CN111432926A - 用于选择性转化烃的催化剂和方法 - Google Patents

用于选择性转化烃的催化剂和方法 Download PDF

Info

Publication number
CN111432926A
CN111432926A CN201880078088.5A CN201880078088A CN111432926A CN 111432926 A CN111432926 A CN 111432926A CN 201880078088 A CN201880078088 A CN 201880078088A CN 111432926 A CN111432926 A CN 111432926A
Authority
CN
China
Prior art keywords
catalyst
paragraph
group
mixtures
angstroms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880078088.5A
Other languages
English (en)
Inventor
曼纽拉·谢尔班
马修·C·科尔
艾伦·阿诺德
朱光辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell UOP LLC
Original Assignee
UOP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UOP LLC filed Critical UOP LLC
Publication of CN111432926A publication Critical patent/CN111432926A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/624Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with germanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/628Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/67Pore distribution monomodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/58Platinum group metals with alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明提供了一种用于选择性转化烃的催化剂。所述催化剂包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分。所述催化剂是成形为球形催化剂颗粒的载体,所述球形催化剂颗粒的平均孔径介于1.6mm和2.5mm之间,并且表观堆密度介于0.60g/cc和0.3g/cc之间。本发明还提供了一种使用此类催化剂进行选择性烃转化反应的方法以及一种通过从所述催化剂中移除焦炭来再生此类催化剂的方法。

Description

用于选择性转化烃的催化剂和方法
相关申请
本申请要求于2017年11月2日提交的美国临时专利申请序列号62/580,768的优先权,该申请的全部据此以引用方式并入。
技术领域
本发明整体涉及一种新催化材料、一种使用该新催化材料来选择性转化烃的方法以及一种再生该新催化材料的方法。
背景技术
石油提炼和石化工艺经常涉及用催化剂来选择性转化烃。例如,烃的脱氢是重要的商业工艺,因为对用于制造各种化学产品(诸如洗涤剂、高辛烷值汽油、药物产品、塑料、合成橡胶以及本领域技术人员熟知的其他产品)的脱氢烃的需求很大。该工艺的一个示例是将异丁烷脱氢以产生异丁烯,可以使异丁烯聚合以提供用于粘合剂的增粘剂、用于车用机油的粘度指数添加剂、用于塑料的耐冲击和抗氧化添加剂以及用于低聚汽油的组分。
现有技术已认识到各种催化复合材料,它们含有VIII族贵金属组分、碱金属或碱土金属组分以及选自锡、锗、铅、铟、镓、铊或其混合物的组分。美国专利公布号2005/0033101和美国专利号6,756,340(两者都转让给本申请并且两者的全部都以引用方式并入本文)描述了可用于、高效且有效用于选择性转化烃的各种催化剂。
然而,仍然持续不断地需要用于选择性烃转化工艺的新催化材料,特别是可以改进已知催化组合物的一种或多种特征的那些催化材料。
发明内容
本发明提供了一种新催化材料、一种使用该新催化材料来选择性转化烃的方法以及一种再生该新催化材料的方法。
因此,在至少一个方面,本发明可被表征为提供一种用于选择性转化烃的催化剂,该催化剂包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及形成球形催化剂颗粒的载体,该球形催化剂颗粒的平均孔径介于200埃至350埃之间,孔隙率为至少75%,并且表观堆密度介于0.60g/cc和0.3g/cc之间。
在至少一个其他方面,本发明可被表征为提供一种再生用于选择性转化烃的催化剂的方法,该方法包括从催化复合材料中移除焦炭,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及形成形成球形催化剂颗粒的载体的载体,该球形催化剂颗粒的平均孔径介于200埃至350埃之间,孔隙率为至少80%,并且表观堆密度介于0.60g/cc和0.3g/cc之间。
在另一方面,本发明可被表征为提供一种用于选择性转化烃的方法,该方法包括使烃在选择性转化条件下与催化复合材料接触,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及形成球形催化剂颗粒的载体,该球形催化剂颗粒的平均孔径介于200埃至350埃之间,孔隙率为至少80%,并且表观堆密度介于0.60g/cc和0.3g/cc之间。
在另一方面,本发明可整体被表征为提供一种用于选择性转化烃的催化剂,该催化剂包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及形成催化剂颗粒的载体,该催化剂颗粒包括多个孔,其中至少15%的孔的平均孔径介于200埃至350埃之间,并且其中催化剂颗粒的表观堆密度介于0.60g/cc和0.3g/cc之间。
在另一方面,本发明可整体被表征为提供一种用于通过以下方式选择性转化烃的方法:使烃在选择性转化条件下与催化复合材料接触,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,选自锡、锗、铅、铟、镓、铊及其混合物的第三组分,以及形成催化剂颗粒的载体,该催化剂颗粒具有多个孔,其中至少15%的孔的平均孔径介于200埃至350埃之间,并且其中该催化剂颗粒的表观堆密度介于0.60g/cc和0.3g/cc之间。
在另一方面,本发明可整体被表征为提供一种用于通过以下方式减少与再生用于选择性转化烃的催化剂相关联的时间的方法:从催化复合材料中移除焦炭,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;并且其中通过催化剂还包含形成形成催化剂颗粒的载体的载体,与再生催化剂的理论时间相比,与再生催化剂相关联的时间减少至少10%,该催化剂颗粒包括多个孔,至少15%的孔的平均孔径介于200埃至350埃之间,并且其中该催化剂颗粒的表观堆密度介于0.60g/cc和0.3g/cc之间。
在另一方面,本发明可整体被表征为提供一种通过以下方式再生用于选择性转化烃的催化剂的方法:从催化复合材料中移除焦炭,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及形成形成催化剂颗粒的载体的载体,该催化剂颗粒包括多个孔,其中至少15%的孔的平均孔径介于200埃至350埃之间,并且该催化剂颗粒包括的表观堆密度介于0.60g/cc和0.3g/cc之间,其中与从催化复合材料中移除焦炭相关联的时间比从催化复合材料中移除焦炭的所计算的时间低。
在另一方面,本发明可整体被表征为提供一种系统,该系统包括:至少一个处理器;至少一个存储器,其存储计算机可执行指令;以及至少一个接收器,其被配置为接收以下各项的数据:用于转化烃的方法的装置或流、与转化烃流体连通且在转化烃上游的装置或流、与转化烃流体连通且在转化烃下游的装置或流或者其任何组合,其中用于转化烃的方法包括催化复合材料,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,选自锡、锗、铅、铟、镓、铊及其混合物的第三组分,以及形成催化剂颗粒的载体,该催化剂颗粒具有多个孔,其中至少15%的孔的平均孔径介于200埃至350埃之间,并且其中该催化剂颗粒的表观堆密度介于0.60g/cc和0.3g/cc之间。
在另一方面,本发明可整体被表征为提供一种接收用于选择性转化烃的工艺的数据的方法,该方法包括从工艺的至少一个传感器接收数据,该工艺包括使烃在选择性转化条件下与催化复合材料接触,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,选自锡、锗、铅、铟、镓、铊及其混合物的第三组分,以及形成催化剂颗粒的载体,该催化剂颗粒具有多个孔,其中至少15%的孔的平均孔径介于200埃至350埃之间,并且其中该催化剂颗粒的表观堆密度介于0.60g/cc和0.3g/cc之间。
本发明的另外的方面、实施方案和细节(所有这些都可以任何方式组合)在以下具体实施方式中阐述。
附图说明
下面将结合以下附图来描述本发明的一个或多个示例性实施方案,其中:
图1示出了绘制根据本发明的催化剂与三种现有技术催化剂相比的丙烷转化率与总反应时间(hours on stream)的图;
图2示出了绘制根据本发明的催化剂与两种现有技术催化剂相比的所测量的二氧化碳有效扩散率与平均孔径的图;
图3示出了绘制图2中催化剂的85%碳燃尽时间与所测量的焦炭量的图;并且,
图4示出了绘制根据本发明的催化剂与两种现有技术催化剂相比的所计算的氧气有效扩散率与平均孔径的图。
具体实施方式
如上所述,已经发明了一种新催化材料、一种使用该新催化材料来选择性转化烃的方法以及一种再生该新催化材料的方法。新催化材料包括具有大孔体积、大孔隙率和大孔径的低密度载体材料。较低的密度具有几个优点,特别是在扩散受限的反应中。具体地,这种特性组合为新催化材料提供了载体高有效扩散率,这导致改善了性能和再生(即,焦炭燃烧)益处。另外,新催化材料具有较高的片压碎强度,潜在地导致在反应器中产生较少的细粒。另外,新催化材料提供了增加反应器通过量的可能性。据信这允许较高的质量流过单元。另外,对于新催化材料,床δ压力较低,从而允许在筛网清洁之间的延长的运行长度(时间更长,直到压力增加到与较小的丸粒催化剂床中相同的水平)。
除了与将新催化组合物用于选择性转化烃相关的优点外,新组合物还提供了与废催化剂再生相关联的优异和出乎意料的结果。考虑到不同的直径,所计算的当前催化剂与新催化剂材料之间的预计燃烧率差异表明,对于新催化剂材料,碳燃烧所需的时间与常规催化剂相比长27%。然而,尽管新催化剂材料较大,但与常规催化剂相比,本发明的新催化材料由于具有较低的密度以及因此改进的孔隙率、孔体积、孔径而具有最短的焦炭燃烧时间和最高的有效扩散率,但具有大的丸粒直径和长的扩散路径。
考虑到这些一般原理,将在理解以下描述并非旨在进行限制的情况下描述本发明的一个或多个实施方案。
如上所述,本发明的基本特征在于本发明催化剂的载体的特征。具体地,根据本发明的各方面,重要的是载体的平均孔径介于200埃至350埃之间,孔隙率为至少75%,并且ABD介于0.60g/cc和0.3g/cc之间。ABD可进一步介于0.6g/cc和0.5g/cc之间,优选地介于0.57g/cc至0.52g/cc之间,例如ABD可为0.57g/cc。平均孔径可进一步介于240埃至300埃或240埃至280埃之间,包括这些值内的任何较小范围。此外,孔隙率可介于75%和85%之间,并且可为其间的任何值,或者可为由在任何这些范围之间选择的值形成的范围,例如至少80%。另外,和/或另选地,重要的是载体的中值直径介于1.6mm和2.5mm之间,并且表观堆密度(ABD)介于0.6g/cc和0.3g/cc之间。中值直径优选地介于1.8mm和2.2mm之间,并且最优选地为1.8mm。ABD小于0.6g/cc,优选地介于0.6g/cc和0.5g/cc之间,最优选地介于0.57g/cc和0.52g/cc之间。在任一实施方案中,与现有技术的类似脱氢催化剂相比,较低密度载体在用于扩散受限的反应(诸如丙烷的脱氢)时提供了优点。另外,具有较低密度载体的催化剂令人惊讶地显示出改善的焦炭燃烧益处。
使用
Figure BDA0002520461790000061
经由动态图像分析测量颗粒的中值直径。当颗粒通过LED面板前时,两台相机捕获颗粒的一系列连续图像。使用软件中定义的尺寸和形状参数实时处理这些图像。
为了测量ABD,将物质放入尺寸和重量已知的接收器中。国际标准ISO 697对于表观堆密度的测定分为两种类型。所使用的接收器尺寸基本不同。用于确定表观密度的仪器包括固定尺寸的可锁定漏斗、接收器以及将它们一起保持在限定位置的支架。然后在漏斗中装入粉末或颗粒样品,然后打开漏斗。然后样品以已知体积流入接收器中,并通过称重接收器获得表观密度。
使用方法UOP 578-11通过压汞法自动化测量多孔物质的孔径分布(UOP 578-11Automated Pore Size Distribution of Porous Substances by MercuryPorosimetry),对孔隙率、孔径和总侵入体积进行测量。在经受从低于环境压力到60,000psi的恒定施加压力的同时,监测水银柱的体积变化。以侵入和挤出两种方式进行测量。
返回到本发明的催化材料,载体包含多种催化组分,包括VIII族贵金属组分、碱金属或碱土金属组分以及选自锡、锗、铅、铟、镓、铊或其混合物的组分。
VIII族贵金属可选自铂、钯、铱、铑、锇、钌或其混合物。然而,铂是优选的VIII族贵金属组分。优选地,VIII族贵金属组分很好地分散在整个催化剂中。基于元素计算,它通常将占最终催化复合材料的约0.01重量%至5重量%。优选地,催化剂包含约0.1重量%至2.0重量%的VIII族贵金属组分,特别是约0.1重量%至约2.0重量%的铂。
可在掺入其他催化组分之前、同时或之后,以任何合适的方式(诸如例如通过共沉淀或共胶凝、离子交换或浸渍,或者从气相或从原子源沉积,或者通过类似的程序)将VIII族贵金属组分掺入催化复合材料中。掺入VIII族贵金属组分的优选的方法是用VIII族贵金属的可分解化合物的溶液或悬浮液浸渍氧化铝载体。例如,可通过将载体与氯铂酸的水溶液混合来将铂添加到载体中。可将另一种酸(例如硝酸)或其他任选组分添加到浸渍溶液中,以进一步帮助将VIII族贵金属组分均匀地分散或固定在最终的催化剂复合材料中。
本发明的碱金属或碱土金属组分可选自铯、铷、钾、钠和锂,或者选自钡、锶、钙和镁,或者来自这些组中任一者或两者的金属的混合物。钾是优选的第二催化组分。据信碱金属和碱土金属组分以高于元素金属的氧化态存在于最终的催化复合材料中。碱金属和碱土金属组分可例如作为化合物诸如氧化物存在,或者与载体材料或与其他催化组分组合存在。优选地,碱金属和碱土金属组分很好地分散在整个催化复合材料中。基于元素计算,碱金属或碱土金属组分将优选地占最终催化复合材料的0.7重量%至1.5重量%或0.85重量%至1.1重量%。
可在掺入其他催化组分之前、同时或之后,以任何合适的方式(诸如例如通过共沉淀或共胶凝,通过离子交换或浸渍,或者通过类似的程序)将碱金属或碱土金属组分掺入催化复合材料中。掺入碱金属组分的优选的方法是用氢氧化钾溶液浸渍载体材料。
本发明的催化剂的第三组分是选自锡、锗、铅、铟、镓、铊及其混合物的改性剂金属组分。有效量的第三改性剂金属组分优选地被均匀地浸渍。一般来讲,基于元素计算,催化剂将包含按最终复合材料的重量计约0.01重量%至约10重量%的第三改性剂金属组分。优选地,催化剂将包含约0.1重量%至约5重量%的第三改性剂金属组分。本发明的第三改性剂金属组分优选地是锡。一些或全部锡组分可以高于元素金属的氧化态存在于催化剂中。该组分可作为化合物诸如氧化物、硫化物、卤化物、氯氧化物、铝酸盐等存在于复合材料内,或者与载体材料或复合材料的其他成分组合存在于复合材料内。优选地,锡组分的使用量应足以使最终的催化复合材料含有基于元素约0.01重量%至约10重量%的锡,通常约0.1重量%至约5重量%的锡可获得最佳结果。
可以任何顺序将催化剂的第三组分与载体复合。因此,可将第一组分或第二组分浸渍在载体上,然后依次对第三组分进行表面或均匀浸渍。另选地,可将第三组分表面或均匀浸渍在载体上,然后浸渍另一种催化组分。
本发明的催化复合材料还可含有卤素组分。卤素组分可以是氟、氯、溴或碘或其混合物。氯是优选的卤素组分。卤素组分通常以与多孔载体材料和碱金属组分结合的状态存在。优选地,卤素组分很好地分散在整个催化复合材料中。基于元素计算,卤素组分可占最终催化复合材料的大于0.01重量%至约15重量%。
可在载体材料的制备期间或者在掺入其他催化组分之前、同时或之后,以任何合适的方式将卤素组分掺入催化复合材料中。例如,用于形成优选的铝载体材料的氧化铝溶胶可含有卤素,因此在最终的催化剂复合材料中贡献至少一部分卤素含量。而且,可在将载体材料与其他催化剂组分一起掺入期间,例如通过使用氯铂酸浸渍铂组分来将卤素组分或其一部分添加到催化剂复合材料中。也可在将其他催化剂组分与载体材料一起掺入之前或之后,通过使催化剂与卤素或者含卤素的化合物或溶液接触来将卤素组分或其一部分添加到催化剂复合材料中。合适的含卤素的化合物包括含卤素的酸,例如盐酸。或者,可在随后的催化剂再生中通过使催化剂与含卤素的化合物或溶液接触来掺入卤素组分或其一部分。
在再生中,将在烃转化过程中使用催化剂期间沉积在催化剂上的碳作为焦炭燃烧掉,并重新分布催化剂和催化剂上的铂族组分,以提供具有与新鲜催化剂非常相似的性能特征的再生催化剂。可例如通过使催化剂与氯化氢气体接触来在碳燃烧步骤期间或在铂族组分重新分布步骤期间添加卤素组分。而且,可通过在操作烃转化过程期间例如将卤素或者含卤素的化合物或溶液(诸如二氯丙烷)添加到烃进料流或再循环气体中来将卤素组分添加到催化剂复合材料中。卤素也可作为氯气(Cl2)添加。
本发明的载体材料是具有上述特征的氧化铝。氧化铝载体材料可以任何合适的方式由合成原料或天然存在的原料制备。载体可成形为任何期望的形状,诸如球体、丸粒、饼、挤出物、粉末、颗粒等,并且可以任何粒度利用。氧化铝的优选的形状是球体。另外,载体材料可以是单峰的、双峰的或其混合物。
为了制备氧化铝球体,通过使铝金属与合适的胶溶剂和水反应,将铝金属转化为氧化铝溶胶,然后将溶胶的混合物滴入油浴中以形成氧化铝凝胶的球形颗粒。本发明的另一个方面是,在使氧化铝溶胶与胶溶剂反应并将其滴入热油浴中之前,可将第三改性剂金属组分添加到氧化铝溶胶中。其他形状的氧化铝载体材料也可通过常规方法制备。在将任选地含有共成形的第三组分的氧化铝颗粒成形之后,将它们干燥并煅烧。
优选的是,最终的煅烧步骤处于足以将氧化铝转化为符合本发明催化剂的氧化铝基体的所需特征的θ-氧化铝的条件下。此类条件将包括严密控制介于950℃和1100℃之间且优选地975℃至1050℃的煅烧温度。
优选的是,氧化铝组分基本上是θ-氧化铝。所谓“基本上θ-氧化铝”是指至少75%的氧化铝微晶是θ-氧化铝微晶。其余的氧化铝微晶可能将是γ-氧化铝形式。然而,也可存在本领域已知的其他形式的氧化铝微晶。如果基本上θ-氧化铝组分包含至少90%的θ-氧化铝微晶,则其是最优选的。
如所解释的,通过严密控制催化剂载体所经历的最高煅烧温度,由无定形氧化铝前体产生结晶氧化铝的θ-氧化铝形式。已知800℃至950℃范围内的煅烧温度可以产生基本上包含γ-氧化铝微晶的氧化铝。已知1100℃及以上的煅烧温度可以促进α-氧化铝微晶的形成,而950℃至1100℃、并且特别是975℃至1050℃的温度可以促进θ-氧化铝微晶的形成。
在将催化剂组分与所需的氧化铝载体组合之后,通常将所得的催化剂复合材料在约100℃至约320℃的温度下干燥通常约1小时至24小时或更长时间的时间段,然后在约320℃至约600℃的温度下煅烧约0.5小时至约10小时或更长时间的时间段。通常,将含氯化合物添加到空气中以防止催化剂金属组分烧结。该最终煅烧通常不影响氧化铝微晶或ABD。但是,如果需要,载体的高温煅烧可在此时完成。最后,在用于烃转化过程之前,通常使煅烧的催化剂复合材料经受还原步骤。该还原步骤在还原环境、优选地干燥氢气中在约230℃至约650℃的温度下进行约0.5小时至约10小时或更长时间的时间段,选择的温度和时间足以将基本上所有的铂族组分还原成元素金属态。
根据一个或多个实施方案,将催化剂组合物用于烃转化过程,诸如脱氢。在优选的过程中,使可脱氢烃与本发明的催化组合物在保持在脱氢条件下的脱氢区中接触。该接触可在固定催化剂床系统、移动催化剂床系统、流化床系统等中或者以间歇式操作来实现。在一个优选的实施方案中,固定床系统是优选的。在该固定床系统中,将烃进料流预热至所需的反应温度,并且然后传递到含有固定催化剂床的脱氢区。脱氢区本身可包括一个或多个分开的反应区,它们之间具有加热装置,以确保可以在每个反应区的入口处保持所需的反应温度。可使烃以向上、向下或径向流动流方式与催化剂床接触。对于工业规模的反应器,烃通过催化剂床径向流动是优选的。当烃与催化剂接触时,烃可以是液相、混合气-液相或气相。
可脱氢烃包括具有2至30个或更多个碳原子的可脱氢的烃,包括链烷烃、烷基芳香烃、环烷烃和烯烃。可以用催化剂脱氢的一组烃是具有2至30个或更多个碳原子的正链烷烃。催化剂对于将具有2至15个或更多个碳原子的链烷烃脱氢为相应的单烯烃或将具有3至15个或更多个碳原子的单烯烃脱氢为相应的二烯烃特别有用。催化剂对于将C2-C6链烷烃(主要是丙烷和丁烷)脱氢为单烯烃特别有用。
脱氢条件包括约400℃至约900℃的温度、约0.01至10个绝对大气压的压力以及约0.1hr-1至100hr-1的液时空速(LHSV)。通常,对于正链烷烃,分子量越低,则实现相当的转化率所需的温度越高。将脱氢区中的压力保持在可行的尽可能低的水平,与设备限制一致,以使化学平衡优势最大化。
来自脱氢区的流出物流通常将含有未转化的可脱氢烃、氢气以及脱氢反应的产物。通常将这种流出物流冷却并传递到氢气分离区,以将富氢气气相与富烃液相分离。通常,通过合适的选择性吸附剂、选择性溶剂、一种或多种选择性反应或者通过合适的分馏方案进一步分离富烃液相。回收未转化的可脱氢烃,并且可将其再循环到脱氢区。脱氢反应的产物作为最终产物或作为制备其他化合物的中间产物回收。
可在将可脱氢烃传递到脱氢区之前、同时或之后将其与稀释剂材料混合。稀释剂材料可以是氢气、蒸汽、甲烷、乙烷、二氧化碳、氮气、氩气等或其混合物。氢气和蒸汽是优选的稀释剂。通常,当利用氢气或蒸汽作为稀释剂时,其用量应足以确保稀释剂与烃的摩尔比为约0.1∶1至约40∶1,当摩尔比范围为约0.4∶1至约10∶1时可获得最佳结果。传递到脱氢区的稀释剂流通常将是在分离区中与来自脱氢区的流出物分离的再循环稀释剂。
可采用稀释剂诸如蒸汽与氢气的组合。当氢气是主要稀释剂时,可例如将水或在脱氢条件下分解形成水的物质(诸如醇、醛、醚或酮)连续或间歇地添加到脱氢区,基于当量水计算,其量可以提供约1重量ppm至约20,000重量ppm的烃进料流。当脱氢链烷烃具有6至30个或更多个碳原子时,添加约1重量ppm至约10,000重量ppm的水可获得最佳结果。
为了在商业上成功,脱氢催化剂应表现出三个特征,即高活性、高选择性和高稳定性。活性是在一组特定反应条件下(即在特定温度、压力、接触时间和稀释剂诸如氢气(如果有的话)浓度下)催化剂将反应物转化为产物的能力的量度。对于脱氢催化剂活性,测量相对于原料中链烷烃的量(以百分比计)的链烷烃转化率或消失率。选择性是相对于被转化的反应物的量,催化剂将反应物转化为一种或多种所需产物的能力的量度。对于催化剂选择性,测量相对于被转化链烷烃的总摩尔数(以摩尔%计)的产物中烯烃的量。稳定性是活性和选择性参数随反应时间变化的速率的量度-速率越小,表示催化剂越稳定。
烃的脱氢是一个吸热过程。在仅采用脱氢催化剂的系统中,通常需要在工艺中的各个点处添加过热蒸汽或间歇地移除和再加热催化剂床之间的反应流。已经开发出一些工艺,它们利用具有脱氢或选择性氧化催化剂的不同床或反应器的双催化剂体系。选择性氧化催化剂的目的是用添加到氧化区中的氧气选择性氧化由脱氢反应产生的氢气,以在该过程内部产生热量。产生的热量通常足以使反应混合物达到用于接下来的脱氢步骤的所需脱氢温度。本工艺可在该先前提到的系统中完成。如果采用这种工艺,则本发明的催化剂将包含至少脱氢催化剂,而另一种特定的催化剂用于完成氧化反应。
选择性氧化步骤(如果利用)使用在该工艺的脱氢步骤中产生的氢气将热量提供给接下来的脱氢反应区段。为了实现这一点,首先将含氧气体引入反应器中,优选地在与选择性氧化催化剂区段相邻的位置处。含氧气体中的氧气对于氧化反应流中所含的氢气是必需的。可用于对存在的氢气进行选择性氧化的含氧气体的示例包括空气、氧气或者用其他气体诸如蒸汽、二氧化碳和惰性气体(诸如氮气、氩气、氦气等)稀释的空气或氧气。在将氧气添加到工艺流中的位置处,引入以与工艺流接触的氧气的量可在约0.01∶1至约2∶1摩尔的氧气/摩尔工艺流中所含的氢气的范围内。在选择性氧化反应中,在存在选择性蒸汽氧化/脱氢催化剂的情况下,使包含未反应的可脱氢烃、脱氢的烃和氢气的工艺流与氧气反应,由此选择性氧化氢气以产生水和热量,其中非常少的氧气与烃反应。
选择性蒸汽氧化/脱氢催化剂可以是用于在存在烃的情况下选择性氧化氢气的催化剂。此类催化剂的示例在美国专利号4,418,237中公开。另选地,用于选择性氧化步骤的催化剂可与用于脱氢步骤的催化剂相同。这类催化剂或它们的使用方法在美国专利号4,613,715和3,670,044中公开。
可以各种方式(诸如通过将氧气与相对冷的烃进料流或与蒸汽稀释剂混合)将含氧反应物添加到本工艺中,或者可独立于进料烃或蒸汽稀释剂将其直接添加到反应器中。另外,可以在反应器中的一个或多个位置以这样的方式添加含氧反应物:使氧气相对于氢气的局部浓度最小化,以便将由选择性氢氧化产生的有利温度上升分布在反应区的整个长度上。使用多个注入点使氧气相对于氢气的量的浓度发生局部积累的几率最小化,从而使含氧气体与进料或产物烃发生不期望的反应的几率最小化。
引入以下实施例以进一步描述本发明的催化剂和方法。该实施例旨在作为例示性实施方案,并且不应被认为限制如所附权利要求中所阐述的本发明的其他广义解释。
实施例
丙烷脱氢
为了展示本发明要实现的优点,制备了本发明的催化剂和三种现有技术催化剂。
第一种现有技术催化剂(催化剂A)含有的中值孔径为1.6mm,ABD为0.62g/cc。第二种现有技术催化剂(催化剂B)含有的中值孔径为1.8mm,ABD为0.63g/cc。第三种现有技术催化剂(催化剂C)含有的中值孔径为1.8mm,ABD为0.62g/cc。根据本发明的催化剂(催化剂D)含有的中值孔径为1.8mm,ABD为0.56g/cc。所有这些催化剂在体积水平上具有相同量(大致)的铂、锡和钾。这些催化剂的特性在表1中呈现以进行比较,并且测试结果在图1中示出。
表1
Figure BDA0002520461790000131
使用二氧化碳作为探针分子,用动力学测试装置(KTU)在10℃下测量扩散率。从KTU获得的值在图2中示出。
在中试装置中测试每种催化剂(大约15cc),将丙烷脱氢以产生丙烯,反应时间(HOS)为20小时。每个中试装置测试的操作条件包括:进料为77%的丙烷和23%(按重量计)的丙烯,并且氢气与进料之比为0.7,液时空速(LHSV)为30hr-1,压力为135kPa(5psig),进料温度为650℃(1202°F),并且硫化氢为70ppm。测试结果反映在图1中,展示了针对总反应时间绘制的丙烷转化率。
从图1中可以看出,在相同的操作条件下,相比于现有技术催化剂,本发明的催化剂(催化剂D)展示出最高的初始最大活性,并且,并且对于20小时的反应时间保持着较高的丙烷转化率。
废催化剂再生(焦炭燃烧)
将上述丙烷脱氢后的催化剂A、C和D从流中取出后,对其进行分析。经由热重量分析(TGA)分析废催化剂颗粒。
对于TGA,在氮气中在550℃下预处理50mg(大约14-20个催化剂颗粒)以解吸挥发性物质。预处理后,使用两种温度测量。将催化剂颗粒冷却至480℃或保持在550℃,并将1%的氧气添加到流动的氮气中以燃尽已经在催化剂上形成的焦炭。使用壳层渐进扩散模型处理TGA数据,以计算焦炭燃烧时间和氧气有效扩散率。480℃TGA处理数据的结果在图3中示出,并且所计算的氧气扩散率在下表2和图4中示出。
表2
Figure BDA0002520461790000141
从图3和图4中可以看出,本发明的催化剂(催化剂D)展示出最短的焦炭燃烧时间和最高的氧气有效扩散率。考虑到粒径大和扩散路径长,这是令人惊讶和出乎意料的。实际上,初始计算表明催化剂D将具有长27%的燃烧时间然而,如图3所示,催化剂D实际上具有与催化剂A相比短18%的燃尽时间,以及相比于催化剂C短至少50%的燃烧时间。因此,本发明的催化组合物不仅为选择性烃转化工艺提供了优异的结果,而且还具有与再生相关联的优异和出乎意料的结果。
上述管线、导管、单元、设备、容器、周围环境、区或类似物中的任一者可配备一个或多个监测部件,包括传感器、测量设备、数据捕获设备或数据传输设备。信号、过程或状态测量以及来自监测部件的数据可用于监测过程设备中、周围和与其有关的条件。由监测部件生成或记录的信号、测量和/或数据可通过一个或多个网络或连接收集、处理和/或传输,所述网络或连接可以是私有或公共的,通用的或专用的,直接的或间接的,有线的或无线的,加密的或未加密的,和/或其组合;本说明书并非旨在在这方面进行限制。
由监测部件生成或记录的信号、测量和/或数据可被传输到一个或多个计算设备或系统。计算设备或系统可包括至少一个处理器以及存储计算机可读指令的存储器,该计算机可读指令当由至少一个处理器执行时,使一个或多个计算设备执行可包括一个或多个步骤的过程。例如,可配置一个或多个计算设备以从一个或多个监测部件接收与至少一个与该过程相关联的设备相关的数据。一个或多个计算设备或系统可被配置为分析该数据。根据数据分析,一个或多个计算设备或系统可被配置为确定对本文所述的一个或多个过程的一个或多个参数的一种或多种推荐调整。一个或多个计算设备或系统可被配置为传输加密或未加密的数据,其包括对本文所述的一个或多个过程的一个或多个参数的一种或多种推荐调整。
具体的实施方案
虽然结合具体的实施方案描述了以下内容,但应当理解,该描述旨在说明而不是限制前述描述和所附权利要求书的范围。
本发明的第一实施方案是一种用于选择性转化烃的催化剂,该催化剂包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及形成催化剂颗粒的载体,该催化剂颗粒包括多个孔,其中至少15%的孔的平均孔径介于200埃至350埃之间,并且其中催化剂颗粒的表观堆密度介于0.60g/cc和0.3g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.60g/cc和0.5g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.57g/cc和0.52g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中其中表观堆密度为0.57g/cc。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中平均孔径介于200埃至350埃之间的至少15%的所述孔的平均孔径介于240埃至280埃之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中催化剂具有单峰多孔分布。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中催化剂具有双峰多孔分布。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中第一组分是铂,第二组分是钾,并且第三组分是锡。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中载体选自二氧化硅、氧化铝、硅铝土、沸石、非沸石分子筛、二氧化钛、氧化锆及其混合物。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中载体选自θ-氧化铝、γ-氧化铝、η-氧化铝、δ-氧化铝及其混合物。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中催化剂在480℃下的氧气有效扩散率为至少1.5×10-7m2/s。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中贵金属的量基于总重量介于0.01重量%和5重量%之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中第二组分的量基于总重量介于0.7重量%和1.5重量%之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中第三组分的量基于总重量介于0.01重量%和5重量%之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中催化剂的中值直径介于1.8mm和2.2mm之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中催化剂颗粒是球形的。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中催化剂颗粒的孔隙率为至少75%。本发明的一个实施方案为本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,其中催化剂颗粒在10℃下的有效二氧化碳扩散率为至少1.6x10-6m2/sec。
本发明的第二实施方案是一种用于选择性转化烃的方法,该方法包括使烃在选择性转化条件下与催化复合材料接触,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,选自锡、锗、铅、铟、镓、铊及其混合物的第三组分,以及形成催化剂颗粒的载体,该催化剂颗粒具有多个孔,其中至少15%的孔的平均孔径介于200埃至350埃之间,并且其中该催化剂颗粒的表观堆密度介于0.60g/cc和0.3g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第二实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.60g/cc和0.5g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第二实施方案中的一个、任一个或所有实施方案,其中平均孔径介于200埃至350埃之间的至少15%的所述孔的平均孔径介于240埃至280埃之间。
本发明的第三实施方案是一种用于减少与再生用于选择性转化烃的催化剂相关联的时间的方法,该方法包括从催化复合材料中移除焦炭,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;并且其中通过催化剂还包含形成形成催化剂颗粒的载体的载体,与再生催化剂的理论时间相比,与再生催化剂相关联的时间减少至少10%,该催化剂颗粒包括多个孔,至少15%的孔的平均孔径介于200埃至350埃之间,并且其中该催化剂颗粒的表观堆密度介于0.60g/cc和0.3g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.60g/cc和0.5g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.57g/cc至0.52g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中其中表观堆密度为0.57g/cc。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中平均孔径介于200埃至350埃之间的至少15%的所述孔的平均孔径介于240埃至280埃之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中催化剂具有单峰多孔分布。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中催化剂具有双峰多孔分布。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中第一组分是铂,第二组分是钾,并且第三组分是锡。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中载体选自二氧化硅、氧化铝、硅铝土、沸石、非沸石分子筛、二氧化钛、氧化锆及其混合物。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中载体选自θ-氧化铝、γ-氧化铝、η-氧化铝、δ-氧化铝及其混合物。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中催化剂在480℃下的氧气有效扩散率为至少1.5x10-7m2/s。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中贵金属的量基于总重量介于0.01重量%和5重量%之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中第二组分的量基于总重量介于0.7重量%和1.5重量%之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中第三组分的量基于总重量介于0.01重量%和5重量%之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中催化剂的中值直径介于1.8mm和2.2mm之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中催化剂颗粒是球形的。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中催化剂颗粒的孔隙率为至少75%。本发明的一个实施方案为本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,其中催化剂颗粒在10℃下的有效二氧化碳扩散率为至少1.6x10-6m2/sec。
本发明的第四实施方案是一种再生用于选择性转化烃的催化剂的方法,该方法包括从催化复合材料中移除焦炭,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及形成形成催化剂颗粒的载体的载体,该催化剂颗粒包括多个孔,其中至少15%的孔的平均孔径介于200埃至350埃之间,并且该催化剂颗粒包括的表观堆密度介于0.60g/cc和0.3g/cc之间,并且其中与从催化复合材料中移除焦炭相关联的时间比从催化复合材料中移除焦炭的所计算的时间低。本发明的一个实施方案为本段中的先前实施方案至本段中的第四实施方案中的一个、任一个或所有实施方案,其中与从催化复合材料中移除焦炭相关联的时间比从催化复合材料中移除焦炭的所计算的时间低至少10%。
本发明的第五实施方案是一种系统,该系统包括至少一个处理器;至少一个存储器,其存储计算机可执行指令;以及至少一个接收器,其被配置为接收以下各项的数据:用于转化烃的方法的装置或流、与转化烃流体连通且在转化烃上游的装置或流、与转化烃流体连通且在转化烃下游的装置或流或者其任何组合,其中用于转化烃的方法包括催化复合材料,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,选自锡、锗、铅、铟、镓、铊及其混合物的第三组分,以及形成催化剂颗粒的载体,该催化剂颗粒具有多个孔,其中至少15%的孔的平均孔径介于200埃至350埃之间,并且其中该催化剂颗粒的表观堆密度介于0.60g/cc和0.3g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第五实施方案中的一个、任一个或所有实施方案,还包括用于收集数据的输入/输出设备。本发明的一个实施方案为本段中的先前实施方案至本段中的第五实施方案中的一个、任一个或所有实施方案,其中处理器被配置为评估数据。本发明的一个实施方案为本段中的先前实施方案至本段中的第五实施方案中的一个、任一个或所有实施方案,其中处理器被配置为关联数据。本发明的一个实施方案为本段中的先前实施方案至本段中的第五实施方案中的一个、任一个或所有实施方案,还包括用于将信号传输到转化过程的传输器。本发明的一个实施方案为本段中的先前实施方案至本段中的第五实施方案中的一个、任一个或所有实施方案,其中信号包括指令。本发明的一个实施方案为本段中的先前实施方案至本段中的第五实施方案中的一个、任一个或所有实施方案,其中信号包括关于参数调整的指令。本发明的一个实施方案为本段中的先前实施方案至本段中的第五实施方案中的一个、任一个或所有实施方案,还包括从多个系统收集数据,其中一个系统是参数数据系统。本发明的一个实施方案为本段中的先前实施方案至本段中的第五实施方案中的一个、任一个或所有实施方案,其中处理器被配置为生成预测信息。本发明的一个实施方案为本段中的先前实施方案至本段中的第五实施方案中的一个、任一个或所有实施方案,其中处理器被配置为生成定量信息。本发明的一个实施方案为本段中的先前实施方案至本段中的第五实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.60g/cc和0.5g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第五实施方案中的一个、任一个或所有实施方案,其中平均孔径介于200埃至350埃之间的至少15%的所述孔的平均孔径介于240埃至280埃之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第五实施方案中的一个、任一个或所有实施方案,其中催化剂颗粒具有单峰多孔分布。本发明的一个实施方案为本段中的先前实施方案至本段中的第五实施方案中的一个、任一个或所有实施方案,其中催化剂颗粒具有双峰多孔分布。
本发明的第六实施方案是一种接收用于选择性转化烃的工艺的数据的方法,该方法包括从包括以下的工艺的至少一个传感器接收数据:使烃在选择性转化条件下与催化复合材料接触,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,选自锡、锗、铅、铟、镓、铊及其混合物的第三组分,以及形成催化剂颗粒的载体,该催化剂颗粒具有多个孔,其中至少15%的孔的平均孔径介于200埃至350埃之间,并且其中该催化剂颗粒的表观堆密度介于0.60g/cc和0.3g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第六实施方案中的一个、任一个或所有实施方案,还包括显示或传输或分析所接收的数据中的至少一者。本发明的一个实施方案为本段中的先前实施方案至本段中的第六实施方案中的一个、任一个或所有实施方案,还包括分析所接收的数据以生成至少一条指令并传输该至少一条指令。本发明的一个实施方案为本段中的先前实施方案至本段中的第六实施方案中的一个、任一个或所有实施方案,还包括分析所接收的数据并生成预测信息。本发明的一个实施方案为本段中的先前实施方案至本段中的第六实施方案中的一个、任一个或所有实施方案,还包括分析所接收的数据并生成定量信息。本发明的一个实施方案为本段中的先前实施方案至本段中的第六实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.60g/cc和0.5g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第六实施方案中的一个、任一个或所有实施方案,其中平均孔径介于200埃至350埃之间的至少15%的所述孔的平均孔径介于240埃至280埃之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第六实施方案中的一个、任一个或所有实施方案,其中催化剂颗粒具有单峰多孔分布。本发明的一个实施方案为本段中的先前实施方案至本段中的第六实施方案中的一个、任一个或所有实施方案,其中催化剂颗粒具有双峰多孔分布。
本发明的第七实施方案是一种用于选择性转化烃的方法,该催化剂包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及形成球形催化剂颗粒的载体,该球形催化剂颗粒的平均孔径介于200埃至350埃之间,孔隙率为至少75%,并且表观堆密度介于0.60g/cc和0.3g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.60g/cc和0.5g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.57g/cc和0.52g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中其中表观堆密度为0.57g/cc。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.57g/cc和0.52g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中平均孔径介于240埃至280埃之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中催化剂具有单峰多孔分布。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中第一组分是铂,第二组分是钾,并且第三组分是锡。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中载体选自二氧化硅、氧化铝、硅铝土、沸石、非沸石分子筛、二氧化钛、氧化锆及其混合物。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中载体选自θ-氧化铝、γ-氧化铝、η-氧化铝、δ-氧化铝及其混合物。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中催化剂在480℃下的氧气有效扩散率为至少1.5x10-7m2/s。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中贵金属的量基于总重量介于0.01重量%和5重量%之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中第二组分的量基于总重量介于0.7重量%和1.5重量%之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中第三组分的量基于总重量介于0.01重量%和5重量%之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第七实施方案中的一个、任一个或所有实施方案,其中催化剂的中值直径介于1.8mm和2.2mm之间。
本发明的第八实施方案是一种再生用于选择性转化烃的催化剂的方法,该方法包括从催化复合材料中移除焦炭,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及形成形成球形催化剂颗粒的载体的载体,该球形催化剂颗粒的平均孔径介于200埃至350埃之间,孔隙率为至少80%,并且表观堆密度介于0.60g/cc和0.3g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第八实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.60g/cc和0.5g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第八实施方案中的一个、任一个或所有实施方案,其中平均孔径介于240埃至280埃之间。
本发明的第九实施方案是一种用于选择性转化烃的方法,该方法包括使烃在选择性转化条件下与催化复合材料接触,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及形成球形催化剂颗粒的载体,该球形催化剂颗粒的平均孔径介于200埃至350埃之间,孔隙率为至少80%,并且表观堆密度介于0.60g/cc和0.3g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第九实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.60g/cc和0.5g/cc之间。
本发明的第十实施方案是一种用于选择性转化烃的催化剂,该催化剂包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及形成球形催化剂颗粒的载体,该球形催化剂颗粒的中值直径介于1.6mm和2.5mm之间,并且表观堆密度介于0.6g/cc和0.3g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.6g/cc和0.5g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中中值直径介于1.8mm和2.2mm之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中中值直径介于1.8mm和2.2mm之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中表观堆密度介于0.57g/cc至0.52g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中中值直径为1.8mm。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中表观堆密度为0.57g/cc。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中催化剂具有单峰多孔分布。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中第一组分是铂,第二组分是钾,并且第三组分是锡。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中载体选自二氧化硅、氧化铝、硅铝土、沸石、非沸石分子筛、二氧化钛、氧化锆及其混合物。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中载体选自θ-氧化铝、γ-氧化铝、η-氧化铝、6-氧化铝及其混合物。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中催化剂在10℃下的有效二氧化碳扩散率为至少1.6x10-6m2/sec。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中贵金属的量基于总重量介于0.01重量%和5重量%之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中第二组分的量基于总重量介于0.7重量%和1.5重量%之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第十实施方案中的一个、任一个或所有实施方案,其中第三组分的量基于总重量介于0.01重量%和5重量%之间。
本发明的第十一实施方案是一种用于选择性转化烃的方法,该方法包括使烃在选择性转化条件下与催化复合材料接触,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及形成球形催化剂颗粒的载体,该球形催化剂颗粒的中值直径介于1.6mm和2.5mm之间,并且表观堆密度介于0.6g/cc和0.3g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第十一实施方案中的一个、任一个或所有实施方案,其中烃包括丙烷,并且其中选择性转化包括脱氢。本发明的一个实施方案为本段中的先前实施方案至本段中的第十一实施方案中的一个、任一个或所有实施方案,其中催化剂的中值直径为1.8mm,并且表观堆密度为0.57g/cc。
本发明的第十二实施方案是一种再生用于选择性转化烃的催化剂的方法,该方法包括从催化复合材料中移除焦炭,该催化复合材料包含:选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及形成球形催化剂颗粒的载体,该球形催化剂颗粒的中值直径介于1.6mm和2.5mm之间,并且表观堆密度介于0.6g/cc和0.3g/cc之间。本发明的一个实施方案为本段中的先前实施方案至本段中的第十二实施方案中的一个、任一个或所有实施方案,其中催化剂的中值直径为1.8mm,并且其中表观堆密度为0.57g/cc。
尽管没有进一步的详细说明,但据信,本领域的技术人员通过使用前面的描述可最大程度利用本发明并且可容易地确定本发明的基本特征而不脱离本发明的实质和范围以作出本发明的各种变化和修改,并且使其适合各种使用和状况。因此,前述优选的具体的实施方案应理解为仅例示性的,而不以无论任何方式限制本公开的其余部分,并且旨在涵盖包括在所附权利要求书的范围内的各种修改和等效布置。
在前述内容中,所有温度均以摄氏度示出,并且所有份数和百分比均按重量计,除非另外指明。
虽然在本发明的前述具体实施方式中已呈现了至少一个示例性实施方案,但是应当理解存在大量的变型形式。还应当理解,一个示例性实施方案或多个示例性实施方案仅是示例,并且不旨在以任何方式限制本发明的范围、适用性或配置。相反,前述详细描述将为本领域的技术人员提供便利的路线图以实施本发明的示例性实施方案,应当理解,在不脱离如所附权利要求书以及其法律等同形式所阐述的本发明的范围的情况下,可对示例性实施方案中所描述的元件的功能和布置进行各种改变。

Claims (10)

1.一种用于选择性转化烃的催化剂,所述催化剂包含:
选自VIII族贵金属及其混合物的第一组分,选自碱金属或碱土金属及其混合物的第二组分,以及选自锡、锗、铅、铟、镓、铊及其混合物的第三组分;以及
形成催化剂颗粒的载体,所述催化剂颗粒包括多个孔,其中至少15%的所述孔的平均孔径介于200埃至350埃之间,并且其中所述催化剂颗粒的表观堆密度介于0.60g/cc和0.3g/cc之间。
2.根据权利要求1所述的催化剂,其中所述表观堆密度介于0.60g/cc和0.5g/cc之间。
3.根据权利要求2所述的催化剂,其中所述表观堆密度介于0.57g/cc至0.52g/cc之间。
4.根据权利要求1所述的催化剂,其中平均孔径介于200埃至350埃之间的所述至少15%的所述孔的平均孔径介于240埃至280埃之间。
5.根据权利要求1至4中任一项所述的催化剂,其中所述催化剂具有单峰多孔分布。
6.根据权利要求1至4中任一项所述的催化剂,其中所述催化剂具有双峰多孔分布。
7.根据权利要求1至4中任一项所述的催化剂,其中所述催化剂颗粒是球形的。
8.根据权利要求1至4中任一项所述的催化剂,其中所述催化剂颗粒的孔隙率为至少75%。
9.一种用于选择性转化烃的方法,所述方法包括:
使烃在选择性转化条件下与催化复合材料接触,所述催化复合材料包含
选自VIII族贵金属及其混合物的第一组分,
选自碱金属或碱土金属及其混合物的第二组分,
选自锡、锗、铅、铟、镓、铊及其混合物的第三组分,以及
形成催化剂颗粒的载体,所述催化剂颗粒具有多个孔,其中至少15%的所述孔的平均孔径介于200埃至350埃之间,并且其中所述催化剂颗粒的表观堆密度介于0.60g/cc和0.3g/cc之间。
10.根据权利要求9所述的方法,其中平均孔径介于200埃至350埃之间的所述至少15%的所述孔的平均孔径介于240埃至280埃之间。
CN201880078088.5A 2017-11-02 2018-11-01 用于选择性转化烃的催化剂和方法 Pending CN111432926A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762580768P 2017-11-02 2017-11-02
US62/580,768 2017-11-02
PCT/US2018/058682 WO2019089907A1 (en) 2017-11-02 2018-11-01 Catalyst and process for the selective conversion of hydrocarbons

Publications (1)

Publication Number Publication Date
CN111432926A true CN111432926A (zh) 2020-07-17

Family

ID=66244717

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201880078088.5A Pending CN111432926A (zh) 2017-11-02 2018-11-01 用于选择性转化烃的催化剂和方法
CN201880078113.XA Pending CN111432929A (zh) 2017-11-02 2018-11-01 再生用于选择性转化烃的催化剂的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201880078113.XA Pending CN111432929A (zh) 2017-11-02 2018-11-01 再生用于选择性转化烃的催化剂的方法

Country Status (4)

Country Link
US (2) US10737244B2 (zh)
KR (2) KR102386046B1 (zh)
CN (2) CN111432926A (zh)
WO (2) WO2019089907A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10882030B2 (en) * 2017-08-25 2021-01-05 Uop Llc Crystalline transition metal tungstate
US10773245B2 (en) * 2017-08-25 2020-09-15 Uop Llc Crystalline transition metal molybdotungstate
US11857950B2 (en) * 2020-11-17 2024-01-02 Battelle Memorial Institute Hydrothermally and thermally stable catalytic materials based on theta-alumina

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717779A (en) * 1985-09-11 1988-01-05 Uop Inc. Dehydrogenation of dehydrogenatable hydrocarbons
US4914075A (en) * 1988-12-05 1990-04-03 Uop Dehydrogenation catalyst composition
CN1371304A (zh) * 1999-08-27 2002-09-25 胡茨曼石油化学公司 脱氢催化剂的改进
CN1649672A (zh) * 2002-04-08 2005-08-03 环球油品公司 脱氢催化剂组合物
US20130256194A1 (en) * 2012-03-29 2013-10-03 Uop Llc Reforming catalysts with tuned acidity for maximum aromatics yield
US20130261363A1 (en) * 2012-03-29 2013-10-03 Uop Llc Catalyst for conversion of hydrocarbons
CN105312091A (zh) * 2014-05-30 2016-02-10 中国石油化工股份有限公司 一种氧化铝载体及制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3670044A (en) 1969-07-18 1972-06-13 Phillips Petroleum Co Catalytic dehydrogenation process
US4418237A (en) 1981-03-30 1983-11-29 Uop Inc. Dehydrogenation of dehydrogenatable hydrocarbons
US4613715A (en) 1985-07-12 1986-09-23 Phillips Petroleum Company Oxygen addition to a steam-active dehydrogenation reactor
US4788371A (en) 1987-12-30 1988-11-29 Uop Inc. Catalytic oxidative steam dehydrogenation process
DE19533484A1 (de) * 1995-09-12 1997-03-13 Basf Ag Monomodale und polymodale Katalysatorträger und Katalysatoren mit engen Porengrößenverteilungen und deren Herstellverfahren
CN1084224C (zh) 1997-06-09 2002-05-08 中国科学院大连化学物理研究所 一种饱和烃脱氢催化剂及其制备方法
US6451200B1 (en) * 2000-01-13 2002-09-17 W. R. Grace & Co.-Conn. Hydrothermally stable high pore volume aluminum oxide/swellable clay composites and methods of their preparation and use
US6635598B2 (en) * 2000-04-20 2003-10-21 Indian Petrochemicals Corporation Limited Stable and selective dehydrogenation catalyst and a process for the preparation thereof
FR2910346B1 (fr) 2006-12-22 2010-10-15 Inst Francais Du Petrole Procede de deshydrogenation en presence d'un catalyseur bimetallique ou multi-metallique ayant un indice de bimetallicite et une capacite d'adsorption d'hydrogene optimises
KR101218453B1 (ko) * 2008-12-30 2013-01-04 주식회사 효성 탈수소화 촉매
US8758599B2 (en) * 2011-07-15 2014-06-24 Uop Llc Reforming catalyst and process
BR112014031991A2 (pt) * 2012-06-21 2017-06-27 Reliance Industries Ltd método para a regeneração de um catalisador de desidrogenação usado
US9364815B2 (en) * 2013-11-07 2016-06-14 Saudi Basic Industries Corporation Method of preparing an alumina catalyst support and catalyst for dehydrogenation reactions, and its use
KR101527845B1 (ko) 2013-12-04 2015-06-16 희성촉매 주식회사 스폰지형 담체를 이용한 탄화수소 탈수소화 촉매 제조방법
CN105214657B (zh) 2014-05-30 2018-03-20 中国石油化工股份有限公司 一种低碳烷烃脱氢制烯烃催化剂及其制备方法
EP3166913A2 (en) 2014-07-08 2017-05-17 Reliance Industries Limited Dehydrogenation catalyst composite and a process for the preparation thereof
US10646855B2 (en) * 2017-11-02 2020-05-12 Uop Llc Catalyst and process for the selective conversion of hydrocarbons

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717779A (en) * 1985-09-11 1988-01-05 Uop Inc. Dehydrogenation of dehydrogenatable hydrocarbons
US4914075A (en) * 1988-12-05 1990-04-03 Uop Dehydrogenation catalyst composition
CN1371304A (zh) * 1999-08-27 2002-09-25 胡茨曼石油化学公司 脱氢催化剂的改进
CN1649672A (zh) * 2002-04-08 2005-08-03 环球油品公司 脱氢催化剂组合物
US20130256194A1 (en) * 2012-03-29 2013-10-03 Uop Llc Reforming catalysts with tuned acidity for maximum aromatics yield
US20130261363A1 (en) * 2012-03-29 2013-10-03 Uop Llc Catalyst for conversion of hydrocarbons
CN105312091A (zh) * 2014-05-30 2016-02-10 中国石油化工股份有限公司 一种氧化铝载体及制备方法

Also Published As

Publication number Publication date
US10682629B2 (en) 2020-06-16
KR20200080281A (ko) 2020-07-06
US20190126251A1 (en) 2019-05-02
KR20200083522A (ko) 2020-07-08
WO2019089908A1 (en) 2019-05-09
CN111432929A (zh) 2020-07-17
US10737244B2 (en) 2020-08-11
KR102381591B1 (ko) 2022-04-05
US20190126250A1 (en) 2019-05-02
KR102386046B1 (ko) 2022-04-15
WO2019089907A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
KR102381589B1 (ko) 탄화수소의 선택적 전환을 위한 촉매의 재생 방법
CA2479957C (en) Dehydrogenation catalyst composition
US4914075A (en) Dehydrogenation catalyst composition
JP4804756B2 (ja) アルミン酸リチウム層触媒及びその触媒を用いた選択酸化プロセス
KR102381591B1 (ko) 탄화수소의 선택적 전환을 위한 촉매의 재생 방법
CN113573809A (zh) 具有最佳改性剂分布指数的脱氢催化剂
US20230201805A1 (en) Dehydrogenation catalyst composition
RU2807885C2 (ru) Катализатор дегидрирования с оптимальным индексом профиля модификатора
KR920010009B1 (ko) 탄화수소 탈수소화 반응촉매
NO168459B (no) Katalysatormateriale inneholdende en tvedelt alkalimetallbestanddel og fremgangsmaate ved omdannelse av hydrocarboner under anvendelse av katalysatormaterialet.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination