CN111443278B - 一种芯片、芯片温度检测模块及方法 - Google Patents

一种芯片、芯片温度检测模块及方法 Download PDF

Info

Publication number
CN111443278B
CN111443278B CN202010315244.4A CN202010315244A CN111443278B CN 111443278 B CN111443278 B CN 111443278B CN 202010315244 A CN202010315244 A CN 202010315244A CN 111443278 B CN111443278 B CN 111443278B
Authority
CN
China
Prior art keywords
voltage signal
temperature
current
feedback branch
temperature detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010315244.4A
Other languages
English (en)
Other versions
CN111443278A (zh
Inventor
严波
罗浚洲
王悦
王铁军
李维森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Puyuan Jingdian Technology Co ltd
Original Assignee
Puyuan Jingdian Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Puyuan Jingdian Technology Co ltd filed Critical Puyuan Jingdian Technology Co ltd
Priority to CN202010315244.4A priority Critical patent/CN111443278B/zh
Publication of CN111443278A publication Critical patent/CN111443278A/zh
Application granted granted Critical
Publication of CN111443278B publication Critical patent/CN111443278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本说明书实施例提供一种芯片、芯片温度检测模块及方法。所述芯片温度检测模块包括至少一个温度检测单元、为所述至少一个温度检测单元供电的供电支路和输出端口;温度检测单元包括温度传感元件,以及沿着电流方向设置于所述温度传感元件上游第一预设位置处的第一反馈支路,以及设置在温度传感元件下游第二预设位置处的第二反馈支路;所述第一反馈支路和第二反馈支路分别与所述输出端口连接,以使通过所述输出端口输出所述第一反馈支路反馈的第一电压信号,或通过所述输出端口输出所述第二反馈支路反馈的第二电压信号;其中,所述第一电压信号和所述第二电压信号用于计算所述温度传感元件感测到的温度。上述模块可以实现对芯片温度的准确测量。

Description

一种芯片、芯片温度检测模块及方法
技术领域
本说明书实施例涉及电子电路技术领域,特别涉及一种芯片、芯片温度检测模块及方法。
背景技术
随着科技的发展,芯片的开发和使用的重要性得以日益提升。芯片一般即为集成有微电路的半导体元件,通过芯片中所集成的电路可以完成计算、存储等功能。为了在芯片的测试及使用过程中保证芯片的正常工作,芯片所集成的电路中还包含有辅助电路,例如,测量芯片温度的辅助电路,从而对芯片的状态进行信息获取或调控等。
芯片在工作的过程中,芯片中集成的电路会产生热量导致芯片的温度发生改变,需要通过测量芯片温度的电路来对芯片的温度进行测量。而温度对于芯片的性能存在较大的影响,因此,对芯片进行温度测量的准确性具有较高的要求。
发明内容
本说明书实施例的目的是提供一种芯片、芯片温度检测模块及方法,以解决如何精确地测量芯片温度的问题。
为了解决上述技术问题,本说明书实施例所提出的一种芯片、芯片温度检测模块及方法是这样实现的:
一种芯片温度检测模块,包括:至少一个温度检测单元、为所述至少一个温度检测单元供电的供电支路和输出端口;
每个所述温度检测单元包括温度传感元件,以及沿着电流方向设置于所述温度传感元件上游第一预设位置处的第一反馈支路,以及设置在所述温度传感元件下游第二预设位置处的第二反馈支路;所述第一反馈支路和所述第二反馈支路分别与所述输出端口连接,以使通过所述输出端口输出所述第一反馈支路反馈的第一电压信号,或通过所述输出端口输出所述第二反馈支路反馈的第二电压信号;其中,所述第一电压信号和所述第二电压信号用于计算所述温度传感元件感测到的温度。
在一些实施方式中,所述温度检测单元包括参考电压端口;所述温度传感元件通过参考电压端口连接支路与所述参考电压端口连接。
在一些实施方式中,所述参考电压端口连接支路具有指定长度。
在一些实施方式中,所述第一反馈支路和第二反馈支路包括通过长线传输信号的支路。
在一些实施方式中,所述温度传感元件包括三极管或二极管。
在一些实施方式中,所述芯片温度检测模块还包括电流源;所述电流源与所述温度检测单元相连接;所述电流源用于输出至少两种电流强度的电流至温度检测单元。
在一些实施方式中,所述芯片温度检测模块包括控制单元或信号输入端口;所述控制单元或信号输入端口用于输出控制所述电流源与所述温度检测单元之间的连通状态的电流控制信号。
在一些实施方式中,所述芯片温度检测模块包括控制单元或信号输入端口;所述控制单元或信号输入端口用于输出控制所述第一反馈支路和/或所述第二反馈支路的连通状态的测量控制信号。
在一些实施方式中,所述第一反馈支路用于在所述温度检测单元中通过第一电流时反馈第一电压信号,以及在所述温度检测单元中通过第二电流时反馈第三电压信号;
所述第二反馈支路用于在所述温度检测单元中通过第一电流时反馈第二电压信号,以及在所述温度检测单元中通过第二电流时反馈第四电压信号;
相应的,所述第一电流、第二电流、第一电压信号、第二电压信号、第三电压信号和第四电压信号用于基于公式
Figure BDA0002459327840000021
计算所述温度传感元件感测到的温度,式中,T为所述温度传感元件感测到的温度,q为电荷量,Vh1为第一电压信号的电压值,Vl1为第二电压信号的电压值,Vh2为第三电压信号的电压值,Vl2为第四电压信号的电压值,n为温度传感元件的非理想系数,k为玻尔兹曼常数,I1为第一电流的电流值,I2为第二电流的电流值。
在一些实施方式中,所述芯片温度检测模块具有对应于输出端口的固定电位端口;所述固定电位端口用于在获取电压信号的电压值时提供固定电位。
一种芯片温度测量方法,包括:
向温度检测单元传输电流;所述温度检测单元包括温度传感元件,以及沿电流方向设置于所述温度传感元件上游第一预设位置处的第一反馈支路和设置在所述温度传感元件下游第二预设位置处的第二反馈支路;
获取所述第一反馈支路和所述第二反馈支路分别反馈的电压信号;
根据所反馈的电压信号计算所述温度传感元件感测到的温度。
在一些实施方式中,所述向温度检测单元传输电流,包括:
分别向温度检测单元传输第一电流和第二电流;
相应的,所述获取所述第一反馈支路和所述第二反馈支路分别反馈的电压信号,包括:
在传输第一电流时,获取所述第一反馈支路反馈的第一电压信号和所述第二反馈支路反馈的第二电压信号;
在传输第二电流时,获取所述第一反馈支路反馈的第三电压信号和所述第二反馈支路反馈的第四电压信号;
所述根据所反馈的电压信号计算所述温度传感元件的温度,包括:
利用所述第一电流、第二电流、第一电压信号、第二电压信号、第三电压信号和第四电压信号计算所述温度传感元件的温度。
在一些实施方式中,所述利用所述第一电流、第二电流、第一电压信号、第二电压信号、第三电压信号和第四电压信号计算所述温度传感元件感测到的温度,包括:
利用公式
Figure BDA0002459327840000031
计算所述温度传感元件感测到的温度,式中,T为所述温度传感元件的温度,q为电荷量,Vh1为第一电压信号的电压值,Vl1为第二电压信号的电压值,Vh2为第三电压信号的电压值,Vl2为第四电压信号的电压值,n为温度传感元件的非理想系数,k为玻尔兹曼常数,I1为第一电流的电流值,I2为第二电流的电流值。
一种芯片,包括主电路模块和所述芯片温度检测模块。
由以上本说明书实施例提供的技术方案可见,本说明书实施例所介绍的芯片温度检测模块通过在温度传感元件上游和下游分别设置用于反馈电压信号的反馈支路,通过反馈支路所提供的电压信号来计算温度,从而保证了测量所述温度传感元件对应的电压时不会受到其他外部器件的干扰,减少了测量过程中的误差,实现了精确地对芯片温度进行测量,进而确保了芯片的正常使用。
附图说明
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本说明书实施例一种芯片温度检测模块的示意图;
图2为本说明书实施例一种芯片温度检测方法的流程图;
图3为本说明书实施例一种芯片的示意图。
附图标记说明:100、芯片;101、芯片温度检测模块;110、温度检测单元;111、温度传感元件;112、第一反馈支路;113、第二反馈支路;114、供电支路;115、参考电压端口连接支路;116、参考电压端口;120、输出端口;130、电流源;140、控制单元;150、固定电位端口;160、电压测量单元。
具体实施方式
下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本说明书保护的范围。
芯片本身即为集成有电路的半导体元器件,利用所集成的电路实现逻辑判断和信号传输等操作,从而实现芯片所对应的功能。芯片中一般设置有主电路模块来实现芯片所对应的功能。此外,芯片的电路中还包含有辅助电路,例如温度测量电路、电压测量电路等。通过辅助电路能够更好地获取芯片的状态信息,从而基于所述状态信息确保芯片的正常工作。而芯片在工作的过程中,芯片的温度会相应地影响芯片的性能,获取所述芯片的温度有利于对芯片的性能进行掌握。因此,需要对芯片的温度进行准确的测量。
为了实现对芯片温度的精确测量,如图1所示,本说明书实施例提供一种芯片温度检测模块。所述芯片温度检测模块可以是附着于所述芯片上的模块。实际使用时,可以将所述芯片温度检测模块添加至任意芯片中从而完成对所述芯片的温度的测量。
所述芯片温度检测模块101包括多个温度检测单元110、为所述多个温度检测单元110供电的供电支路114和输出端口120。
所述温度检测单元110可以设置于所述芯片的特定位置,进而对芯片中所述特定位置处的温度进行测量。所述芯片温度检测模块101可以包括多个温度检测单元110。在所述芯片温度检测模块101包括多个温度检测单元110的情况下,这些温度检测单元110可以分别对所设置的位置处的温度进行检测,进而对芯片各处的温度都能获得测量效果。实际应用中温度检测单元110的数量可以根据需求进行布置,对此不做限制。
所述温度检测单元110中可以包括温度传感元件111。所述温度传感元件111在通过稳定电流的情况时,不同的温度下在所述温度传感元件111的两端可以具有不同的电势差。根据电流大小和所述温度传感元件111的电压可以计算得到所述温度传感元件111的温度,进而实现对芯片温度的测量。
实际应用中,所述温度传感元件111例如可以是二极管或三极管。在利用三极管作为温度传感元件111时,可以将三极管的基极与集电极短接,从而使得三极管具有较好的温度测量效果。当然,所述温度传感元件111并不限于上述示例,基于温度的改变能够调整自身的电压的元件都可能被应用为所述温度传感元件111。
所述输出端口120可以用于输出电压信号。为了实现温度的测量,需要获取所述温度传感元件111的电压。所述输出端口120即可用于输出对应于所述温度传感元件111的电压信号,进而根据所述电压信号计算对应于所述温度传感元件111的温度。
相应的,为了获取到所述温度传感元件111的电压信号,所述温度检测单元110还可以包括第一反馈支路112和第二反馈支路113。所述第一反馈支路112沿电流方向设置于所述温度传感元件111的上游的第一预设位置处,所述第二反馈支路113沿电流方向设置于所述温度传感元件111的下游的第二预设位置。所述第一反馈支路112和所述第二反馈支路113分别与所述输出端口120连接,从而使得所述输出端口120输出所述温度传感元件111对应的电压信号。
利用一个具体的示例进行说明,如图1所示,为一种芯片温度检测模块101的具体示例。图中将一个基极与集电极短接的三极管作为温度传感元件111,在所述三极管的发射极所连接的导线上设置第一反馈支路112,在所述三极管的集电极所连接的导线上设置第二反馈支路113。通过所述第一反馈支路112和第二反馈支路113获取所述三级管的发射极和集电极对应的电位,作为对应的电压信号。
所述第一预设位置和所述第二预设位置为各个温度检测单元110中的固定位置。具体的,所述第一预设位置和所述第二预设位置可以与所述温度传感元件之间具有固定的距离,使得在利用各个温度检测单元测量芯片温度时,所述各个温度检测单元中第一预设位置与温度传感元件之间的导线的长度和第二预设位置与温度传感元件之间的导线的长度均为固定长度,进而确保在通过反馈支路获取各个温度传感元件对应的电压时,测量到的第一预设位置和第二预设位置与温度传感元件之间的导线上的压降固定,从而减小电压测量的误差,避免各个温度检测单元所测得的温度差别较大的情况,提高了对于芯片的温度测量的准确性。
在一些实施方式中,所述第一预设位置与所述温度传感元件之间的导线长度小于预设第一采样距离,所述第二预设位置与所述温度传感元件之间的导线长度小于预设第二采样距离。所述第一采样距离和所述第二采样距离为预先设置的距离,用于限制所述第一预设位置与所述第二预设位置与所述温度传感元件之间的导线长度,从而使得基于分别在所述第一预设位置和所述第二预设位置处所设置的第一反馈支路和所述第二反馈支路所测量到的电压接近实际应用中的所述温度传感元件的电压,避免所测量到的导线上的压降过大从而影响测量得到的电压值的准确性。
在一些实施方式中,所述第一反馈支路和所述第二反馈支路包括通过长线传输信号的支路。长线即为线的长度与线上的电磁波的波长可比拟或更长的线。实际应用中,在包含有所述芯片温度测量模块的芯片较大时,所述芯片温度测量模块上的导线的电阻、电感以及导线之间的电容所对应的分布参数无法被忽略。在考虑上述分布参数的情况下,将所述第一反馈支路和第二反馈支路设置为长线能够考虑到导线上的分布参数对测量结果所造成的影响,从而更为准确地获取到相应的信号。
在所述温度检测单元110通电的情况下,所述第一反馈支路112可以输出第一电压信号,所述第二反馈支路113可以输出第二电压信号。基于所述第一反馈支路112和所述第二反馈支路113的位置关系,获取到所述第一电压信号和所述第二电压信号,并通过所述第一电压信号和所述第二电压信号对应的电压值作差后可以求得所述温度传感元件111所对应的电压。在向所述温度传感元件传输至少两组不同大小的电流时,基于上述步骤分别获取相应的电压值,进而可以实现利用获取到的电压值和电流值计算所述温度传感元件111的温度。
在一些实施方式中,所述芯片温度检测模块101中还可以设置对应于所述输出端口120的固定电位端口150。所述固定电位端口150用于提供固定电位,以使得在通过输出端口120获得电压信号后,能够基于所述固定电位端口150获取所述电压信号对应的电压值,从而能够较为方便地实现后续步骤中对于温度的计算。
具体的,为了实现温度的测量,所述输出端口120和所述固定电位端口150可以外接电压测量单元。所述电压测量单元可以设置于所述芯片中,也可以是所述芯片所连接的外部测量单元。所述电压测量单元在接收到电压信号后,基于固定电位可以获取所述电压信号对应的电压值,从而用于后续步骤中的数据计算。
在一些实施方式中,所述温度检测单元110中还可以包括参考电压端口116,每个所述温度检测单元110中的参考电压端口116可以具有相同的电位,从而保证测量得到的各个温度检测单元的电压的准确性。例如,所述参考电压端口可以为具有零电位的端口,即,所述参考电压端口为地线端口,从而保证各个温度检测单元中的温度传感元件能够独立地与地线端口进行连接。所述温度检测单元110中的温度传感元件111通过参考电压端口连接支路115与所述参考电压端口116相连接。在所述参考电压端口116可以表示为具有零电位或指定电位的端口的情况下,使得各个温度检测单元110中的温度传感元件111在与零电位点或指定电位点相连接,从而能够方便地对于电压信号的测量。
在所有温度检测单元中均设置参考电压端口116情况下,还可以设置所述参考电压端口连接支路115为指定长度,从而保证各个温度检测单元中的温度传感元件111连接参考电压端口116的导线长度差别不大,避免了不同长度的参考电压端口连接支路115所对应的不同电压压降对测量过程所造成的干扰,进一步保证了所输出的电压信号的准确性。
在一些实施方式中,所述芯片温度检测模块101还可以包括电流源130。所述电流源130可以用于输出不同电流强度且稳定的电流。所述电流源130与所述温度检测单元110可以通过供电支路114进行连接。
在一些实施方式中,所述芯片温度检测模块101可以包括电流输入端口。所述电流输入端口可以通过供电支路114与所述温度检测单元110进行连接。所述电流输入端口可以通过所述供电支路114向所述温度检测单元110输入至少两种电流强度的电流。所述电流输入端口可以外接芯片温度检测模块101外的电流源130,例如,所述电流输入端口可以外接芯片中除芯片温度检测模块101外的其他部分的电流源,也可以接收芯片外的其他电流源所传输的电流,实际应用中对此不做限制。
在一些实施方式中,所述芯片温度检测模块101中还可以包括控制单元140。所述控制单元140可以用于对电流源130或电流输入端口与温度检测单元110之间的连通状态进行控制。利用一个具体的示例进行说明,在所述芯片温度检测模块101中包含多个温度检测单元110,且所述多个温度检测单元110与电流源130所连接的供电支路114上设置有开关,所述控制单元140可以通过开闭所述供电支路114上的开关来控制所述供电支路114的连通情况。例如,在只需要利用温度检测单元110进行温度测量的情况下,可以将温度检测单元110所对应的供电导线上的开关闭合,而将其他温度检测单元对应的供电导线上的开关打开,从而通过电流源130与温度检测单元之间的连通状态来实现对特定的温度检测单元进行供电。实际应用中,也可以采用其他方式实现电流源130与温度检测单元的连通,例如,在不需要向温度检测单元传输电流时,将所述温度检测单元的两端短路,也能够实现电流的传输,对于具体的控制方式不做限制。在利用电流输入端口来与所述温度检测单元进行连接的情况下,对连通状态进行控制可以参照上述示例,在此不做赘述。
在一些实施方式中,所述芯片温度检测模块101中还可以设置控制单元140来控制所述第一反馈支路112和所述第二反馈支路113的连通状态。在所述芯片温度检测模块101中只存在一个输出端口120的情况下,每一次只能接收一条反馈支路所传输的电压信号,若同时传输两条反馈支路的电压信号就会导致输出端口120输出错误的电压信号。因此,可以利用控制单元140来控制所述第一反馈支路112和所述第二反馈支路113的连通状态。
具体的,可以是在所述第一反馈支路112上设置第一支路开关,在所述第二反馈支路113上设置第二支路开关。当需要获取第一电压信号时,控制所述第一支路开关闭合,同时打开所述第二支路开关,从而保证所述第一反馈支路112传输第一电压信号至输入端口。相应的,在需要利用输出端口120输出第二电压信号时,利用控制单元140闭合所述第二支路开关,同时打开第一支路开关。
需要说明的是,利用控制单元140控制反馈支路的连通状态的方式并不限于上述示例,例如在所述芯片温度检测模块101中存在多个输出端口120,即第一反馈支路112与第二反馈支路113与不同的输出端口120连接时,在需要获取第一电压信号时,可以直接闭合所述第一反馈支路112的开关。实际应用中对于利用控制单元140控制反馈支路的连通状态的方式并不做限制。
上述实施方式中,用于控制电流传输的控制单元140和用于控制反馈支路的连通状态的控制单元140可以是同一个控制单元140,也可以是不同的控制单元140,对此不做限制。
在一些实施方式中,所述第一反馈支路112和所述第二反馈支路113可以通过一个单刀双掷开关与信号输出支路相连接。所述信号输出支路可以用于连接所述输出端口120,使得在需要获取电压信号时,通过控制所述单刀双掷开关的闭合状态即可获取到所需要的信号。例如,在需要获取第一电压信号时,通过控制单元140拨动所述单刀双掷开关使第一反馈支路112与信号输出支路相连接。
在所述信号输出支路中还可以设置输出支路开关。在所述芯片温度检测模块101中只设置有一个输出端口120的情况下,控制所述输出支路开关的开闭状态可以使输出端口120与需要进行温度测量的温度检测单元110相连接。
在一些优选的实施方式中,可以利用控制单元140同时对同一温度检测单元110所对应的供电支路114和输出支路的连通状态进行控制,使得在向某一温度检测单元110进行供电后,可以同时实现对所述温度检测单元110的电压信号进行获取。
在一些实施方式中,所述芯片温度检测模块101中可以包括信号输入端口。所述信号输入端口用于输入电流控制信号来对电流源130或电流输入端口与温度检测单元110之间的连通状态进行控制;所述信号输入端口也可以输入测量控制信号来对反馈支路的连通状态进行控制。输入电流控制信号和测量控制信号的信号输入端口可以是同一个信号输入端口,也可以是不同的信号输入端口,对此不做限制。
所述电流控制信号或测量控制信号可以是由芯片中的其他电路模块生成的信号,也可以是芯片外传输的控制信号,例如用户直接传输的控制信号,对此不做限制。
具体的利用信号输入端口所输入的电流控制信号实现电流与控制过程可以参照上述利用控制单元140对电流传输以及电压信号传输进行控制的实施方式的说明,在此不做赘述。
基于上述芯片温度检测模块101,可以实现对温度传感元件111感测到的温度的测量。在一些实施方式中,可以先向所述温度检测单元110中传输第一电流,并在传输第一电流的过程中分别获取所述第一反馈支路112反馈的第一电压信号和所述第二反馈支路113反馈的第二电压信号;电压信号获取完毕后,再向所述温度检测单元110中传输第二电流,所述第二电流与第一电流具有不同的电流强度大小。在传输第二电流的过程中再分别获取所述第一反馈支路112反馈的第三电压信号和所述第二反馈支路113反馈的第四电压信号。基于所述第一电流、第二电流、第一电压信号、第二电压信号、第三电压信号和第四电压信号计算所述温度传感元件111感测到的温度。
具体的,计算所述温度传感元件111感测到的温度的方式可以是利用公式
Figure BDA0002459327840000091
Figure BDA0002459327840000092
计算所述温度传感元件111感测到的温度,式中,T为所述温度传感元件111感测到的温度,q为单位电荷的电荷量,Vh1为第一电压信号的电压值,Vl1为第二电压信号的电压值,Vh2为第三电压信号的电压值,Vl2为第四电压信号的电压值,n为温度传感元件111的非理想系数,k为玻尔兹曼常数,I1为第一电流的电流值,I2为第二电流的电流值。
利用上述芯片温度检测模块,在实际应用中,可以将所述芯片温度检测模块加入芯片的电路中以实现对于对应芯片的温度的检测,使得所述芯片温度检测模块具有较好的应用价值。此外,所述芯片温度检测模块检测芯片温度的过程中减小了外部器件对测量温度传感器的电压时的影响,从而能够实现精确地测量芯片的温度。
基于上述芯片温度检测模块101,结合附图2,介绍本说明书实施例一种芯片温度检测方法,所述芯片温度检测模块101上设置有多个温度检测单元110;所述方法包括以下步骤。
S210:向温度检测单元110传输电流;所述温度检测单元110包括温度传感元件111,以及沿电流方向设置于所述温度传感元件111上游第一预设位置处的第一反馈支路112和设置在所述温度传感元件111下游第二预设位置处的第二反馈支路113。
对于所述温度检测单元110、温度传感元件111以及第一反馈支路112和第二反馈支路113的介绍可以参照图1所对应的实施例中的说明,在此不再赘述。
在一些实施方式中,所述芯片温度检测模块101还可以包括电流源130。所述电流源130可以用于输出不同电流强度且稳定的电流。所述电流源130与所述温度检测单元110可以通过供电支路114进行连接。所述传输电流至所述温度检测单元110,包括利用所述电流源130向所述温度检测单元110传输电流。
在向所述温度检测单元110传输电流时,不同的温度下在所述温度传感元件111的两端可以具有不同的电势差。在向所述温度检测单元110传输不同电流大小的电流时,根据电流大小和所述温度传感元件111的对应电压值可以计算得到所述温度传感元件111的温度,进而实现对芯片温度的测量。
S220:获取所述第一反馈支路和所述第二反馈支路分别反馈的电压信号。
在向所述温度检测单元110传输电流的情况下,所述温度检测单元110中的温度传感元件的两端具有一定的电势,可以通过设置在所述温度传感元件111两端的第一反馈支路112和第二反馈支路113获取到相应的电压信号。具体的获取所述第一反馈支路112和第二反馈支路113所反馈的电压信号的方法可以参照图1所对应的实施例中获取第一反馈支路112和第二反馈支路113所反馈的电压信号的说明,在此不再赘述。
S230:根据所反馈的电压信号计算所述温度传感元件感测到的温度。
通过向温度检测单元110中的电流和所输出的电压信号,可以实现对温度传感元件111对应的温度的测量。在一些实施方式中,可以先向所述温度检测单元110中传输第一电流,并在传输第一电流的过程中分别获取所述第一反馈支路112反馈的第一电压信号和所述第二反馈电路反馈的第二电压信号;电压信号获取完毕后,再向所述温度检测单元110中传输第二电流,所述第二电流与第一电流具有不同的电流强度大小。在传输第二电流的过程中再分别获取所述第一反馈支路112反馈的第三电压信号和所述第二反馈电路反馈的第四电压信号。基于所述第一电流、第二电流、第一电压信号、第二电压信号、第三电压信号和第四电压信号计算所述温度传感元件111的温度。
具体的,计算所述温度传感元件111的温度的方式可以是利用公式
Figure BDA0002459327840000101
计算所述温度传感元件111的温度,式中,T为所述温度传感元件111的温度,q为单位电荷的电荷量,Vh1为第一电压信号的电压值,Vl1为第二电压信号的电压值,Vh2为第三电压信号的电压值,Vl2为第四电压信号的电压值,n为温度传感元件111的非理想系数,k为玻尔兹曼常数,I1为第一电流的电流值,I2为第二电流的电流值。
为了获取所述第一电流和第二电流的电流值,可以在进行温度测量时,同一时间只利用电流源130向一个温度检测单元传输电流,并将此时测得的电流源130的电流作为第一电流或第二电流。也可以在所述温度测试单元中单独设置电流测量端口,用于测量通过所述温度检测单元的第一电流和第二电流的电流值。
利用上述方法,能够通过在芯片上添加电路的方式实现对应的芯片的温度的检测,使得所述温度检测电路具有较好的应用价值。此外,所述温度检测电路检测芯片温度的过程中减小了外部器件对测量温度传感器的电压时的影响,从而能够实现精确地测量芯片的温度。
基于本说明书附图1所对应的芯片温度检测模块101,如图3所示,本说明书实施例可以提出一种芯片。所述芯片可以包括主电路模块和芯片温度检测模块101。
主电路模块可以是所述芯片100中实现对应的功能的电路模块。例如,所述芯片100为闪存时,所述主电路模块为实现数据存储的电路模块;所述芯片100为运算器时,所述主电路模块为用于进行计算的电路模块。
对于所述芯片温度检测模块101的介绍可以参照图1所对应的实施例中对于芯片温度检测模块101的介绍,在此不做赘述。
基于上述芯片100,可以实现对温度传感元件111所感测到的温度的测量。在一些实施方式中,可以先向所述温度检测单元110中传输第一电流,并在传输第一电流的过程中分别获取所述第一反馈支路112反馈的第一电压信号和所述第二反馈电路反馈的第二电压信号;电压信号获取完毕后,再向所述温度检测单元110中传输第二电流,所述第二电流与第一电流具有不同的电流强度大小。在传输第二电流的过程中再分别获取所述第一反馈支路112反馈的第三电压信号和所述第二反馈电路反馈的第四电压信号。基于所述第一电流、第二电流、第一电压信号、第二电压信号、第三电压信号和第四电压信号计算所述温度传感元件111的温度。
具体的,计算所述温度传感元件111的温度的方式可以是利用公式
Figure BDA0002459327840000111
计算所述温度传感元件111的温度,式中,T为所述温度传感元件111的温度,q为单位电荷的电荷量,Vh1为第一电压信号的电压值,Vl1为第二电压信号的电压值,Vh2为第三电压信号的电压值,Vl2为第四电压信号的电压值,n为温度传感元件111的非理想系数,k为玻尔兹曼常数,I1为第一电流的电流值,I2为第二电流的电流值。
利用上述芯片,能够通过芯片中的温度检测单元,分别获取所述温度检测单元中的温度传感元件上游和下游的电压信号,进而利用所述电压信号计算出所述温度传感元件的温度,在测量的过程中减小了外部器件对电压信号的影响,保证了对芯片温度测量的准确度,使得所述芯片具有更好的应用价值。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
虽然通过实施例描绘了本说明书,本领域普通技术人员知道,本说明书有许多变形和变化而不脱离本说明书的精神,希望所附的权利要求包括这些变形和变化而不脱离本说明书的精神。

Claims (10)

1.一种芯片温度检测模块,其特征在于,所述芯片温度检测模块被添加至芯片中;所述芯片温度检测模块包括:至少一个温度检测单元、为所述至少一个温度检测单元供电的供电支路和输出端口;
每个所述温度检测单元包括温度传感元件,以及沿着电流方向设置于所述温度传感元件上游第一预设位置处的第一反馈支路,以及设置在所述温度传感元件下游第二预设位置处的第二反馈支路;所述温度传感元件包括三极管或二极管;所述第一预设位置和所述第二预设位置与所述温度传感元件之间具有固定的距离;所述第一反馈支路和所述第二反馈支路分别与所述输出端口连接,以使通过所述输出端口输出所述第一反馈支路反馈的第一电压信号,或通过所述输出端口输出所述第二反馈支路反馈的第二电压信号;所述芯片温度检测模块具有对应于输出端口的固定电位端口;所述固定电位端口用于在获取电压信号的电压值时提供固定电位;其中,所述第一电压信号和所述第二电压信号用于计算所述温度传感元件感测到的温度;每个所述温度检测单元还包括参考电压端口;所述温度传感元件通过参考电压端口连接支路与所述参考电压端口连接;每个参考电压端口具有相同的电位;所述参考电压端口连接支路具有指定长度。
2.如权利要求1所述的芯片温度检测模块,其特征在于,所述第一反馈支路和第二反馈支路包括通过长线传输信号的支路。
3.如权利要求1所述的芯片温度检测模块,其特征在于,所述芯片温度检测模块还包括电流源;所述电流源与所述温度检测单元相连接;所述电流源用于输出至少两种电流强度的电流至温度检测单元。
4.如权利要求3所述的芯片温度检测模块,其特征在于,所述芯片温度检测模块包括控制单元或信号输入端口;所述控制单元或信号输入端口用于输出控制所述电流源与所述温度检测单元之间的连通状态的电流控制信号。
5.如权利要求3所述的芯片温度检测模块,其特征在于,所述第一反馈支路用于在所述温度检测单元中通过第一电流时反馈第一电压信号,以及在所述温度检测单元中通过第二电流时反馈第三电压信号;
所述第二反馈支路用于在所述温度检测单元中通过第一电流时反馈第二电压信号,以及在所述温度检测单元中通过第二电流时反馈第四电压信号;
相应的,所述第一电流、第二电流、第一电压信号、第二电压信号、第三电压信号和第四电压信号用于基于公式
Figure DEST_PATH_IMAGE001
计算所述温度传感元件感测到的温度,式中,T为所述温度传感元件感测到的温度,
Figure 941506DEST_PATH_IMAGE002
为电荷量,
Figure DEST_PATH_IMAGE003
为第一电压信号的电压值,
Figure 893238DEST_PATH_IMAGE004
为第二电压信号的电压值,
Figure DEST_PATH_IMAGE005
为第三电压信号的电压值,
Figure 567933DEST_PATH_IMAGE006
为第四电压信号的电压值,
Figure DEST_PATH_IMAGE007
为温度传感元件的非理想系数,
Figure 294580DEST_PATH_IMAGE008
为玻尔兹曼常数,
Figure DEST_PATH_IMAGE009
为第一电流的电流值,
Figure 396529DEST_PATH_IMAGE010
为第二电流的电流值。
6.如权利要求1所述的芯片温度检测模块,其特征在于,所述温度检测模块包括控制单元或信号输入端口;所述控制单元或信号输入端口用于输出控制所述第一反馈支路和/或所述第二反馈支路的连通状态的测量控制信号。
7.一种基于权利要求1中的芯片温度检测模块所实现的芯片温度检测方法,其特征在于,所述方法包括:
向温度检测单元传输电流;所述温度检测单元包括温度传感元件,以及沿电流方向设置于所述温度传感元件上游第一预设位置处的第一反馈支路和设置在所述温度传感元件下游第二预设位置处的第二反馈支路;所述第一预设位置和所述第二预设位置与所述温度传感元件之间具有固定的距离;
获取所述第一反馈支路和所述第二反馈支路分别反馈的电压信号;
根据所反馈的电压信号计算所述温度传感元件感测到的温度。
8.如权利要求7所述的方法,其特征在于,所述向温度检测单元传输电流,包括:
分别向温度检测单元传输第一电流和第二电流;
相应的,所述获取所述第一反馈支路和所述第二反馈支路分别反馈的电压信号,包括:
在传输第一电流时,获取所述第一反馈支路反馈的第一电压信号和所述第二反馈支路反馈的第二电压信号;
在传输第二电流时,获取所述第一反馈支路反馈的第三电压信号和所述第二反馈支路反馈的第四电压信号;
所述根据所反馈的电压信号计算所述温度传感元件的温度,包括:
利用所述第一电流、第二电流、第一电压信号、第二电压信号、第三电压信号和第四电压信号计算所述温度传感元件的温度。
9.如权利要求8所述的方法,其特征在于,所述利用所述第一电流、第二电流、第一电压信号、第二电压信号、第三电压信号和第四电压信号计算所述温度传感元件感测到的温度,包括:
利用公式
Figure 44679DEST_PATH_IMAGE001
计算所述温度传感元件感测到的温度,式中,T为所述温度传感元件的温度,
Figure DEST_PATH_IMAGE011
为电荷量,
Figure 257485DEST_PATH_IMAGE003
为第一电压信号的电压值,
Figure 432115DEST_PATH_IMAGE004
为第二电压信号的电压值,
Figure 173806DEST_PATH_IMAGE005
为第三电压信号的电压值,
Figure 433886DEST_PATH_IMAGE006
为第四电压信号的电压值,
Figure 919225DEST_PATH_IMAGE007
为温度传感元件的非理想系数,
Figure 948361DEST_PATH_IMAGE008
为玻尔兹曼常数,
Figure 126532DEST_PATH_IMAGE009
为第一电流的电流值,
Figure 608329DEST_PATH_IMAGE010
为第二电流的电流值。
10.一种芯片,其特征在于,包括主电路模块和如权利要求1-6任一项中所述的芯片温度检测模块。
CN202010315244.4A 2020-04-21 2020-04-21 一种芯片、芯片温度检测模块及方法 Active CN111443278B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010315244.4A CN111443278B (zh) 2020-04-21 2020-04-21 一种芯片、芯片温度检测模块及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010315244.4A CN111443278B (zh) 2020-04-21 2020-04-21 一种芯片、芯片温度检测模块及方法

Publications (2)

Publication Number Publication Date
CN111443278A CN111443278A (zh) 2020-07-24
CN111443278B true CN111443278B (zh) 2022-10-18

Family

ID=71650204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010315244.4A Active CN111443278B (zh) 2020-04-21 2020-04-21 一种芯片、芯片温度检测模块及方法

Country Status (1)

Country Link
CN (1) CN111443278B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112649103B (zh) * 2020-12-03 2023-05-09 东南大学 一种基于薄膜金属热电阻的芯片测温系统
CN112747830B (zh) * 2020-12-29 2022-07-12 广东高云半导体科技股份有限公司 一种温度检测方法和温度传感装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006096543A2 (en) * 2005-03-08 2006-09-14 Wells-Cti, Llc Temperature sensing and prediction in ic sockets
CN202442810U (zh) * 2012-01-19 2012-09-19 东北石油大学秦皇岛分校 一种热电阻测温装置
US10126177B2 (en) * 2014-02-14 2018-11-13 Micro Control Company Semiconductor device burn-in temperature sensing
CN104299408A (zh) * 2014-11-04 2015-01-21 国家电网公司 一种高压电气设备温度监测装置
CN105487587B (zh) * 2015-12-21 2017-03-29 成都华微电子科技有限公司 高精度数字温度传感器校准电路
CN107024294B (zh) * 2016-01-29 2020-01-03 苏州普源精电科技有限公司 一种多通道芯片温度测量电路及方法
CN107144778A (zh) * 2017-05-16 2017-09-08 珠海格力节能环保制冷技术研究中心有限公司 一种芯片温度检测装置及方法
CN110068394A (zh) * 2019-04-08 2019-07-30 上海艾为电子技术股份有限公司 一种芯片温度检测电路和音频功率放大器

Also Published As

Publication number Publication date
CN111443278A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
CN111443278B (zh) 一种芯片、芯片温度检测模块及方法
CN105811759B (zh) 电源供应装置
CN107345996B (zh) 场效应管测试电路及测试方法
CN103558495B (zh) 一种多通道线路通断检测装置
US7029932B1 (en) Circuit and method for measuring contact resistance
RU2524569C1 (ru) Многовходовая схема
US10008846B2 (en) Control device for an electronic fuse and method for controlling an electronic fuse
CN107024294B (zh) 一种多通道芯片温度测量电路及方法
CN101084446A (zh) 用于生成测试半导体器件的信号的方法和系统
CN110763981A (zh) 集成电路芯片的检测系统和方法
CN101084445A (zh) 用于测试半导体器件的方法和系统
CN107101741A (zh) 一种测温系统及方法
US9306388B2 (en) Current-limiting circuit and apparatus
US6946848B2 (en) Calibration configuration
CN114333971A (zh) 功耗测量组件及方法、芯片功耗测量装置
US6448798B1 (en) Electronic device system including semiconductor integrated circuits
CN102045054B (zh) 校准输出入电路的方法与相关装置
CN105429096B (zh) 一种电表过流保护方法及过流保护电路
KR20160145107A (ko) 테스트 기기 보호 회로
US9331684B2 (en) Semiconductor device for sensing physical quantity
KR102600553B1 (ko) 부하 전류 검출 장치
US7321257B2 (en) Semiconductor device capable of detecting an open bonding wire using weak current
CN207037014U (zh) 场效应管测试电路
Li et al. An Intelligent IGBT Gate Driver IC with Temperature Compensated Gate Side Collector Current Sensing
CN111596115B (zh) 电阻补偿测量输出电流的方法及其转换电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant