CN111434159B - 终端装置、基础设施设备和方法 - Google Patents
终端装置、基础设施设备和方法 Download PDFInfo
- Publication number
- CN111434159B CN111434159B CN201880077633.9A CN201880077633A CN111434159B CN 111434159 B CN111434159 B CN 111434159B CN 201880077633 A CN201880077633 A CN 201880077633A CN 111434159 B CN111434159 B CN 111434159B
- Authority
- CN
- China
- Prior art keywords
- assistance information
- terminal device
- location
- location assistance
- system information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/006—Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/05—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/20—Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W68/00—User notification, e.g. alerting and paging, for incoming communication, change of service or the like
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/28—Discontinuous transmission [DTX]; Discontinuous reception [DRX]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
一种终端装置包括:无线通信接收器电路;位置检测接收器电路,其被配置为接收无线电信号,从该无线电信号可以进行测量,来帮助确定终端装置的位置;以及控制器电路。控制器电路被配置为控制无线通信接收器电路来检测携带从基础设施设备发送的位置辅助信息的一个或多个系统信息块,位置辅助信息提供可用于帮助确定终端装置的位置的信息,并且控制位置检测电路通过将所识别的位置辅助信息与由位置检测接收器电路接收的无线电信号相结合来估计终端装置的位置。此外,控制器电路配置有无线通信接收器电路,以从基础设施设备接收位置辅助信息将改变的相对风险的指示,并且响应于位置辅助信息将改变的相对风险的指示,调整接收一个或多个系统信息块,以根据相对风险接收更新版本的位置辅助信息。
Description
技术领域
本技术涉及被配置为生成终端装置的位置的估计的终端装置。本技术还涉及基础设施设备和方法,其被配置为提供位置辅助信息,通信终端使用该信息来生成对其位置的估计。
本申请要求欧洲专利申请EP17204751.6的巴黎公约的优先权,其内容通过引用结合于此。
背景技术
本文提供的“背景”描述是为了总体上呈现本公开的上下文。在本背景技术部分中描述的程度上,当前命名的发明人的工作以及在提交时可能不被认为是现有技术的描述的方面既不明确地也不隐含地被认为是针对本发明的现有技术。
第三和第四代移动电信系统(例如,基于3GPP(第三代合作伙伴计划)定义的UMTS和长期演进(LTE)架构的移动电信系统)能够支持比前几代移动电信系统提供的简单语音和消息服务更复杂的服务。例如,通过LTE系统提供的改进的无线电接口和增强的数据速率,用户能够享受高数据速率的应用程序(例如,移动视频流和移动视频会议),这些应用程序以前只能经由固定线路数据连接获得。因此,部署这种网络的需求很大,预计这些网络的覆盖范围(即有可能接入网络的地理位置)可能将迅速增加。
预计未来的无线通信网络将传统有效地支持与比当前系统优化支持的更广泛的装置的通信。例如,预计未来的无线通信网络将有效地支持与装置的通信,包括降低复杂性的装置、机器类型通信(MTC)装置、高分辨率视频显示器、虚拟现实耳机等。这些不同类型的装置中的一些可以大量部署,例如,用于支持“物联网”(IoT)的低复杂度装置,并且通常可以与具有较高延迟容限的较少量的数据的发送相关联。低复杂度装置通常也是低功率装置,其中,希望这种装置具有低功耗(因此具有长电池寿命)。
预计未来的无线通信网络以比当前系统优化支持的更广泛的装置/应用程序来常规且有效地支持基于位置的服务。
例如,预计5G中的无线通信将支持地理围栏服务,例如,儿童位置服务、商店附近触发的移动优惠券/广告以及登机口/柜台的机场自动登机。这些应用程序需要连续跟踪UE的位置或以低UE功耗监控等效的触发条件。
有鉴于此,期望未来的无线通信网络(例如,那些可称为5G(第五代)或新无线电(第三代)系统/新无线接入技术(RAT)系统的网络)以及现有系统的未来迭代/版本有效地支持各种装置的连接。特别地,需要解决如何在保持这些装置的低功耗的同时高效地向低复杂度装置发送信号和从低复杂度装置接收信号的问题。因此,将终端装置配置为以低功耗可靠地提供基于位置的服务是一个技术问题。
发明内容
根据权利要求来定义本技术。根据本技术的示例实施方式,一种终端装置包括:无线通信接收器电路,其被配置为经由基础设施设备提供的无线接入接口从基础设施设备接收信号;位置检测接收器电路,其被配置为接收无线电信号,可以通过该无线电信号进行测量,来帮助确定终端装置的位置;以及控制器电路。控制器电路被配置为:控制无线通信接收器电路以检测携带从基础设施设备发送的位置辅助信息的一个或多个系统信息块,所述位置辅助信息提供可用于帮助确定终端装置的位置的信息;并且控制位置检测电路通过将所识别的位置辅助信息与由位置检测接收器电路接收的无线电信号相结合来估计终端装置的位置。此外,所述控制器电路配置有无线通信接收器电路:从基础设施设备接收位置辅助信息将改变的相对风险的指示;并且响应于位置辅助信息将改变的相对风险的指示,调整接收一个或多个系统信息块,以根据相对风险接收更新版本的位置辅助信息。例如,可以通过改变不连续接收的周期来调整接收,使得如果位置辅助信息的变化风险相对较低,则UE可以被配置为采用更长的不连续接收(DRX)周期,从而降低功耗。当位置辅助信息变化的相对风险较大时,UE可以采用较短的DRX周期,以便UE可以更快地响应,以接收更新的位置辅助信息。结果,UE可以更可靠地估计其位置。
根据另一示例实施方式,可以通过接收指示位置辅助信息已经改变的寻呼消息来调整接收。
本技术的实施方式可以应用于高级位置或位置检测技术,包括诸如机器控制、自动驾驶等应用。预计在未来,位置检测可以将位置检测的精度从几十米提高到亚米级。例如,GPS可通过GNSS技术得到增强,从而将位置或定位检测的精度提高到一米以下。因此,可以使用更关键的位置应用(例如,无人驾驶汽车),但是如果位置精度存在误差,则这些应用可能会导致更严重的后果。因此,本技术的实施方式可以在向终端装置传递位置辅助信息方面提供改进,以减少位置检测中的误差,并避免这些误差的可能后果。
通过一般介绍的方式提供前述段落,并非旨在限制以下权利要求的范围。通过参考结合附图进行的以下详细描述,将会更好地理解所描述的实施方式以及进一步的优点。
附图说明
当结合附图考虑时,通过参考下面的详细描述,更好地理解本公开,从而将很容易获得对本公开及其许多附带优点的更完整的理解,在附图中:
图1是示出根据3GPP标准的无线通信系统的一些基本功能的示意框图;
图2是根据本技术的示例实施方式的终端装置、基础设施设备(gNodeB)和位置服务器的示意性框图,这些装置被配置为向终端装置提供位置辅助信息,以便终端装置生成其位置的估计;
图3是根据本技术的示例实施方式的与向通信装置提供定位服务相关联的、图1中所示的无线通信系统的部分的示意框图;
图4是根据已知设置在修改阶段中发送更新的系统信息的定时的示意图;
图5是示出当接收特定类型的更新的系统信息时由终端装置执行的动作流程的示意图;
图6是表示由根据本技术的示例实施方式的终端装置执行的处理的一个示例的流程图;以及
图7是示出当接收更新的位置辅助信息时由终端装置执行的动作流程的示意图。
具体实施方式
如上所述,本发明的实施方式可以应用于高级无线通信系统,例如,称为LTE、5G或新无线接入技术(NR)的系统。在[2]中提出了新无线接入技术,为下一代无线通信系统开发新的无线接入技术(RAT),即5G。新型RAT有望将在从数百MHz到100GHz的较大频率范围内运行,并且预计将涵盖广泛的使用情况。考虑的使用情况可以包括:
·增强型移动宽带(eMBB)
·大规模机器类型通信(mMTC)
·超可靠低延迟通信(URLLC)
5G的目标不仅仅是为人们提供移动连接,而是为可以从连接中受益的任何类型的装置和任何类型的应用程序提供无处不在的连接。许多需求和使用情况仍在讨论中,但其中包括:
·低延迟
·高数据速率
·毫米波频谱使用
·网络节点的高密度(例如,小型小区和中继节点)
·大系统容量
·大量装置(例如,MTC装置/物联网装置)
·高可靠性(例如,用于车辆安全应用,例如,自动驾驶汽车)。
·装置成本低且能耗低
·灵活的频谱使用
·灵活的移动性
图1示出了无线通信网络的示例配置,该网络使用了针对NR和5G提出的一些术语。在图1中,多个发送和接收点(TRP)10通过表示为线路3的连接接口连接到分布式控制单元(DU)11.1、11.2。每个发送器接收器点(TRP)10被设置成在无线通信网络可用的射频带宽内经由无线接入接口发送和接收信号。因此,在经由无线接入接口执行无线通信的范围内,每个TRP 10形成由虚线8表示的无线通信网络的小区。这样,在由小区10提供的无线电通信范围内的无线通信装置12可以经由无线接入接口向TRP 10发送信号和从TRP 10接收信号。每个分布式控制单元11.1、11.2经由接口16连接到协调单元(CU)14。然后,CU 14连接到核心网络17,该核心网络17可以包含向无线通信装置传送数据和从无线通信装置传送数据所需的所有其他功能,并且核心网络17可以连接到其他网络18。
图1中示出的无线接入网络的元件可以以与众所周知的并且在由3GPP(RTM)机构管理的相关标准中定义的LTE网络的对应元件类似的方式操作,并且在关于该主题的许多书中也有描述,例如,Holma H.和Toskala A[1]。应当理解,未具体描述的图1中表示的电信网络的以及根据本公开的实施方式在本文讨论的其他网络的操作方面(例如,关于特定通信协议和用于在不同元件之间进行通信的物理信道)可以根据任何已知的技术来实现,例如,根据当前使用的用于实现无线电信系统的这些操作方面的方法,例如,根据相关标准。
图1的收发器处理器TRP 10可以具有部分地与LTE网络的基站或eNodeB相对应的功能,因此在以下描述中,术语TRP和eNodeB是可互换的。作为无线电网络基础设施设备的示例的基站也可以称为收发器站/NodeBs/eNodeBs(eNBs)等。类似地,通信装置12可以具有与已知可以与LTE网络一起操作的装置相对应的功能,并且也可以被称为移动台、用户设备(UE)、用户终端、移动无线电、通信装置等。因此,应当理解,新RAT网络的操作方面(例如,关于特定的通信协议和用于在不同元件之间进行通信的物理信道)可以不同于从LTE或其他已知的移动电信标准中已知的那些操作方面。然而,还应当理解,新RAT网络的核心网络组件、基站和终端装置中的每一个在功能上将分别类似于LTE无线通信网络的核心网络组件、基站和终端装置。
如图1所示,位置服务器306连接到核心网络1。用于导航或基于位置的服务中本技术的实施方式要求UE生成其地理位置的估计。如将参考图2解释的,已知提供一种位置服务器来生成位置辅助信息,该位置辅助信息结合从接收的无线电信号生成的其他测量来帮助UE识别其位置。
与现有的定位解决方案(例如,由3GPP提出的那些)相比,期望提供改进的定位设置。术语“定位(positioning)”应当被理解为表示UE确定其在空间中的位置(特别是其地理位置)的任何处理。
以下实施方式主要涉及5G(NR)定位增强。然而,应当理解,所提供的教导可以适用于LTE系统(例如,支持按需服务的LTE系统或类似系统,如在不久的将来可能可用的)。本技术可以为合适的LTE和NR系统提供至少一些上述改进。
例如,可以在欧洲专利申请EP 16180858.9中找到可以与本技术的实施方式一起使用的按需服务系统信息(SI)的示例。
此外,可以在以下白皮书中找到关于现有的基于3GPP位置的服务和协议的信息:基于LTE位置的服务技术简介(Rohde&Schwarz)http://www.rohde-schwarz- wireless.com/documents/LTELBSWhitePaper_RohdeSchwarz.pdf,其内容通过引用结合于此。
例如,在3GPP TS 36.305中公开了LPP的UE定位方法的支持版本,其内容通过引用结合于此。
在3GPP中,当UE确定其空间位置时,区分信号的测量(来自GNSS卫星等)和基于这些信号的UE位置的计算。“UE辅助定位”是指UE外部的装置(例如,UE所连接的网络的位置服务器)根据来自UE的测量结果的报告来计算UE的位置的情况。另一方面,本技术允许更多的“基于UE的定位”,其中,向UE提供足够的信息来计算其位置。换言之(如3GPP TS36.305V13.0.0(2015-12)中所述),后缀“基于的(-based)”和“辅助的(-assisted)”分别指负责进行定位计算的节点(并且也可以提供测量)和提供测量的节点(但是不进行定位计算)。因此,由UE向E-SMLC(演进服务移动定位中心)提供测量以用于计算位置的估计的操作被描述为“UE辅助的”(并且也可以称为“基于E-SMLC的”),而UE计算其自身位置的操作被描述为“基于UE的”。与UE辅助定位相比,基于UE的定位(如本技术所使用的)需要较少的与网络的通信,从而降低了UE的功耗。
如前所述,可以基于从GNSS统卫星接收的信号来执行UE定位。如https:// www.gsa.europa.eu/system/files/reports/gnss_mr_2017.pdf中所讨论的,例如,全球导航卫星系统(GNSS)是一种基础设施,其允许用户使用兼容装置(在这种情况下为UE)通过处理来自卫星的信号来确定其位置、速度和时间(PVT)。GNSS信号由各种卫星定位系统提供,包括全球和区域星座和基于卫星的扩增系统:
·全球星座:全球定位系统(GPS)(美国)、全球导航卫星系统(GLONASS)(俄罗斯联邦)、伽利略系统(欧盟)、北斗系统(中国)。
·区域星座:准天顶卫星系统(QZSS)(日本)、印度区域导航卫星系统(IRNSS)(印度)和北斗区域组件(中国)。
·基于卫星的扩增系统(SBAS):广域扩增系统(WAAS)(美国)、欧洲地球静止导航重叠服务(EGNOS)(欧盟)、MTSAT卫星扩增系统(MSAS)(日本)、GPS辅助GEO扩增导航(GAGAN)(印度)、差分校正和监测系统(SDCM)(俄罗斯联邦)和卫星导航扩增系统(SNAS)(中国)。
GNSS可能有不止一个频带或代码/信号。
例如,除了传统的L1 C/A(频带L1和粗略/获取码)之外,GPS还新支持L2C信号(频带L2、民用GPS信号)。然而,大多数GPS统终端仍然只支持L1 C/A。
经由蜂窝网络的GNSS辅助信息有利于定位。特别地,其允许经由网络向UE提供经由GNSS确定UE位置所需的一些信息,而不是直接从卫星将其提供给UE。在本技术的一个实施方式中,GNSS辅助信息可以在一个或多个系统信息块中从gNB 101发送到UE,并由UE 104的无线通信接收器202接收。由UE 104的第一接收器200直接从卫星接收其他GNSS信息,作为第一信号的一部分。
GNSS卫星发送代码和信息。代码是诸如伪随机噪声等正交码。消息包括卫星轨道信息,例如,星历和年历(这是位置的估计所需要的)。例如,在3GPP TS 36.305V13.0.0(2015-12)中提供了关于星历和年历的信息。在此处,明确了星历和时钟模型辅助为GNSS接收器(在这种情况下为UE)提供计算GNSS卫星位置和时钟偏移的参数。各种GNSS使用不同的模型参数和格式,信令支持由各个GNSS定义的所有参数格式。还明确了年历辅助为GNSS接收器提供计算粗略(长期)GNSS卫星位置和时钟偏移的参数。各种GNSS使用不同的模型参数和格式,信令支持由各个GNSS定义的所有参数格式。
LTE定位协议(LPP)可以支持将部分GNSS信息(例如,消息)从位置服务器经由LTE基站传送到UE,作为对从GNSS卫星发送该信息的更快的补充。
来自蜂窝网络(即,来自网络基站)的位置辅助信息有助于缓解与GNSS定位相关的各种问题,包括与GNSS卫星发送的信息的灵敏度、首次定位时间和提供精确定位相关的问题。
特别地,蜂窝网络的使用有助于缓解卫星信号强度问题。由于UE和卫星之间的距离很远,GNSS卫星信号非常弱。由于具有相对较小的GNSS天线,UE也可能错过信号。应当指出,GNSS编码(特别是GPS代码)要求的信噪比(SNR)低于GNSS信息(特别是GPS消息)。因此,可能出现这样的情况,其中,UE可以接收GNSS代码,但是不能接收GNSS消息。此外,即使UE能够以高SNR接收消息,测量时间(称为首次定位时间(TTFF))也可能是一个问题。例如,GPS以非常低的比特率(例如,50比特/秒)发送消息。如果UE要从头开始接收所有必要的消息(星历和年历),这将需要12.5分钟。相比之下,蜂窝网络提供高得多的比特率,并且UE能够在几秒的时间周期内接收所有必要的消息。
由于对更精确定位的预期要求,GNSS辅助信息量预计在不久的将来会增加。3GPP第15版将引入支持实时动态(RTK)定位,提供基于载波的测距,而不是传统的基于GNSS代码的测距。(例如,见https://www.novatel.com/an-introduction-to-gnss/chapter-5- resolving-errors/real-time-kinematic-rtk/)。例如,JAXA(日本宇宙航空研究开发机构)为QZSS用户提供MADOCA(多GNSS高级轨道和时钟分析演示工具),该MADOCA需要精确的点位置(PPP)。来自MADOCA的辅助信息不仅包含在QZSS轨道和时钟信息中,还用于其他GNSS系统中。然而,QZSS卫星通信(L频带)的容量有限。因此,可以从卫星发送许多用户需要的非常常见的信息。然而,可以经由其他通信方法发送剩余的辅助信息,例如(例如,经由互联网,例如,见https://ssl.tksc.jaxa.jp/madoca/public/public_index_en.html)。
如上所述,预期未来的无线通信网络将有效地支持与包括复杂度降低的装置或机器类型通信(MTC)装置在内的装置的通信,可以部署这些装置,用于支持“物联网”,并且通常可以与具有较高延迟容限的较少量数据的发送相关联。
图2提供了对应于图1所示的移动无线电网络的元件的示意性框图,其中,位置信息被传送给UE。如图2所示,在一个示例中,位置服务器306是增强型位置服务器(eSMLC),其经由SLm接口121与LMU 120接合。移动性管理实体122经由SLs接口128与eSMLC 306接合,并且经由S1接口124与gNode B 101接合。eSMLC 306还经由SLm接口106与gNodeB 101接合。eSMLC还经由专有接口112与SLP 110接合,并经由SUPL承载114与UE 104接合。
图3示意性地示出了根据本技术的示例实施方式的作为位置辅助服务器或SMLC的UE 104、基站101和数据处理设备306的一些组件。
如图3所示,UE 104包括位置检测接收器200、无线通信接收器201、无线通信发送器202和控制器203。位置检测接收器200用于从位于相应空间位置的一个或多个信号发射装置中的每一个接收无线信号。例如,这种信号发射装置229可以是GNSS(全球导航卫星系统)卫星。无线通信接收器201用于从无线通信网络接收携带用户数据的无线信号(例如,无线电信号),其中,gNB 101构成无线通信网络的一部分。无线通信发送器202用于发送无线信号(例如,无线电信号)。控制器203被配置为控制位置检测接收器200、无线通信接收器201和无线通信发送器202,并控制UE 104根据本公开的实施方式进行操作。控制器203可以包括用于根据本公开的实施方式提供功能的各种子单元,如下文进一步解释的。无线通信接收器、无线通信发送器、位置检测接收器和控制器可以实现为分立的硬件元件或者控制器203的适当配置的功能。控制器203可以被适当地配置/编程为使用电信系统中的设备的传统编程/配置技术来提供本文描述的期望功能。为了便于表示,位置检测接收器200、无线通信接收器201、无线通信发送器200和控制器201在图2中被示意性地示为单独的元件。然而,应当理解,这些元件的功能可以以各种不同的方式提供,例如,使用单个适当编程的计算机或者适当配置的专用集成电路/电路系统。应当理解,尽管未示出,但是UE 104通常将包括与其操作功能相关联的各种其他元件,例如,用户接口、电池等。在以下实施方式中,位置检测接收器200、无线通信接收器201、发送器202和控制器203被实现为电路。
本领域技术人员应当理解,在本技术的设置中,例如,在通信装置104是低功率可佩戴装置的情况下,通信装置104的收发器202不可能总是包括发送器。
在一些示例中,基站101中的接收器204被配置为在UE 104检测到从位于相应空间位置的一个或多个信号发射装置232中的每一个发送的一个或多个无线电信号230之后,从UE 104(未示出)接收请求消息。基站101中的控制器206被配置为响应于请求消息来确定一个或多个信号发射装置232中的每一个的相应空间位置。发送器205被配置为发送位置辅助信息,该位置辅助信息指示预定系统信息块(SIB)内的一个或多个信号发射装置中的每一个的相应空间位置。
在一些实施方式中,UE 104的控制器203被配置为基于由一个或多个信号发射装置233中的每一个发送的一个或多个无线电信号230的特性(例如,信号强度和/或质量)的测量来确定终端装置相对于一个或多个信号发射装置中的每一个的空间位置。位置辅助信息指示一个或多个信号发射装置232中的每一个的相应空间位置。然后,控制器203能够基于所确定的终端装置相对于一个或多个信号发射装置中的每一个的空间位置以及一个或多个信号发射装置中的每一个的相应空间位置来计算给定坐标系中的UE 104的绝对位置(这种计算技术在本领域中是已知的,因此在此不再讨论)。
本技术的实施方式可以应用于使用发射可由UE检测的信号的各种类型的信号发射装置的定位。这种替代定位可用于室内公共空间(例如,购物中心、美术馆、博物馆等),在这些空间中不可能获得足够强度和/或质量的卫星信号。在这种情况下,将指示一个或多个信号发射装置的位置的信息与UE到每个信号发射装置的距离(例如,由UE 104的第一接收器200基于来自每个信号发射装置的第一信号测量)结合使用,以便确定UE在建筑物内的位置。在这种情况下,辅助信息(指示一个或多个室内信号发射装置中的每一个的位置)可以经由网络发送到UE。更一般地,本技术可以使用位于预定空间内相应预定位置的一个或多个卫星或非卫星信号发射装置来实现。因此,位置检测接收器200可以配置有多个检测器。各种额外传感器也可以用于UE定位,这将在后面解释。在EP17199204[7]中公开关于UE对接收到的辅助信息的配置的更多信息,其内容通过引用结合于此。
在5G(NR)定位的情况下,位置速度和时间(PVT)估计不仅可以使用GNSS定位(或者更一般地,基于一个或多个信号发射装置的定位,该信号发射装置可以包括GNSS卫星或室内信号发射装置),还可以使用一个或多个各种类型的其他传感器。因此,除了或者代替位置检测接收器200被配置为从一个或多个信号发射装置接收信号之外,位置检测接收器200还可以从作为UE 104的一部分的一个或多个其他传感器接收信号。这种传感器可以包括加速度计、重力仪、气压计传感器、陀螺仪传感器等,并且可以以各种方式用于补充或代替GNSS或其他发射信号。术语“传感器”应被广义地解释为被配置为检测一个或多个特征的元件(例如,使用电路实现),基于所述一个或多个特征,可以确定UE的位置(或基于UE的位置可应用的至少一个或多个服务)。各种不同类型的传感器可以组合使用,以便执行UE定位。
返回参考图3,基站101包括发送器205、接收器204、网络接口208和控制器206。发送器205用于发送无线信号(例如,无线电信号),接收器204用于接收无线信号(例如,无线电信号),网络接口208用于通过诸如因特网等网络发送和接收信号(例如,进入和来自位置服务器,如下所述),并且控制器206被配置为控制发送器205、接收器204和网络接口208,并且控制基站101根据本公开的实施方式进行操作。控制器206可以包括用于根据本公开的实施方式提供功能的各种子单元,如下文进一步解释的。这些子单元可以实现为分立的硬件元件或者控制器206的适当配置的功能。控制器206可以被适当地配置/编程为使用电信系统中的设备的传统编程/配置技术来提供本文描述的期望功能。为了便于表示,发送器205、接收器204、网络接口208和控制器206在图2中被示意性地示为单独的元件。然而,应当理解,这些元件的功能可以以各种不同的方式提供,例如,使用单个适当编程的计算机或者适当配置的专用集成电路/电路系统。应当理解,尽管未示出,但是基站101通常将包括与其操作功能相关联的各种其他元件。在以下实施方式中,发送器205、接收器204、网络接口208和控制器206被实现为电路。
形成eSMLC 306的数据处理设备包括网络接口209、存储介质211和控制器210。网络接口209用于通过诸如因特网等网络发送和接收信号(例如,进入和来自基础设施设备,如下所述)。存储介质211用于存储数字数据(例如,可以采用硬盘驱动器、固态驱动器、磁带驱动器等的形式)。控制器210被配置为控制网络接口208和存储介质211,并控制数据处理设备306根据本公开的实施方式进行操作。控制器210可以包括用于根据本公开的实施方式提供功能的各种子单元,如下文进一步解释的。这些子单元可以实现为分立的硬件元件或者控制器210的适当配置的功能。控制器210可以被适当地配置/编程为使用电信系统中的设备的传统编程/配置技术来提供本文描述的期望功能。为了便于表示,网络接口209、存储介质211和控制器210在图2中被示意性地示为单独的元件。然而,应当理解,这些元件的功能可以以各种不同的方式提供,例如,使用单个适当编程的计算机或者适当配置的专用集成电路/电路系统。
应当理解,尽管未示出,但是eSMLC 306通常将包括与其操作功能相关联的各种其他元件。在以下实施方式中,网络接口209和控制器210被实现为电路系统。
从图1、图2和图3所示的设置的上述描述中可以理解,为了让UE确定其位置,由无线通信网络从位置服务器306发送的系统信息块向UE传送位置辅助信息。本技术的实施方式解决了与向UE传送位置辅助信息的时间相关联的技术问题。
如上所述,可以使用按需系统信息或周期性传送的系统信息来发送位置辅助信息。然而,位置辅助信息可能会意外地改变。当位置辅助信息发生意外变化时,eNodeB必须尽快通知UE。然而,就UE功耗而言,寻呼的快速响应(例如,较短的DRX周期)的成本很高。当意外事件的风险很高时,需要快速响应。相比之下,当意外事件的风险较低时,应该优先考虑节能。
位置辅助信息可能例如由于影响电离层的太阳风暴而改变。因此,电离层在空间和时间上的变化特征会因太阳活动而改变,例如,如在http://gpsworld.com/innovation-gnss-and-ionosphere-11036/中所公开的,这表示GNSS定位中的一个众所周知的问题。当电离层的特征突然改变或者任何其他意外的方面改变时,例如,信号发射装置(卫星)229的位置或性能,则这可能导致定位信息中的误差。如果检测到问题,则卫星轨道/时钟可以从地球站进行校正。因此,人工参数可能会在辅助信息的有效时间方面发生意外变化。如果位置辅助信息有变化,网络应即时通知UE该变化。然后,UE可以采取行动,例如,尽快接收新的位置辅助信息,以避免负面影响,例如,对其当前位置的误算。
在现有技术文献R2-1710094(三星)[9]中,公开了一种提供按需系统信息更新的方法,其中,提出了对按需系统信息的系统信息的即时更新。然而,由于辅助信息的变化在一定程度上是可预测的,因此UE不必为了定位而即时更新系统信息。因此,UE使用正常的按需系统信息更新方法就足够了,在该方法中,在系统信息修改阶段之后更新系统信息。
以下提供了用于传送系统信息和诸如地震和海啸警报信号(ETWS)等其他紧急通信的典型设置的简要说明,以便更好地理解本技术的实施方式。
系统信息通信
众所周知,系统信息块(SIB)234在3GPP中用于向在无线通信网络中操作的UE提供系统信息。gNB在无线接入接口的已知资源单元中向网络内的UE 104广播SIB 234。在UE能够使用由基站提供的小区之前,期望终端执行一系列步骤。根据用于其他3GPP系统(例如,LTE)的传统设置,UE使用主同步信号(PSS)和次同步信号(SSS)来检测小区和小区ID,以检测小区,然后从物理广播信道(PBCH)接收主系统信息块(MIB),并从PDSCH接收其他系统信息块(SIB)。更具体地,UE必须首先实现与小区的时间和频率同步,通常使用由基站发射的传统PSS和SSS。然后,终端将对PBCH进行解码,以获取MIB。除了其它信息之外,MIB还包含用于终端获取更多系统信息的信息,即经由PDSCH发送的SIB1。SIB1包含用于获取剩余系统信息部分(其他SIB)的调度信息。
如例如在根据示例性3GPP规范的TS 36.331中所公开的,系统信息的变化可以仅发生在包括特定无线电帧的特定修改阶段期间。系统信息可以在一个修改阶段内以相同的内容发送多次,如其调度所定义的。修改阶段边界由系统帧号值定义。修改阶段由系统信息配置。为使UE的系统信息更新通知处于空闲状态,被配置为使用比修改阶段长的不连续接收周期(DRX),定义eDRX获取周期。
图4提供了系统信息修改阶段的示意表示,其中,在第一周期400中提供改变通知,在第二周期402中提供更新信息。
当无线通信网络改变系统信息或其中的一部分时,首先通知UE这一变化。这可以在整个修改期间完成。在下一个修改阶段,网络发送更新的系统信息。这些一般原理如图4所示。如图4所示,在第一修改阶段400中,一个或多个系统信息块404提供系统信息正在改变的指示,并且在下一修改阶段402中的一个或多个系统信息块406传递更新的系统信息。在接收到改变通知时,未被配置为使用比修改阶段长的DRX周期的UE从下一个修改阶段的开始即时获取新的系统信息。一旦接收到适用于eDRX的变化通知,处于空闲模式的被配置为使用比修改阶段400、402更长的DRX周期的UE从下一个eDRX获取周期的开始即时获取更新的系统信息。UE应用先前获取的系统信息,直到UE获取新的系统信息。可在TS 36.331中找到更多信息,其内容通过引用结合于此。
根据一些示例,系统信息可以用于向UE提供位置辅助信息,以便提供位置服务,其中,在这些剩余的UE中的一个或多个中携带位置辅助信息。然而,从上面的描述可以理解,在获取更新的系统信息时可能会有延迟,这可能不会使这种已知的设置适合于传送更新的位置辅助信息。
ETWS/CMAS(LTE)的系统信息变化程序
一些无线通信系统可以被配置为向被配置为接收该ETWS的一类UE提供地震和海啸警告信号(ETWS)。例如,在TS 23.8288.0.0(2008-09)中公开这种设置。类似地,UE可以被配置为通过商业移动警报系统(CMAS)接收警报,该系统向UE传播紧急警报,例如,如在TS23.0429.4.0(2010-06)中所公开的。根据这些系统,使用UE可以识别的寻呼消息来传递警告消息。在检测到该寻呼之后,UE通过检测系统信息继续接收警告消息的内容,如在TS36.331中所公开的。为了减少响应时间,ETWS/CMAS有系统信息变化通知的特殊程序,如下所示:
·eNodeB触发寻呼,以通知UE系统信息发生变化(此时,系统信息尚未改变)
·UE通过寻呼接收信息“systemInfoModification”,该信息指示系统信息将改变的时间。
·eNodeB等待系统信息的更新,直到系统信息修改阶段的边界。
·eNodeB在边界时间用新的systeminfo值标签(SI版本)改变系统信息。
·UE接收更新的系统信息。
如在TS 36.331中所公开的,ETWS有两个级别,它们是指示最小但紧急的信息的主要通知,以及提供包括关于特定事件的补充信息的较大消息的次要通知。主要通知由第一寻呼消息指示,次要通知由第二寻呼消息指示。根据这种设置,在寻呼消息的类型和由UE在检测到该寻呼消息时读取的系统信息块之间存在连接。这种设置如图5所示。
如图5所示,在步骤501中,UE检测PDCCH中的寻呼消息,在该步骤中,发送特定的PRNTI,该PRNTI可以指示各种事情,包括寻呼消息将发送到特定的UE,以接收下行链路信息。因此,在步骤502中,UE分析寻呼消息和包含在寻呼消息中的信息元素。在步骤503中,UE检测到寻呼消息具有与ETWS指示相关联的特定RNTI。
如果UE具有ETWS能力,则在步骤504,UE继续读取特定系统信息块调度(SIB1),然后在步骤505,UE继续读取特定系统信息块(SIB)。如果UE没有ETWS能力,则根据当前的3GPP规范,忽略ETWS指示。
例如,ETWS主要通知包含在SIB类型10中,而ETWS次要通知包含在SIB类型11中。因此,根据该信息,因为在连续的通知周期中,UE没有时间读取系统信息变化的指示和更新的信息,所以使用寻呼消息来通知UE在SIB中发送的信息,使得UE可以在下一个通知周期中继续从SIB接收该信息。
根据TS 36.331,处于RRC连接模式的具有ETWS和/或CMAS能力的UE被配置为在每个寻呼周期至少读取寻呼一次,以检查ETWS和/或CMAS通知是否存在。为了提供像CMAS/ETWS那样的即时响应,UE没有时间读取系统信息值标签,来检查更新哪个SIB。因此,在传统的LTE中,UE知道寻呼消息中的寻呼类型,并识别该消息,该消息直接通知UE读取相关的SIB,而无需等待下一个修改阶段。
位置辅助信息的寻呼处理示例
由UE接收寻呼消息以接收更新的位置辅助信息的一个示例如下:
如果etws指示包括在寻呼消息中,并且UE具有UE定位能力,并且UE不支持影响减轻功能(例如,双频带接收器):
2>即时重新获取SystemInformationBlockType1,即不等待下一个系统信息修改阶段边界;
2>如果schedulingInfoList指示SystemInformationBlockType X存在:
3>获取SystemInformationBlockType Y;
2>如果schedulingInfoList指示SystemInformationBlockType Y存在:
3>获取SystemInformationBlockType11;
SI变化通知的自适应响应时间
如上所述,存在位置辅助信息由于例如太阳风暴而被破坏或无效的情况。然而,这种风暴在一定程度上是可以预测的;参见例如太阳辐射风暴预测http://www.swpc.noaa.gov/products/3-day-forecast。这样的预测可以预测太阳何时活跃,太阳风暴会在哪里影响地球,例如,在地球的磁赤道附近。如果严重的太空天气风暴的风险很高,则快速响应寻呼的成本可能是合理的。
本技术的实施方式可以提供一种设置,其中,一些信息发送到通信装置(UE),以指示导致位置信息变化的意外事件的相对可能性。作为响应,UE可以根据相对风险水平做出反应,以执行预定的活动。在一个示例中,UE可以从用于接收系统信息的变化的正常设置切换到对应于ETWS通信的设置,以读取用户信息,而不等待下一个通知变化周期。在另一示例中,当发送新的位置辅助信息时,UE可以从长DRX周期切换到更短的DRX周期,以便增加UE处于连接状态或至少通电状态的可能性。因此,可以根据位置辅助信息可能改变的相对风险来调整由UE消耗的功率。这是因为DRX(不连续接收周期)通常由周期的第一部分和周期的第二部分组成,在周期的第一部分中,UE的接收器处于通电状态,在通电状态中,UE可以检测从eNodeB发送的信号,在周期的第二部分中,接收器断电或者将功率降低到不太可能或者不检测从基础设施设备发送的信号的状态。因此,在长DRX周期中,UE的接收器处于断电状态的时间更长,从而以能够检测到新版本的位置辅助信息为代价节省了更多的功率。
因此,本技术的示例实施方式可以提供UE和基础设施设备的设置,其中:
1.系统信息可以指示导致位置辅助信息快速变化的意外事件的相对风险。或者,专用RRC信令可用于指示影响位置辅助信息的意外事件的相对风险。
2.如果相对风险较低,则UE使用传统的SI变化通知,其中,UE接收在修改阶段内的SI和在下一个修改阶段内的更新的SI的变化的指示。
3.如果相对风险较高,则UE会接收到特殊的SI变化通知,该通知可以支持即时通知。
例如,
a.从正常操作切换到ETWS,就像SI变化通知的操作一样,无需等待下一个通知变化周期。
b.比正常的DRX短或缩短的DRX周期。
4.如果相对风险非常高(即将发生),则UE可以激活一种或多种替代定位技术,作为备份,例如,
a.网络定位,例如,观测到达时间差(OTDOA)
b.传感器定位,例如,惯性测量单元(IMU)
如果结果4a、4b与GNSS不一致,则UE不使用GNSS对其位置的估计,并且如果可能,则通过使用其他定位技术进行补偿。
c.如果UE用于关键应用,其中,例如,在自动驾驶中,定位精度的损失可能导致人员或财产的伤害,则UE可以暂停一些位置的估计功能或暂停操作,以避免事故/伤害。
在图6中示出根据任何示例实施方式的图3所示的UE的示例操作,其中,控制器电路203控制位置检测接收器200以及无线通信发送器和接收器202、201,以对位置辅助信息的变化的相对风险的指示做出反应。图6总结如下:
S2:在开始状态S1开始之后,UE接收到一个指示,该指示给出了可能导致位置辅助信息变化的意外事件的风险的相对表示。在一个示例中,经由系统信息从eNodeB发送相对指示,或者在另一示例中,相对风险作为RRC通信从eNodeB发送到UE。
在第一决策点S4,UE确定相对风险的指示是否指示风险高。如果没有,则处理返回到步骤S2。如果风险的相对指示高,则处理进行到步骤S6。
在步骤S6,UE从UE如上面参考图4所解释的在修改阶段中周期性地接收系统信息的正常操作模式切换到UE监视寻呼请求以指示经由系统信息传送的位置辅助信息已经改变的状态。因此,在接收到位置辅助信息已经作为寻呼消息改变的指示之后,UE应该在当前通知周期中直接接收系统信息。
在决策点S8,UE确定相对风险是否指示系统信息的变化即将发生。如果没有,则处理返回到步骤S2。然而,如果位置辅助信息变化的相对风险的指示表示即将发生变化,则处理进行到步骤S10。
S10:如果存在位置辅助信息即将发生变化的指示,则UE可以调整其行为,例如使用不同的网络、定位方法和使用不同的传感器,来识别其位置。
S12:如果根据UE的应用,UE确定其位置对其操作是关键的,换言之,如果根据相对重要性水平,应用是任务关键的,则在决策点S12,如果位置辅助信息的变化是任务关键的,则UE前进到步骤S14,或者如果不是,则返回到步骤S2。
S14:如果位置辅助信息中存在即将发生的变化,或者至少当前位置辅助信息中存在错误,并且UE正在执行关键任务服务或应用,则UE可以继续禁用其正在执行的与其位置相关的一些功能,例如,暂停自主驾驶或导航。
本技术的实施方式可以提供一个优点,因为当位置辅助信息变化的风险相对较低时,UE可以被配置为采用更长的不连续接收(DRX)周期,从而降低功耗。UE可以采用更短的DRX周期,当位置辅助信息变化的相对风险更大时,消耗更多的功率,从而UE可以更快地响应,以接收更新的位置辅助信息。因此,UE可以更可靠地估计其位置。
双频带(或三频带)GNSS系统接收器的特殊处理
如上所述,可以为该UE提供位置检测接收器200,该接收器包括多个检测器,这些检测器被配置为监控来自多于一个频带的信号发射装置(卫星)的信号。对于这个示例,UE可能不需要响应于位置辅助信息改变的任何紧急指示。例如,双频带GNSS接收器(例如,L1和L5)对电离层变化具有鲁棒性。例如,在严重的空间天气风暴期间,可能会出现几十米或更多的定位误差,而双频GPS系统可以提供精确到几厘米的位置信息(见http://www.swpc.noaa.gov/impacts/space-weather-and-gps-systems)。这样,如果UE的位置检测接收器200具有双频带的定位能力,则UE可以忽略与电离层变化相关的位置辅助信息更新的紧急寻呼。
使用寻呼指示位置辅助信息的变化
根据一些示例实施方式,无线通信网络可以被配置为在寻呼消息中指示相关定位信息将改变的时间,例如,以时间戳或无线电帧的数量的格式。有了这个指示,网络可以在用于警告UE进行下行链路通信的寻呼消息或用于指示SI变化(该变化用于指示位置辅助信息的变化)改变的寻呼消息内,传送位置辅助信息的变化的时间。在接收到寻呼消息中的该时间信息之后,UE知道需要从SIB读取相关的变化的位置信息的时间。
根据一些实施方式,寻呼消息可以简单地指示位置辅助信息无效。
除了位置辅助信息是无效的指示之外,在一些实施方式中,寻呼消息还可以包括下一级新信息元素,其可以指示提供更新的位置辅助信息的一个或多个系统信息块(SIB)。
图7示出了一个示例实施方式,其中,提供了寻呼消息的调整,以便用信号通知位置辅助信息的变化。图7中所示的由UE执行的处理步骤对应于图5中所示的那些步骤,这些步骤被调整成提供一个示例实施方式,其中,寻呼消息包括位置辅助信息是无效的指示。如图7所示,步骤501和502对应于图5所示的步骤。然而,在步骤703,UE检测到从eNodeB接收的寻呼消息提供了位置辅助信息无效或更新的指示。因此,UE可以采取适当的行动,例如,暂停位置服务或暂停特定任务或应用的执行,这对于定位其位置来说可能是关键的任务。
在步骤704,为了更新位置辅助信息,UE可以继续从在下一个可用的通知周期中提供的系统信息块中读取更新的位置辅助信息。相应地,在步骤705,UE根据由寻呼消息指示的用于更新位置辅助信息的系统信息块类型来接收系统信息块类型。
或者,如果相关更新SIB是已知的,则UE可以跳过步骤704,然后在步骤705,UE根据由寻呼消息指示的用于更新位置辅助信息的系统信息块类型来接收系统信息块类型。
在步骤706中,UE可以并行进行紧急活动(例如,暂停建筑机械的操作),以更新系统信息。
根据一个示例实施方式,提供寻呼消息中的信息元素,来向UE指示他们应该读取携带新的位置辅助信息的特定系统信息块。该信息元素的一个示例在下表中显示为编号为6的条目“MTC的直接指示信息”。
位 | 直接指示信息 |
1 | systemInfoModification |
2 | etws-指示 |
3 | cmas-指示 |
4 | eab-ParamModification |
5 | systemInfoModification-eDRX |
6 | PosisitioingAssistanceInfoModification |
7,8 | 未使用,如果收到,应被UE忽略。 |
表格:位置辅助信息更新的额外指示
根据一些示例实施方式,可以根据关键程度/紧急程度为位置辅助信息提供两级通知。主要通知表示具有需要即时采取行动的事件,但没有详细信息,而次要通知提供了有关问题细节和原因的更多信息。
根据上述教导,本公开的许多修改和变化是可能的。因此,应当理解,在所附权利要求的范围内,本公开可以不同于本文具体描述的方式来实施。
并未新定义PosisitioingAssistanceInfoModification,传统的指示器(例如,systemInfoModification、systemInfoModification-eDRX)用于传达更新版本的位置辅助信息。根据系统信息指示的风险程度,可能会应用PosisitioingAssistanceInfoModification的相同解释/行为。
并未新定义由系统信息指示的风险程度,而是定义了多个PosisitioingAssistanceInfoModification指示器。
根据以上解释中呈现的各种实施方式,本技术的实施方式可以提供一种一种用于无线通信网络的终端装置,所述终端装置包括:无线通信接收器电路,其被配置为经由由基础设施设备提供的无线接入接口从基础设施设备接收信号,所述无线接入接口划分为多个修改阶段;位置检测接收器电路,其被配置为接收无线电信号,从该无线电信号可以进行测量,来帮助确定终端装置的位置;以及控制器电路。所述控制器电路被配置为控制无线通信接收器电路:以通过在所述多个修改阶段中的一个修改阶段中接收应当在随后的一个修改阶段中接收所述一个或多个系统信息块的指示,来检测携带从基础设施设备发送的位置辅助信息的一个或多个系统信息块,并且在随后的一个修改阶段中接收携带位置辅助信息的一个或多个系统信息块,所述位置辅助信息提供可用于帮助确定终端装置的位置的信息,并且检测指示位置辅助信息已经改变的寻呼消息,并且响应于该寻呼消息,在多个修改阶段中的一个中检测携带更新版本的位置辅助信息的一个或多个系统信息块。
在一个示例中,所述寻呼消息包括修改阶段的指示,其中,所述基础设施设备发送携带更新版本的位置辅助信息的一个或多个系统信息块。在另一示例中,所述寻呼消息提供携带更新版本的位置辅助信息的一个或多个系统信息块的指示。在另一示例中,所述寻呼消息提供位置辅助信息是无效的指示,并且作为响应,所述控制器电路被配置为检测携带更新版本的位置辅助信息的一个或多个系统信息块。
根据另一示例实施方式,一种用于无线通信网络的终端装置包括:无线通信接收器电路,其被配置为经由由基础设施设备提供的无线接入接口从基础设施设备接收信号,所述无线接入接口划分为多个修改阶段;位置检测接收器电路,其被配置为接收无线电信号,从该无线电信号可以进行测量,来帮助确定终端装置的位置;以及控制器电路。所述控制器电路被配置为控制无线通信接收器电路:以接收从广播信道中的基础设施设备发送的位置辅助信息,所述位置辅助信息提供可用于帮助确定终端装置的位置的信息;并且与位置辅助信息协作,以从位置辅助信息和接收到的无线电信号的组合中生成终端装置的位置的估计。此外,所述控制器电路被配置为:检测指示位置辅助信息已经改变的寻呼消息;根据终端装置的位置的估计来确定终端装置是否正在执行任务;并且响应于检测到指示位置辅助信息已经改变的寻呼消息,暂停执行任务。
根据另一示例实施方式,提供了一种被配置为与无线通信网络可操作地关联的位置服务器,包括:位置信息接收器,其被配置为从位于预定位置的一个或多个信号发射装置接收信号,所述信号提供每个信号发射装置的位置的指示。所述控制器电路被配置为:生成提供每个信号发射装置的位置的指示的位置辅助信息;并且通过接口向无线通信网络的基础设施设备传送位置辅助信息的指示,用于传送到一个或多个终端装置;确定位置辅助信息将改变的相对风险;并且通过接口向无线通信网络的基础设施设备发送位置辅助信息将改变的相对风险的指示。
就本公开的实施方式已经被描述为至少部分地由软件控制的数据处理设备实现而言,应当理解,承载这种软件的非暂时性机器可读介质(例如,光盘、磁盘、半导体存储器等)也被认为表示本公开的实施方式。
应当理解,为了清楚起见,以上描述已经参考不同的功能单元、电路和/或处理器描述了实施方式。然而,很明显,在不背离实施方式的情况下,可以使用不同功能单元、电路和/或处理器之间的任何合适的功能分布。
所描述的实施方式可以以任何合适的形式实现,包括硬件、软件、固件或其任意组合。所描述的实施方式可以可选地至少部分实现为在一个或多个数据处理器和/或数字信号处理器上运行的计算机软件。任何实施方式的元件和组件可以以任何合适的方式在物理上、功能上和逻辑上实现。实际上,这些功能可以在单个单元中、在多个单元中或者作为其他功能单元的一部分来实现。这样,所公开的实施方式可以在单个单元中实现,或者可以在物理上和功能上分布在不同的单元、电路和/或处理器之间。
尽管已经结合一些实施方式描述了本公开,但是本公开并不旨在限于本文阐述的特定形式。此外,尽管特征可能看起来是结合特定实施方式来描述的,但是本领域技术人员将认识到,所描述的实施方式的各种特征可以以适合于实现该技术的任何方式来组合。
在所附权利要求中定义了本技术的各种进一步的方面和特征。本技术的各种实施方式由以下编号的段落定义:
段落1.一种用于无线通信网络的终端装置,所述终端装置包括:
无线通信接收器电路,其被配置为经由由基础设施设备提供的无线接入接口从基础设施设备接收信号,
位置检测接收器电路,其被配置为接收无线电信号,从该无线电信号可以进行测量,来帮助确定终端装置的位置,以及
控制器电路,其被配置为
控制无线通信接收器电路来检测携带从基础设施设备发送的位置辅助信息的一个或多个系统信息块,所述位置辅助信息提供可用于帮助确定终端装置的位置的信息,
控制位置检测电路通过将所识别的位置辅助信息与由位置检测接收器电路接收的无线电信号相结合来估计终端装置的位置,其中,所述控制器电路配置有无线通信接收器电路,
从基础设施设备接收位置辅助信息将改变的相对风险的指示,并且
响应于位置辅助信息将改变的相对风险的指示,调整接收一个或多个系统信息块,以根据相对风险接收更新版本的位置辅助信息。
段落2.根据段落1所述的终端装置,其中,从基础设施设备接收的相对风险的指示表示位置辅助信息的即时变化的指示,并且所述控制器电路配置有接收器电路,以从基础设施设备接收寻呼消息,该寻呼消息提供位置辅助信息的即时变化的指示。
段落3.根据段落2所述的终端装置,其中,在携带即时位置辅助信息更新的寻呼消息中提供更新版本的位置辅助信息。
段落4.根据段落1所述的终端装置,其中,所述控制器电路与所述无线通信接收器电路被组合配置为根据不连续的接收周期来检测携带位置辅助信息的所述一个或多个系统信息块,所述不连续的接收周期包括在用于检测所述一个或多个系统信息块的周期的第一部分和没有检测到所述一个或多个系统信息块的周期的第二部分中,并且所述控制器电路被配置为根据相对风险调整周期的第一和第二部分的长度中的一个或两个。
段落5.根据段落1所述的终端装置,其中,所述无线接入接口划分成多个修改阶段,所述控制器电路与所述无线通信接收器电路一起根据指示的第一相对风险被配置为:通过在所述多个修改阶段中的一个修改阶段中接收应当在随后的一个修改阶段中接收所述一个或多个系统信息块的指示,来检测携带更新的位置辅助信息的一个或多个系统信息块,并且在随后的一个修改阶段中接收携带更新版本的位置辅助信息的一个或多个系统信息块,并且根据表示位置辅助信息的变化的更大可能性的指示的第二相对风险,调整接收携带更新版本的位置辅助信息的所述一个或多个系统信息块,以检测指示位置辅助信息已经改变的寻呼消息,并且响应于该寻呼消息,在多个修改阶段中的一个中检测携带更新版本的位置辅助信息的一个或多个系统信息块。
段落6.根据段落5所述的终端装置,其中,所述寻呼消息包括修改阶段的指示,其中,所述基础设施设备发送携带更新版本的位置辅助信息的一个或多个系统信息块。
段落7.根据段落5或6所述的终端装置,其中,所述寻呼消息提供携带更新版本的位置辅助信息的一个或多个系统信息块的指示。
段落8.根据段落2至7中任一项所述的终端装置,其中,所述寻呼消息提供位置辅助信息是无效的指示,并且作为响应,所述控制器电路被配置为检测携带更新版本的位置辅助信息的一个或多个系统信息块。
段落9.根据段落1至8中任一项所述的终端装置,其中,所述位置检测接收器电路被配置为包括:多个检测器,一个检测器被配置为检测所述无线电信号;以及一个或多个其他检测器,用于检测一个或多个其他无线电信号,所述其他无线电信号可用于生成所述终端装置的位置的估计,并且响应于位置辅助信息将改变的相对风险的指示,调整位置检测接收器,以使用一个或多个其他检测器,生成终端装置的位置的估计。
段落10.根据段落1至9中任一项所述的终端装置,其中,所述控制器电路被配置为根据对所述终端装置的位置的估计,来确定所述终端装置是否正在执行任务,并响应于所述位置辅助信息将改变的相对风险的指示,来暂停执行任务。
段落11.根据段落2、3或4所述的终端装置,其中,所述控制器电路被配置为根据对所述终端装置的位置的估计,来确定所述终端装置是否正在执行任务,并且响应于接收到指示位置辅助信息的即时变化的寻呼消息,来暂停执行任务。
段落12.一种用于无线通信网络的终端装置,所述终端装置包括:
无线通信接收器电路,其被配置为经由由基础设施设备提供的无线接入接口从基础设施设备接收信号,所述无线接入接口划分为多个修改阶段,
位置检测接收器电路,其被配置为接收无线电信号,从该无线电信号可以进行测量,来帮助确定终端装置的位置,以及
控制器电路,其被配置为控制无线通信接收器电路
通过在所述多个修改阶段中的一个修改阶段中接收应当在随后的一个修改阶段中接收所述一个或多个系统信息块的指示,来检测携带从基础设施设备发送的位置辅助信息的一个或多个系统信息块,并且在随后的一个修改阶段中接收携带位置辅助信息的一个或多个系统信息块,所述位置辅助信息提供可用于帮助确定终端装置的位置的信息,并且
检测指示位置辅助信息已经改变的寻呼消息,并且响应于该寻呼消息,在多个修改阶段中的一个中检测携带更新版本的位置辅助信息的一个或多个系统信息块。
段落13.根据段落12所述的终端装置,其中,所述寻呼消息包括修改阶段的指示,其中,所述基础设施设备发送携带更新版本的位置辅助信息的一个或多个系统信息块。
段落14.根据段落12或13所述的终端装置,其中,所述寻呼消息提供携带更新版本的位置辅助信息的一个或多个系统信息块的指示。
段落15.根据段落14所述的终端装置,其中,所述寻呼消息提供位置辅助信息是无效的指示,并且作为响应,所述控制器电路被配置为检测携带更新版本的位置辅助信息的一个或多个系统信息块。
段落16.一种用于无线通信网络的终端装置,该终端装置包括
无线通信接收器电路,其被配置为经由由基础设施设备提供的无线接入接口从基础设施设备接收信号,所述无线接入接口划分为多个修改阶段,
位置检测接收器电路,其被配置为接收无线电信号,从该无线电信号可以进行测量,来帮助确定终端装置的位置,以及
控制器电路,其被配置为控制无线通信接收器电路,
接收从广播信道中的基础设施设备发送的位置辅助信息,所述位置辅助信息提供可用于帮助确定终端装置的位置的信息,并且
与位置辅助信息协作,以从位置辅助信息和接收到的无线电信号的组合中生成终端装置的位置的估计,其中,所述控制器电路被配置为
检测指示位置辅助信息已经改变的寻呼消息,
根据终端装置的位置的估计来确定终端装置是否正在执行任务,并且
响应于检测到指示位置辅助信息已经改变的寻呼消息,暂停执行任务。
段落17.一种形成无线通信网络的一部分的基础设施设备,所述基础设施设备包括
收发器电路,其被配置为向终端装置发送经由无线通信网络传送的信号,所述收发器电路经由由基础设施设备提供的无线接入接口发送信号,
具有位置服务器的接口,其可操作地与所述无线通信网络相关联,并且被配置为从所述位置服务器接收位置辅助信息,以供一个或多个终端装置用于确定终端装置的位置,
向终端装置发送携带位置辅助信息的一个或多个系统信息块,
从位置服务器接收位置辅助信息将改变的相对风险的指示,
向终端装置发送位置辅助信息将改变的相对风险的指示,并且
响应于位置辅助信息将改变的相对风险的指示,向一个或多个终端装置发送终端装置应该根据相对风险改变不连续接收周期的指示,以针对位置辅助信息将改变的较高相对风险,使周期更短。
段落18.根据段落17所述的基础设施设备,其中,所述一个或多个终端装置的不连续接收周期包括在所述周期的第一部分中检测所述一个或多个系统信息块,并且在所述周期的第二部分中降低接收信号的功率,并且所述控制器电路为与所述发送器电路被组合配置为根据相对风险来调整周期的第二部分的长度,以针对位置辅助信息将改变的较高相对风险,使周期的第二部分更短。
段落19.根据段落17或18所述的基础设施设备,其中,所述控制器电路配置有所述发送器电路,以向所述一个或多个系统信息块中的一个或多个终端装置发送所述位置辅助信息的变化的相对风险的指示。
段落20.根据段落19所述的基础设施设备,其中,所述控制器电路配置有所述发送器电路,以在一个或多个系统信息块中向所述一个或多个终端装置发送从所述位置服务器接收的更新的位置辅助信息。
段落21.根据段落17至19中任一项所述的基础设施设备,其中,所述控制器电路配置有所述发送器电路,以向所述一个或多个终端装置发送寻呼消息,所述寻呼消息识别携带更新的位置辅助信息的一个或多个系统信息块。
段落22.一种位置服务器,包括
位置信息接收器,其被配置为从位于预定位置的一个或多个信号发射装置接收信号,所述信号提供每个信号发射装置的位置的指示,
控制器电路,其被配置为
生成提供每个信号发射装置的位置的指示的位置辅助信息,并且
通过接口向无线通信网络的基础设施设备传送位置辅助信息的指示,用于传送到一个或多个终端装置,
确定位置辅助信息将改变的相对风险,并且
通过接口向无线通信网络的基础设施设备发送位置辅助信息将改变的相对风险的指示。
段落23.根据段落22所述的位置服务器,其中,所述控制器电路与所述位置信息接收器被组合配置为
检测位置辅助信息无效,并且
通过接口向无线通信网络的基础设施设备发送警报,用于向终端装置传送位置辅助信息无效。
段落24.根据段落22所述的位置服务器,其中,所述控制器电路与所述位置信息接收器被组合配置为
检测位置辅助信息已经改变,并且
通过接口向无线通信网络的基础设施设备发送位置辅助信息已经改变的指示,用于向终端装置传送位置辅助信息已经改变。
段落25.根据段落24所述的位置服务器,其中,所述控制器电路与所述位置信息接收器被组合配置为
响应于检测到位置辅助信息已经改变,生成更新版本的位置辅助信息,并且
通过接口向无线通信网络的基础设施设备发送更新版本的位置辅助信息。
参考文献
[1]3GPP TS 36 series(LTE)http://www.3gpp.org/DynaReport/36-series.htm
[2]3GPP TS 38 series(NR)http://www.3gpp.org/DynaReport/38-series.htm
[3]3GPP TS 36.305:"Stage 2 functional specification of User Equipment(UE)positioning in E-UTRAN"
[4]3GPP TS 36.355:"Evolved Universal Terrestrial Radio Access(E-UTRA);LTE Positioning Protocol(LPP)"
[5]3GPP TS 23.271:"Functional stage 2 description of LocationServices(LCS)".
[6]OMA Secure User Plane Location(SUPL)
[7]EP17199204
[8]TS 36.331
[9]R2-1710094(Samsung)
[10]TS 23.828 V8.0.0(2008-09)
[11]TS 23.042 v9.4.0(2010-06)。
Claims (24)
1.一种用于无线通信网络的终端装置,所述终端装置包括:
无线通信接收器电路,被配置为经由由基础设施设备提供的无线接入接口而从所述基础设施设备接收信号,
位置检测接收器电路,被配置为接收无线电信号,通过所述无线电信号能够使用测量以帮助确定所述终端装置的位置,以及
控制器电路,被配置为:
控制所述无线通信接收器电路以检测携带从所述基础设施设备发送的位置辅助信息的一个或多个系统信息块,所述位置辅助信息提供能够用于帮助确定所述终端装置的所述位置的信息,
控制位置检测电路以通过将所识别的所述位置辅助信息与由所述位置检测接收器电路接收的所述无线电信号相结合来估计所述终端装置的所述位置,其中,所述控制器电路配置有所述无线通信接收器电路,
从所述基础设施设备接收所述位置辅助信息将改变的相对风险的指示,并且
响应于所述位置辅助信息将改变的所述相对风险的指示,调整所述一个或多个系统信息块的接收,以根据所述相对风险接收更新版本的位置辅助信息;
其中,所述控制器电路与所述无线通信接收器电路被组合配置为:根据不连续的接收周期来检测携带所述位置辅助信息的所述一个或多个系统信息块,所述不连续的接收周期包括用于检测所述一个或多个系统信息块的所述周期的第一部分和没有检测到所述一个或多个系统信息块的所述周期的第二部分,并且所述控制器电路被配置为根据所述相对风险调整所述周期的所述第一部分的长度和所述第二部分的长度中的一者或两者。
2.根据权利要求1所述的终端装置,其中,从所述基础设施设备接收的所述相对风险的指示表示所述位置辅助信息的即时变化的指示,并且所述控制器电路配置有所述接收器电路,以从所述基础设施设备接收寻呼消息,所述寻呼消息提供所述位置辅助信息的所述即时变化的指示。
3.根据权利要求2所述的终端装置,其中,使用携带即时更新的所述位置辅助信息的所述寻呼消息提供所述更新版本的位置辅助信息。
4.根据权利要求1所述的终端装置,其中,所述无线接入接口被划分成多个修改阶段,所述控制器电路与所述无线通信接收器电路被组合配置为:根据指示的第一相对风险通过在所述多个修改阶段中的一个修改阶段中接收应当在随后的一个修改阶段中接收所述一个或多个系统信息块的指示,来检测携带更新的位置辅助信息的所述一个或多个系统信息块,并且在所述随后的一个修改阶段中接收携带所述更新版本的位置辅助信息的所述一个或多个系统信息块;并且根据表示所述位置辅助信息的变化的较大可能性的指示的第二相对风险调整携带所述更新版本的位置辅助信息的所述一个或多个系统信息块的接收,以检测指示所述位置辅助信息已经改变的寻呼消息,并且响应于所述寻呼消息在所述多个修改阶段中的一个修改阶段中检测携带所述更新版本的位置辅助信息的所述一个或多个系统信息块。
5.根据权利要求4所述的终端装置,其中,所述寻呼消息包括其中由所述基础设施设备发送携带所述更新版本的位置辅助信息的所述一个或多个系统信息块的修改阶段的指示。
6.根据权利要求4所述的终端装置,其中,所述寻呼消息提供携带所述更新版本的位置辅助信息的所述一个或多个系统信息块的指示。
7.根据权利要求2所述的终端装置,其中,所述寻呼消息提供所述位置辅助信息是无效的指示,并且作为响应,所述控制器电路被配置为检测携带所述更新版本的位置辅助信息的所述一个或多个系统信息块。
8.根据权利要求1所述的终端装置,其中,所述位置检测接收器电路被配置为包括:多个检测器,一个所述检测器被配置为检测所述无线电信号;以及一个或多个其他检测器,用于检测一个或多个其他无线电信号,所述其他无线电信号可用于生成所述终端装置的所述位置的估计,并且响应于所述位置辅助信息将改变的所述相对风险的指示来调整所述位置检测接收器,以使用所述一个或多个其他检测器生成所述终端装置的所述位置的估计。
9.根据权利要求1所述的终端装置,其中,所述控制器电路被配置为:根据对所述终端装置的所述位置的估计来确定所述终端装置是否正在执行任务,并响应于所述位置辅助信息将改变的所述相对风险的指示来暂停执行所述任务。
10.根据权利要求2所述的终端装置,其中,所述控制器电路被配置为根据对所述终端装置的所述位置的估计来确定所述终端装置是否正在执行任务,并且响应于接收到指示所述位置辅助信息的即时变化的寻呼消息,来暂停执行所述任务。
11.一种用于无线通信网络的终端装置,所述终端装置包括:
无线通信接收器电路,被配置为经由由基础设施设备提供的无线接入接口从所述基础设施设备接收信号,所述无线接入接口被划分为多个修改阶段,
位置检测接收器电路,被配置为接收无线电信号,通过所述无线电信号能够使用测量以帮助确定所述终端装置的位置,以及
控制器电路,被配置为控制所述无线通信接收器电路,以:
通过在所述多个修改阶段中的一个修改阶段中接收应当在随后的一个修改阶段中接收一个或多个系统信息块的指示,来检测携带从所述基础设施设备发送的位置辅助信息的所述一个或多个系统信息块,并且在随后的一个修改阶段中接收携带所述位置辅助信息的所述一个或多个系统信息块,所述位置辅助信息提供能够用于帮助确定所述终端装置的所述位置的信息,并且
检测指示所述位置辅助信息已经改变的寻呼消息,并且响应于所述寻呼消息,在所述多个修改阶段中的一个中检测携带更新版本的位置辅助信息的所述一个或多个系统信息块;
其中,所述控制器电路与所述无线通信接收器电路被组合配置为:根据不连续的接收周期来检测携带所述位置辅助信息的所述一个或多个系统信息块,所述不连续的接收周期包括用于检测所述一个或多个系统信息块的所述周期的第一部分和没有检测到所述一个或多个系统信息块的所述周期的第二部分,并且所述控制器电路被配置为根据所述寻呼消息调整所述周期的所述第一部分的长度和所述第二部分的长度中的一者或两者。
12.根据权利要求11所述的终端装置,其中,所述寻呼消息包括修改阶段的指示,其中,由所述基础设施设备发送携带所述更新版本的位置辅助信息的所述一个或多个系统信息块。
13.根据权利要求11所述的终端装置,其中,所述寻呼消息提供携带所述更新版本的位置辅助信息的所述一个或多个系统信息块的指示。
14.根据权利要求13所述的终端装置,其中,所述寻呼消息提供所述位置辅助信息是无效的指示,并且作为响应,所述控制器电路被配置为检测携带所述更新版本的位置辅助信息的所述一个或多个系统信息块。
15.一种用于无线通信网络的终端装置,所述终端装置包括:
无线通信接收器电路,被配置为经由由基础设施设备提供的无线接入接口从所述基础设施设备接收信号,所述无线接入接口被划分为多个修改阶段,
位置检测接收器电路,被配置为接收无线电信号,通过所述无线电信号能够使用测量以帮助确定所述终端装置的位置,以及
控制器电路,被配置为控制所述无线通信接收器电路,以:
接收从广播信道中的所述基础设施设备发送的位置辅助信息,所述位置辅助信息提供能够用于帮助确定所述终端装置的所述位置的信息,并且
与所述位置辅助信息协作以通过所述位置辅助信息和接收到的所述无线电信号的组合来生成所述终端装置的所述位置的估计,其中,所述控制器电路被配置为:
检测指示所述位置辅助信息已经改变的寻呼消息,
根据所述终端装置的所述位置的估计来确定所述终端装置是否正在执行任务,并且
响应于检测到指示所述位置辅助信息已经改变的所述寻呼消息来暂停执行所述任务;
其中,所述控制器电路与所述无线通信接收器电路被组合配置为:根据不连续的接收周期来检测携带所述位置辅助信息的一个或多个系统信息块,所述不连续的接收周期包括用于检测所述一个或多个系统信息块的所述周期的第一部分和没有检测到所述一个或多个系统信息块的所述周期的第二部分,并且所述控制器电路被配置为根据所述寻呼消息调整所述周期的所述第一部分的长度和所述第二部分的长度中的一者或两者。
16.一种由终端装置生成所述终端装置的位置的估计的方法,所述方法包括:
检测携带从基础设施设备发送的位置辅助信息的一个或多个系统信息块,所述位置辅助信息提供能够用于帮助确定所述终端装置的所述位置的信息,
通过将所识别的所述位置辅助信息与所接收的无线电信号相结合来估计所述终端装置的所述位置,
从所述基础设施设备接收所述位置辅助信息将改变的相对风险的指示,并且
响应于所述位置辅助信息将改变的所述相对风险的指示,调整所述一个或多个系统信息块的接收以根据所述相对风险来接收更新版本的位置辅助信息;
其中,根据不连续的接收周期来检测携带所述位置辅助信息的所述一个或多个系统信息块,所述不连续的接收周期包括用于检测所述一个或多个系统信息块的所述周期的第一部分和没有检测到所述一个或多个系统信息块的所述周期的第二部分,并且根据所述相对风险调整所述周期的所述第一部分的长度和所述第二部分的长度中的一者或两者。
17.一种用无线通信网络操作终端装置的方法,所述方法包括:
无线通信接收器电路,被配置为经由由基础设施设备提供的无线接入接口从所述基础设施设备接收信号,所述无线接入接口被划分为多个修改阶段,
接收无线电信号,通过所述无线电信号能够使用测量以帮助确定所述终端装置的位置,
通过在所述多个修改阶段中的一个修改阶段中接收应当在随后的一个修改阶段中接收一个或多个系统信息块的指示,来检测携带从所述基础设施设备发送的位置辅助信息的所述一个或多个系统信息块,并且在随后的一个修改阶段中接收携带所述位置辅助信息的所述一个或多个系统信息块,所述位置辅助信息提供能够用于帮助确定所述终端装置的所述位置的信息,
通过将来自接收到的所述无线电信号的测量与所述位置辅助信息相结合,来生成所述终端装置的所述位置的估计,
检测指示所述位置辅助信息已经改变的寻呼消息,并且
响应于所述寻呼消息,以在所述多个修改阶段中的一个修改阶段中检测携带更新版本的位置辅助信息的所述一个或多个系统信息块;其中,控制器电路与所述无线通信接收器电路被组合配置为:根据不连续的接收周期来检测携带所述位置辅助信息的所述一个或多个系统信息块,所述不连续的接收周期包括用于检测所述一个或多个系统信息块的所述周期的第一部分和没有检测到所述一个或多个系统信息块的所述周期的第二部分,并且所述控制器电路被配置为根据所述寻呼消息调整所述周期的所述第一部分的长度和所述第二部分的长度中的一者或两者。
18.一种利用无线通信网络操作终端装置的方法,所述方法包括:
无线通信接收器电路,被配置为经由由基础设施设备提供的无线接入接口从所述基础设施设备接收信号,所述无线接入接口被划分为多个修改阶段,
接收无线电信号,通过所述无线电信号能够使用测量以帮助确定所述终端装置的位置,
接收从所述基础设施设备发送的位置辅助信息,所述位置辅助信息提供能够用于帮助确定所述终端装置的所述位置的信息,
通过将来自接收到的所述无线电信号的测量与所述位置辅助信息相结合,来生成所述终端装置的所述位置的估计,
根据所述终端装置的所述位置的估计来确定所述终端装置是否正在执行任务,
检测指示所述位置辅助信息已经改变的寻呼消息,并且
响应于所述寻呼消息来暂停执行所述任务;
其中,控制器电路与所述无线通信接收器电路被组合配置为:根据不连续的接收周期来检测携带所述位置辅助信息的一个或多个系统信息块,所述不连续的接收周期包括用于检测所述一个或多个系统信息块的所述周期的第一部分和没有检测到所述一个或多个系统信息块的所述周期的第二部分,并且所述控制器电路被配置为根据所述寻呼消息调整所述周期的所述第一部分的长度和所述第二部分的长度中的一者或两者。
19.一种在包括基础设施设备和终端装置的无线通信系统中使用的基础设施设备,所述基础设施设备包括收发器电路和控制器电路,所述收发器电路和所述控制器电路被组合配置为:
从位置服务器接收位置辅助信息,以供所述终端装置确定所述终端装置的位置,
向所述终端装置发送携带所述位置辅助信息的一个或多个系统信息块,
从所述位置服务器接收所述位置辅助信息将改变的相对风险的指示,
向所述终端装置发送所述位置辅助信息将改变的所述相对风险的指示,并且
响应于所述位置辅助信息将改变的所述相对风险的指示,向所述终端装置发送所述终端装置应根据所述相对风险改变不连续接收周期的指示,从而使所述位置辅助信息将改变的较高相对风险的周期更短,
接收所述一个或多个系统信息块,以根据所述相对风险接收更新版本的位置辅助信息;
其中,所述终端装置的所述不连续接收周期包括检测所述一个或多个系统信息块的所述周期的第一部分,以及减小接收信号的功率的所述周期的第二部分,并且控制器电路与收发器电路被组合配置为:根据所述相对风险来调整所述周期的第二部分的长度,从而使所述位置辅助信息将改变的较高相对风险的所述周期的第二部分更短。
20.一种形成无线通信网络的一部分的基础设施设备,所述基础设施设备包括收发器电路和控制器电路:
收发器电路,被配置为向终端装置发送经由无线通信网络传送的信号,所述收发器电路经由由所述基础设施设备提供的无线接入接口发送所述信号,
具有位置服务器的接口,能够操作地与所述无线通信网络相关联,并且所述接口被配置为从所述位置服务器接收位置辅助信息,以供一个或多个所述终端装置用来确定所述终端装置的位置,
向所述终端装置发送携带所述位置辅助信息的一个或多个系统信息块,
从位置服务器接收所述位置辅助信息将改变的相对风险的指示,
向所述终端装置发送所述位置辅助信息将改变的所述相对风险的指示,并且
响应于所述位置辅助信息将改变的所述相对风险的指示,向一个或多个所述终端装置发送所述终端装置应根据所述相对风险改变不连续接收周期的指示,从而使所述位置辅助信息将改变的较高相对风险的周期更短;
其中,一个或多个所述终端装置的所述不连续接收周期包括检测所述一个或多个系统信息块的所述周期的第一部分,以及减小接收信号的功率的所述周期的第二部分,并且控制器电路与收发器电路被组合配置为:根据所述相对风险来调整所述周期的第二部分的长度,从而使所述位置辅助信息将改变的较高相对风险的所述周期的第二部分更短。
21.根据权利要求20所述的基础设施设备,其中,所述控制器电路配置有发送器电路,用于使用所述一个或多个系统信息块向一个或多个所述终端装置发送所述位置辅助信息的变化的所述相对风险的指示。
22.根据权利要求20所述的基础设施设备,其中,所述控制器电路配置有发送器电路,以使用所述一个或多个系统信息块向一个或多个所述终端装置发送从所述位置服务器接收的更新的位置辅助信息。
23.根据权利要求20所述的基础设施设备,其中,所述控制器电路配置有发送器电路,用于向一个或多个所述终端装置发送寻呼消息,所述寻呼消息识别携带更新的位置辅助信息的所述一个或多个系统信息块。
24.一种由形成无线通信网络的一部分的基础设施设备执行的方法,所述方法包括:
向终端装置发送经由所述无线通信网络传送的信号,
从位置服务器接收位置辅助信息,以供一个或多个所述终端装置确定所述终端装置的位置,
向所述终端装置发送携带所述位置辅助信息的一个或多个系统信息块,
从所述位置服务器接收所述位置辅助信息将改变的相对风险的指示,
向所述终端装置发送所述位置辅助信息将改变的所述相对风险的指示,并且
响应于所述位置辅助信息将改变的所述相对风险的指示,向一个或多个所述终端装置发送所述终端装置应当根据所述相对风险来改变不连续接收周期的指示,以使所述位置辅助信息将改变的较高相对风险的周期更短;
其中,所述终端装置的所述不连续接收周期包括检测所述一个或多个系统信息块的所述周期的第一部分,以及减小接收信号的功率的所述周期的第二部分,并且根据所述相对风险来调整所述周期的第二部分的长度,从而使所述位置辅助信息将改变的较高相对风险的所述周期的第二部分更短。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17204751 | 2017-11-30 | ||
EP17204751.6 | 2017-11-30 | ||
PCT/EP2018/082894 WO2019106045A1 (en) | 2017-11-30 | 2018-11-28 | Terminal device, infrastructure equipment and methods |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111434159A CN111434159A (zh) | 2020-07-17 |
CN111434159B true CN111434159B (zh) | 2023-01-31 |
Family
ID=60627419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880077633.9A Active CN111434159B (zh) | 2017-11-30 | 2018-11-28 | 终端装置、基础设施设备和方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11071084B2 (zh) |
EP (1) | EP3701755B1 (zh) |
JP (1) | JP7414716B2 (zh) |
KR (1) | KR20200089681A (zh) |
CN (1) | CN111434159B (zh) |
WO (1) | WO2019106045A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200028472A (ko) * | 2017-07-31 | 2020-03-16 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 포지셔닝 보조 데이터 전송 방법 및 시스템 및 디바이스 |
US20240244509A1 (en) * | 2021-05-10 | 2024-07-18 | Lenovo (Beijing) Limited | Method and apparatus for system information acquisition |
US11985597B2 (en) * | 2021-08-05 | 2024-05-14 | Qualcomm Incorporated | Techniques for aperiodic discontinuous reception mode communications |
US12041000B2 (en) | 2021-08-05 | 2024-07-16 | Qualcomm Incorporated | Techniques for communicating data channel transmissions |
WO2024092649A1 (zh) * | 2022-11-03 | 2024-05-10 | Oppo广东移动通信有限公司 | 通信方法、装置、设备、存储介质、芯片、产品及程序 |
US11678604B1 (en) | 2022-12-21 | 2023-06-20 | Sensori Robotics, LLC | Smart lawnmower with development of mowing policy and system and method for use of same |
US12001182B1 (en) * | 2022-12-21 | 2024-06-04 | Sensori Robotics, LLC | Smart lawnmower with realization of mowing policy and system and method for use of same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101057156A (zh) * | 2004-11-30 | 2007-10-17 | 摩托罗拉公司 | 在无线通信网络中报告卫星定位系统的辅助完整性信息 |
CN104620125A (zh) * | 2012-09-13 | 2015-05-13 | Lg电子株式会社 | 计算无线通信系统中的终端的位置的方法和装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6992617B2 (en) * | 2003-11-13 | 2006-01-31 | Global Locate, Inc. | Method and apparatus for monitoring the integrity of satellite tracking data used by a remote receiver |
US7747257B2 (en) * | 2001-02-16 | 2010-06-29 | Motorola, Inc. | GPS assistance messages in cellular communications networks and methods therefor |
US8010124B2 (en) * | 2003-03-24 | 2011-08-30 | Sony Ericsson Mobile Communications Ab | Methods, systems and computer program products for providing location determination information to an assisted location service |
FR2858510B1 (fr) * | 2003-08-01 | 2005-12-09 | Cit Alcatel | Determination de positions de terminaux mobiles a l'aide de donnees d'assistance transmises sur requete |
US7821449B2 (en) * | 2005-01-12 | 2010-10-26 | Qualcomm Incorporated | Base station almanac assisted positioning |
CN101877818B (zh) | 2009-04-30 | 2015-08-12 | 中兴通讯股份有限公司 | 定位业务辅助数据更新通知的方法及系统 |
CN101888587B (zh) * | 2009-05-14 | 2014-12-10 | 中兴通讯股份有限公司 | Lte系统中实现定位的方法及系统 |
CN102026266B (zh) * | 2009-09-11 | 2015-05-20 | 中兴通讯股份有限公司 | 一种定位辅助信息搜集的方法及系统 |
AP3726A (en) * | 2010-04-12 | 2016-06-30 | Nokia Corp | Session parameters in the periodic assistance data delivery |
US9560627B2 (en) * | 2015-02-12 | 2017-01-31 | Qualcomm Incorporated | Assistance data for use in determining a position of a mobile device |
US20180295581A1 (en) * | 2017-04-07 | 2018-10-11 | Qualcomm Incorporated | Power savings during positioning measurements |
EP3704513A1 (en) | 2017-10-30 | 2020-09-09 | Sony Corporation | Terminal device, infrastructure equipment and methods |
-
2018
- 2018-11-28 US US16/768,077 patent/US11071084B2/en active Active
- 2018-11-28 EP EP18807358.9A patent/EP3701755B1/en active Active
- 2018-11-28 WO PCT/EP2018/082894 patent/WO2019106045A1/en unknown
- 2018-11-28 CN CN201880077633.9A patent/CN111434159B/zh active Active
- 2018-11-28 KR KR1020207015175A patent/KR20200089681A/ko active IP Right Grant
- 2018-11-28 JP JP2020529412A patent/JP7414716B2/ja active Active
-
2021
- 2021-06-14 US US17/346,303 patent/US11758510B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101057156A (zh) * | 2004-11-30 | 2007-10-17 | 摩托罗拉公司 | 在无线通信网络中报告卫星定位系统的辅助完整性信息 |
CN104620125A (zh) * | 2012-09-13 | 2015-05-13 | Lg电子株式会社 | 计算无线通信系统中的终端的位置的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
US20210306980A1 (en) | 2021-09-30 |
US11071084B2 (en) | 2021-07-20 |
JP2021505077A (ja) | 2021-02-15 |
CN111434159A (zh) | 2020-07-17 |
EP3701755A1 (en) | 2020-09-02 |
JP7414716B2 (ja) | 2024-01-16 |
US11758510B2 (en) | 2023-09-12 |
EP3701755B1 (en) | 2023-10-11 |
KR20200089681A (ko) | 2020-07-27 |
WO2019106045A1 (en) | 2019-06-06 |
US20200314795A1 (en) | 2020-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111434159B (zh) | 终端装置、基础设施设备和方法 | |
US11419150B2 (en) | Terminal device infrastructure equipment and methods for determining a spatial position of the terminal based on received signals | |
US6429808B1 (en) | Method and apparatus for assisted GPS integrity maintenance | |
JP4955804B2 (ja) | セルラ・ネットワーク内でのgps航法データの増分放送のためのシステムと方法 | |
EP4089443B1 (en) | Using multiple sources of location-aid data to determine position information | |
EP2366113B1 (en) | Dgnss correction for positioning | |
EP2336808A1 (en) | Method and system for mobile device based GNSS position computation without ephemeris data | |
JP2013501944A (ja) | 多元無線アクセス技術における測位のための支援データ | |
US11815607B2 (en) | Global navigation satellite system (GNSS) receiver operation during spoofing | |
RU2439604C2 (ru) | Способ, система, оборудование пользователя, элемент сети и программный продукт для передачи вспомогательных данных позиционирования в универсальном формате | |
US20230288570A1 (en) | Ionosphere Grid History and Compression for GNSS Positioning | |
US11856643B2 (en) | Electronic equipment | |
WO2010065263A2 (en) | System method for providing gnss assistance data without dedicated receivers | |
CN116868089A (zh) | 物联网的精确定位服务 | |
CN116670542B (zh) | 用于位置确定的方法和装置 | |
WO2024215398A2 (en) | Global navigation satellite system state space representation correction forwarding service | |
WO2024215394A2 (en) | Position estimation using stale satellite vehicle position data | |
IE20000906A1 (en) | Method and Apparatus for Assisted GPS Integrity Maintenance | |
CN101990296A (zh) | 长期演进系统中定位方式的通知方法与装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |