明此时完全为台阶流生长模式。图5为InGaAs/GaAs量子阱结构的X射线衍射测试结果,InGaAs的衍射峰出现了干涉条纹,较实施例三中更清晰,表明此时InGaAs势阱层的结晶质量再次进一步得到了改善。
实施例五
本实施例中,InGaAs/GaAs量子阱结构由MOCVD设备生长获得,其中GaAs下势垒层生长温度T1为650℃,势阱层为In0.25GaAs,生长温度T2为600℃,GaAs低温势垒层生长温度同为600℃,厚度h1为2nm,GaAa高温势垒层生长温度T3为650℃,厚度h2为18nm。图8为变温生长GaAs上势垒层表面的原子力显微镜测试结果,表面台阶等距,间隔约为30nm,且无二维岛屿存在,表明此时完全为台阶流生长模式。图5为InGaAs/GaAs量子阱结构的X射线衍射测试结果,InGaAs的衍射峰及干涉条纹消失,表明T2为600℃时,温度过高,InGaAs/GaAs量子阱的结构遭到了破坏。
实施例六
本实施例中,InGaAs/GaAs量子阱结构由MOCVD设备生长获得,其中GaAs下势垒层生长温度T1为650℃,势阱层为In0.25GaAs,生长温度T2为580℃,GaAs低温势垒层生长温度同为580℃,厚度h1为1nm,GaAa高温势垒层生长温度T3为650℃,厚度h2为19nm。图9为变温生长GaAs上势垒层表面的原子力显微镜测试结果,表面可观察到弯曲的台阶边缘,且台阶间距不等,台面上存在少量二维岛屿及孔洞,说明此时并非台阶流生长模式。图10为InGaAs/GaAs量子阱结构的X射线衍射测试结果,InGaAs的衍射峰极弱,说明此时InGaAs势阱层结晶质量并不好。
实施例七
本实施例中,InGaAs/GaAs量子阱结构由MOCVD设备生长获得,其中GaAs下势垒层生长温度T1为650℃,势阱层为In0.25GaAs,生长温度T2为580℃,GaAs低温势垒层生长温度同为580℃,厚度h1为2nm,GaAa高温势垒层生长温度T3为650℃,厚度h2为18nm。图11为变温生长GaAs上势垒层表面的原子力显微镜测试结果,表面台阶密集且等距,边缘规则,趋于直线,表明此时为台阶流生长模式。图10为InGaAs/GaAs量子阱结构的X射线衍射测试结果,InGaAs的衍射峰变强,并出现了干涉条纹,表明此时InGaAs势阱层的结晶质量进一步得到了改善。
实施例八
本实施例中,InGaAs/GaAs量子阱结构由MOCVD设备生长获得,其中GaAs下势垒层生长温度T1为650℃,势阱层为In0.25GaAs,生长温度T2为580℃,GaAs低温势垒层生长温度同为580℃,厚度h1为3nm,GaAa高温势垒层生长温度T3为650℃,厚度h2为17nm。图12为变温生长GaAs上势垒层表面的原子力显微镜测试结果,表面台阶密集且等距,边缘规则,趋于直线,表明此时为台阶流生长模式。图10为InGaAs/GaAs量子阱结构的X射线衍射测试结果,InGaAs的衍射峰变强,并出现了干涉条纹,表明此时InGaAs势阱层的结晶质量进一步得到了改善。
实施例九
本实施例中,InGaAs/GaAs量子阱结构由MOCVD设备生长获得,其中GaAs下势垒层生长温度T1为650℃,势阱层为In0.25GaAs,生长温度T2为580℃,GaAs低温势垒层生长温度同为580℃,厚度h1为5nm,GaAa高温势垒层生长温度T3为650℃,厚度h2为15nm。图13为变温生长GaAs上势垒层表面的原子力显微镜测试结果,表面出现了富In三维结构,表明5nmGaAs低温势垒层过厚。图10为InGaAs/GaAs量子阱结构的X射线衍射测试结果,无明显InGaAs的衍射峰,表明此时InGaAs势阱层的结晶质量不好。
本申请公开了一种InGaAs/GaAs量子阱结构及其生长方法,将GaAs上垒层分为低温生长势垒层与高温生长势垒层两部分,低温势垒层生长温度与InGaAs势阱层一致,高温势垒层则升至较高温度生长。本申请提及的生方法相对传统的等温生长方法,能够有效的减少材料的非辐射复合中心,提高了光学特性。同时,较高的生长温度也提高了材料的结晶质量,对于将高质量InGaAs/GaAs量子阱结构应用在半导体激光器,光电探测器探测器,太阳能电池等领域提供了便利。
尽管在上文中参考特定的实施例对本申请进行了描述,但是所属领域技术人员应当理解,在本申请公开的原理和范围内,可以针对本申请公开的配置和细节做出许多修改。本申请的保护范围由所附的权利要求来确定,并且权利要求意在涵盖权利要求中技术特征的等同物文字意义或范围所包含的全部修改。

Claims (10)

1.一种量子阱结构,其特征在于:包括依次层叠的衬底、缓冲层、下势垒层、势阱层和上势垒层;
所述上势垒层包括低温势垒层和高温势垒层,所述势阱层、所述低温势垒层与所述高温势垒层依次层叠。
2.如权利要求1所述的量子阱结构,其特征在于:所述量子阱结构为InGaAs/GaAs量子阱结构。
3.如权利要求2所述的量子阱结构,其特征在于:所述衬底为GaAs衬底、所述缓冲层为GaAs缓冲层、所述下势垒层为GaAs下势垒层、所述势阱层为InGaAs势阱层和所述低温势垒层为GaAs低温势垒层,所述高温势垒层为GaAs高温势垒层。
4.如权利要求3所述的量子阱结构,其特征在于:所述GaAs低温势垒层生长温度为540℃~600℃。
5.如权利要求3所述的量子阱结构,其特征在于:所述GaAs高温势垒层生长温度为600℃~700℃。
6.如权利要求3所述的量子阱结构,其特征在于:所述GaAs低温势垒层厚度为1nm~5nm。
7.如权利要求3所述的量子阱结构,其特征在于:所述InGaAs势阱层中In组分占比为0.15~0.3,所述InGaAs势阱层厚度为5~10nm。
8.一种量子阱结构生长方法,其特征在于:所述生长方法包括如下步骤:
a.将GaAs衬底置于外延生长装置中;
b.将温度升至700℃,对所述GaAs衬底去氧化物;
c.将温度降至T1,在所述衬底上叠层生长GaAs缓冲层;
d.在所述GaAs缓冲层上生长GaAs下势垒层;
e.将温度降至T2,在所述GaAs下势垒层上生长InGaAs势阱层;
f.在所述InGaAs势阱层上生长GaAs低温势垒层;
g.将温度升至T3,在所述GaAs低温势垒层上生长GaAs高温势垒层。
9.如权利要求8所述的量子阱结构生长方法,其特征在于:所述外延生长装置为金属有机化学气相外延。
10.如权利要求8所述的量子阱结构生长方法,其特征在于:所述温度T1>T2,所述温度T3>T2
CN202010165902.6A 2020-03-11 2020-03-11 一种量子阱结构及其生长方法 Active CN111446313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010165902.6A CN111446313B (zh) 2020-03-11 2020-03-11 一种量子阱结构及其生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010165902.6A CN111446313B (zh) 2020-03-11 2020-03-11 一种量子阱结构及其生长方法

Publications (2)

Publication Number Publication Date
CN111446313A true CN111446313A (zh) 2020-07-24
CN111446313B CN111446313B (zh) 2021-11-26

Family

ID=71653161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010165902.6A Active CN111446313B (zh) 2020-03-11 2020-03-11 一种量子阱结构及其生长方法

Country Status (1)

Country Link
CN (1) CN111446313B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026551A1 (en) * 2005-07-29 2007-02-01 Showa Denko K.K. Production method of gallium nitride-based compound semiconductor multilayer structure
CN103227251A (zh) * 2013-05-16 2013-07-31 合肥彩虹蓝光科技有限公司 一种GaN基发光二极管外延结构的生长方法
CN103972337A (zh) * 2013-01-25 2014-08-06 丰田合成株式会社 半导体发光元件、半导体发光元件的制造方法
US9590133B1 (en) * 2010-01-08 2017-03-07 Magnolia Solar, Inc. Thin film solar cells on flexible substrates and methods of constructing the same
CN110335923A (zh) * 2019-06-21 2019-10-15 山东浪潮华光光电子股份有限公司 一种多量子阱结构、led外延片及其制备方法
CN110429128A (zh) * 2019-07-30 2019-11-08 厦门市三安集成电路有限公司 一种低势垒多量子阱高阻缓冲层外延结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026551A1 (en) * 2005-07-29 2007-02-01 Showa Denko K.K. Production method of gallium nitride-based compound semiconductor multilayer structure
US9590133B1 (en) * 2010-01-08 2017-03-07 Magnolia Solar, Inc. Thin film solar cells on flexible substrates and methods of constructing the same
CN103972337A (zh) * 2013-01-25 2014-08-06 丰田合成株式会社 半导体发光元件、半导体发光元件的制造方法
CN103227251A (zh) * 2013-05-16 2013-07-31 合肥彩虹蓝光科技有限公司 一种GaN基发光二极管外延结构的生长方法
CN110335923A (zh) * 2019-06-21 2019-10-15 山东浪潮华光光电子股份有限公司 一种多量子阱结构、led外延片及其制备方法
CN110429128A (zh) * 2019-07-30 2019-11-08 厦门市三安集成电路有限公司 一种低势垒多量子阱高阻缓冲层外延结构及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
贾国治 等: "生长温度和结构参数对InGaAs/GaAs量子阱光学特性的影响", 《发光学报》 *

Also Published As

Publication number Publication date
CN111446313B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
JP3753605B2 (ja) 太陽電池およびその製造方法
US7736919B2 (en) Method of producing a light-emitting diode comprising a nanostructured PN junction and diode thus obtained
Bolshakov et al. Effects of the surface preparation and buffer layer on the morphology, electronic and optical properties of the GaN nanowires on Si
JP2010225870A (ja) 半導体素子
US9245748B2 (en) Methods for growing III-V materials on a non III-V material substrate
KR20120092928A (ko) 반도체 소자 및 그 제조방법
CN111446313B (zh) 一种量子阱结构及其生长方法
JP5382696B2 (ja) 半導体光素子と半導体太陽電池
Minami et al. Growth and characterization of GaAs nanowires on Ge (1 1 1) substrates by selective-area MOVPE
CN116130567A (zh) 发光二极管外延片及其制备方法、led
Terrazas et al. Ordered polycrystalline thin films for high performance CdTe/CdS solar cells
Hubbard et al. Growth and characterization of InAs quantum dot enhanced photovoltaic devices
Conley et al. CVD growth of Ge 1− x Sn x using large scale Si process for higher efficient multi-junction solar cells
Mandal et al. Effects of ex situ annealing on quaternary alloy (InAlGaAs) capped InAs/GaAs quantum dot heterostructures on optimization of optoelectronic and structural properties with variation in growth rate, barrier thickness, and seed quantum dot monolayer coverage
Alias et al. Thermal annealing effects on the properties of MBE-GaN pn junction
Presting et al. Growth studies of Ge-islands for enhanced performance of thin film solar cells
He et al. Research on quantum well intermixing of 680 nm AlGaInP/GaInP semiconductor lasers induced by composited Si–Si3N4 dielectric layer
JP6004429B2 (ja) 単結晶SiGe層の製造方法及びそれを用いた太陽電池
Mansoori Reducing threading dislocation in GaSb epilayer grown on GaAs substrate for photovoltaic and thermophotovoltaic application
CN114204419B (zh) 高性能高质量InGaAs/InGaAsP多量子阱的外延结构及其生长方法和应用
Mackos et al. GaAs substrate misorientation and the effect on InAs quantum dot critical thickness
Moiseev et al. Type II heterostructures with InSb quantum dots inserted into pn InAs (Sb, P) junction
Rajesh et al. Electroluminescence at 1.3 µm from InAs/GaAs quantum dots monolithically grown on Ge/Si substrate by metal organic chemical vapor deposition
Williams et al. Vapor-liquid-solid growth of cadmium telluride nanowires by close-space-sublimation for photovoltaic applications
Torelly et al. From InAs extended monolayer flat 2D terraces to 3D islands grown on GaAs substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant