CN111425351B - 基于风力发电机与氢氧燃料电池的海上液冷系统 - Google Patents

基于风力发电机与氢氧燃料电池的海上液冷系统 Download PDF

Info

Publication number
CN111425351B
CN111425351B CN202010229371.2A CN202010229371A CN111425351B CN 111425351 B CN111425351 B CN 111425351B CN 202010229371 A CN202010229371 A CN 202010229371A CN 111425351 B CN111425351 B CN 111425351B
Authority
CN
China
Prior art keywords
water
hydrogen
cooling
oxygen fuel
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010229371.2A
Other languages
English (en)
Other versions
CN111425351A (zh
Inventor
夏波涛
曾茂进
季喜阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangbo heat transfer technology Co.,Ltd.
Original Assignee
Xenbo Hangzhou Heat Transfer Science & Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xenbo Hangzhou Heat Transfer Science & Technology Co ltd filed Critical Xenbo Hangzhou Heat Transfer Science & Technology Co ltd
Priority to CN202010229371.2A priority Critical patent/CN111425351B/zh
Publication of CN111425351A publication Critical patent/CN111425351A/zh
Application granted granted Critical
Publication of CN111425351B publication Critical patent/CN111425351B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/19Combinations of wind motors with apparatus storing energy storing chemical energy, e.g. using electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种基于风力发电机与氢氧燃料电池的海上液冷系统,旨在提供一种能够在不影响冷却效果的情况下,有效延长目前的液冷系统中的树脂去离子装置的树脂的有效使用寿命,降低树脂去离子装置的树脂的更换频率的海上液冷系统。它包括冷却回路;电解水制氢设备,电解水制氢设备的电源由风力发电机提供,电解水制氢设备包括电解水装置及氢气收集器,氢气收集器用于收集电解水制氢设备制备的氢气,氢气收集器收集的氢气用于供给氢氧燃料电池,电解水装置包括电解池,冷却回路与电解池之间通过排水管道相连;纯水收集灌,纯水收集灌用于收集氢氧燃料电池反应过程中排出的水,纯水收集灌与冷却回路通过供水管道相连。

Description

基于风力发电机与氢氧燃料电池的海上液冷系统
技术领域
本发明涉及一种液冷系统,具体涉及一种基于风力发电机与氢氧燃料电池的海上液冷系统。
背景技术
海上风力发电机是将风能转换为机械功,机械功带动转子旋转,最终输出交流电的电力设备。在海上风力发电机运行的过程中,海上风力发电机的一些电子器件会产生大量的热量,例如IGBT模块等,因而需要冷却设备进行冷却,以保证发热器件的正常工作。目前的海上风力发电机的电子器件一般采用液冷系统进行冷却,电力电子器件用的液冷系统中的冷却液中往往存在带电离子,若冷却液中的带电离子多,电阻率低,则易形成电路短路,影响器件的正常工作。
为了解决这一问题,目前通常采用在电力电子用的液冷系统中设置树脂去离子装置,以去除冷却液中的带电离子,让冷却液保持在要求的电阻率范围。为了保证树脂去离子装置的有效性,需要经常更换树脂去离子装置的树脂,而海上风力发电机往往位于偏远海域,因而经常更换树脂去离子装置的树脂以的成本极高,操作不便,而且经常更换树脂去离子装置的树脂,就需要经常关闭冷却系统,如此也会影响冷却系统的正常工作。
另一方面,虽然风电利用率较高,但风电的弃风率同样很高,尤其是夜晚海上风力发电机的弃风量极大,这也造成了能源的浪费。
发明内容
本发明的目的是为了提供一种能够在不影响冷却效果的情况下,有效延长目前的液冷系统中的树脂去离子装置的树脂的有效使用寿命,降低树脂去离子装置的树脂的更换频率的基于风力发电机与氢氧燃料电池的海上液冷系统。
本发明的技术方案是:
一种基于风力发电机与氢氧燃料电池的海上液冷系统,包括冷却回路,冷却回路内具有冷却水;电解水制氢设备,电解水制氢设备的电源由风力发电机提供,所述电解水制氢设备包括电解水装置及氢气收集器,所述氢气收集器用于收集电解水制氢设备制备的氢气,所述氢气收集器收集的氢气用于供给氢氧燃料电池,作为氢氧燃料电池的燃料,所述电解水装置包括电解池,所述冷却回路与电解池之间通过排水管道相连;纯水收集灌,纯水收集灌用于收集氢氧燃料电池反应过程中排出的水,纯水收集灌与冷却回路通过供水管道相连,所述供水管道上设有供给泵。
本方案的海上液冷系统通过排水泵和排水管道将冷却回路内的带电离子浓度高的冷却水抽出到电解池内,利用风力发电机提供的电能进行电解制氢气,由于冷却水中的带电离子浓度高,其有利于电解制氢;电解水制氢设备制备的氢气通过氢气收集器收集,氢气收集器收集的氢气供给氢氧燃料电池,作为氢氧燃料电池的燃料,并通过纯水收集灌收集氢氧燃料电池反应过程中排出的水,然后通过供给泵和供水管道用于将纯水收集灌内的水泵入冷却回路内;由于氢氧燃料电池反应过程中排出的水为纯水,从而实现将冷却回路内的带电离子浓度高的冷却水,同时将纯水泵入冷却回路内,如此循环,从而有效降低冷却回路内的冷却水中的带电离子浓度,使冷却水保持在要求的电阻率范围,从而极大的降低液冷系统中的树脂去离子装置的树脂的使用强度,有效延长目前的液冷系统中的树脂去离子装置的树脂的有效使用寿命,降低树脂去离子装置的树脂的更换频率;同时,不会影响液冷系统的冷却效果。
另一方面,利用风力发电机提供的电能进行电解制氢气,还可以提高风力发电的利用率,减少风力发电的弃电量;尤其是在夜间,可以利用风力发电的弃电进行电解制氢气,并收集至氢气收集器收集内;在日间时,将氢气收集器收集的氢气供给氢氧燃料电池,氢氧燃料电池反应产生电能,并将氢氧燃料电池反应产生电能进行并网利用,以提高供电量;同时,通过纯水收集灌收集氢氧燃料电池反应过程中排出的水。
作为优选,排水管道上设有排水泵。
作为优选,排水泵和排水管道用于将冷却回路内的冷却水抽出到电解池内,所述供给泵和供水管道用于将纯水收集灌内的水泵入冷却回路内。
作为优选,排水泵工作时,所述供给泵也处于工作状态。如此,实现排水泵和排水管道将冷却回路内的带电离子浓度高的冷却水抽出的同时,供给泵和供水管道将纯水收集灌内的水泵入冷却回路内,实现冷却回路内的冷却水的循环。
作为优选,电解水制氢设备还包括提水管道,所述提水管道的一端与电解池连通,提水管道的另一端与海水连通,所述提水管道上设有提水泵。如此,可以将海水抽入电解池中进行电解,以提高制氢气效能。
作为优选,提水管道上设有提水管阀门。
作为优选,排水管道上设有排水管阀门。
作为优选,供水管道设有供水管阀门。
作为优选,冷却回路上设有循环泵,用于驱动冷却回路内的冷却水在冷却回路内循环。
本发明的有益效果是:能够在不影响冷却效果的情况下,有效延长目前的液冷系统中的树脂去离子装置的树脂的有效使用寿命,降低树脂去离子装置的树脂的更换频率。
附图说明
图1是本发明的具体实施例一的基于风力发电机与氢氧燃料电池的海上液冷系统的一种结构示意图。
图中:
冷却回路1;
电解水制氢设备2,电解水装置2.1,电解池2.1.1,氢气收集器2.2;
氢氧燃料电池3;
纯水收集灌4;
排水管道5,排水管阀门5.1;
排水泵6;
供水管道7,供水管阀门7.1;
供给泵8。
具体实施方式
为使本发明技术方案实施例目的、技术方案和优点更加清楚,下面结合附图对本发明实施例的技术方案进行清楚地解释和说明,但下述实施例仅为本发明的优选实施例,而不是全部实施例。基于实施方式中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得其他实施例,都属于本发明的保护范围。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本方案,而不能解释为对本发明方案的限制。
参照下面的描述和附图,将清楚本发明的实施例的这些和其他方面。在这些描述和附图中,具体公开了本发明的实施例中的一些特定实施方式来表示实施本发明的实施例的原理的一些方式,但是应当理解,本发明的实施例的范围不受此限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
在本发明的描述中,需要理解的是,术语“厚度”、“上”、“下”、“水平”、“顶”、“底”、“内”、“外”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定,“若干”的含义是表示一个或者多个。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
具体实施例一:如图1 所示,一种基于风力发电机与氢氧燃料电池的海上液冷系统,包括冷却回路1、电解水制氢设备2、氢氧燃料电池3与纯水收集灌4。冷却回路内具有冷却水。电解水制氢设备的电源由风力发电机提供。电解水制氢设备包括电解水装置2.1及氢气收集器2.2。氢气收集器用于收集电解水制氢设备制备的氢气。氢气收集器收集的氢气用于供给氢氧燃料电池,作为氢氧燃料电池的燃料。电解水装置包括电解池2.1.1。冷却回路与电解池之间通过排水管道5相连。本实施例中,排水管道上设有排水泵6。纯水收集灌用于收集氢氧燃料电池反应过程中排出的水。纯水收集灌与冷却回路通过供水管道7相连。供水管道上设有供给泵8。排水泵和排水管道用于将冷却回路内的冷却水抽出到电解池内。供给泵和供水管道用于将纯水收集灌内的水泵入冷却回路内。
本方案的海上液冷系统通过排水泵和排水管道将冷却回路内的带电离子浓度高的冷却水抽出到电解池内,利用风力发电机提供的电能进行电解制氢气,由于冷却水中的带电离子浓度高,其有利于电解制氢;电解水制氢设备制备的氢气通过氢气收集器收集,氢气收集器收集的氢气供给氢氧燃料电池,作为氢氧燃料电池的燃料,并通过纯水收集灌收集氢氧燃料电池反应过程中排出的水,然后通过供给泵和供水管道用于将纯水收集灌内的水泵入冷却回路内;由于氢氧燃料电池反应过程中排出的水为纯水,从而实现将冷却回路内的带电离子浓度高的冷却水,同时将纯水泵入冷却回路内,如此循环,从而有效降低冷却回路内的冷却水中的带电离子浓度,使冷却水保持在要求的电阻率范围,从而极大的降低液冷系统中的树脂去离子装置的树脂的使用强度,有效延长目前的液冷系统中的树脂去离子装置的树脂的有效使用寿命,降低树脂去离子装置的树脂的更换频率;同时,不会影响液冷系统的冷却效果。
另一方面,利用风力发电机提供的电能进行电解制氢气,还可以提高风力发电的利用率,减少风力发电的弃电量;尤其是在夜间,可以利用风力发电的弃电进行电解制氢气,并收集至氢气收集器收集内;在日间时,将氢气收集器收集的氢气供给氢氧燃料电池,氢氧燃料电池反应产生电能,并将氢氧燃料电池反应产生电能进行并网利用,以提高供电量;同时,通过纯水收集灌收集氢氧燃料电池反应过程中排出的水。
本实施例中,冷却回路上设有循环泵,用于驱动冷却回路内的冷却水在冷却回路内循环。
进一步的,排水泵工作时,供给泵也处于工作状态。如此,实现排水泵和排水管道将冷却回路内的带电离子浓度高的冷却水抽出的同时,供给泵和供水管道将纯水收集灌内的水泵入冷却回路内,实现冷却回路内的冷却水的循环。
进一步的,排水管道上设有排水管阀门5.1。供水管道设有供水管阀门7.1。如此,可以通过控制排水管阀门的通断,来控制排水管道的通断;可以通过控制供水管阀门的通断,来控制供水管道的通断。
具体实施例二:本实施例的其余结构参照具体实施例一,其不同之处在于:
电解水制氢设备还包括提水管道。提水管道的一端与电解池连通,提水管道的另一端与海水连通。提水管道上设有提水泵。如此,可以将海水抽入电解池中进行电解,以提高制氢气效能。提水管道上设有提水管阀门。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效变换,均仍属于本发明技术方案的保护范围。

Claims (5)

1.一种基于风力发电机与氢氧燃料电池的海上液冷系统,包括冷却回路,冷却回路内具有冷却水,其特征是,还包括:
电解水制氢设备,电解水制氢设备的电源由风力发电机提供,所述电解水制氢设备包括电解水装置及氢气收集器,所述氢气收集器用于收集电解水制氢设备制备的氢气,所述氢气收集器收集的氢气用于供给氢氧燃料电池,作为氢氧燃料电池的燃料,所述电解水装置包括电解池,所述冷却回路与电解池之间通过排水管道相连;
纯水收集灌,纯水收集灌用于收集氢氧燃料电池反应过程中排出的水,纯水收集灌与冷却回路通过供水管道相连,所述供水管道上设有供给泵;所述排水管道上设有排水泵;所述排水泵和排水管道用于将冷却回路内的冷却水抽出到电解池内,所述供给泵和供水管道用于将纯水收集灌内的水泵入冷却回路内;所述电解水制氢设备还包括提水管道,所述提水管道的一端与电解池连通,提水管道的另一端与海水连通,所述提水管道上设有提水泵;所述冷却回路上设有循环泵,用于驱动冷却回路内的冷却水在冷却回路内循环;
通过排水泵和排水管道将冷却回路内的带电离子浓度高的冷却水抽出到电解池内,利用风力发电机提供的电能进行电解制氢气,其中冷却水中的带电离子浓度高,有利于电解制氢;通过供给泵和供水管道用于将纯水收集灌内的水泵入冷却回路内,降低冷却回路内的冷却水中的带电离子浓度,使冷却水保持在要求的电阻率范围,以延长液冷系统中的树脂去离子装置的树脂的有效使用寿命,降低树脂去离子装置的树脂的更换频率。
2.根据权利要求1所述的基于风力发电机与氢氧燃料电池的海上液冷系统,其特征是,所述排水泵工作时,所述供给泵也处于工作状态。
3.根据权利要求1所述的基于风力发电机与氢氧燃料电池的海上液冷系统,其特征是,所述提水管道上设有提水管阀门。
4.根据权利要求1所述的基于风力发电机与氢氧燃料电池的海上液冷系统,其特征是,所述排水管道上设有排水管阀门。
5.根据权利要求1所述的基于风力发电机与氢氧燃料电池的海上液冷系统,其特征是,所述供水管道设有供水管阀门。
CN202010229371.2A 2020-03-27 2020-03-27 基于风力发电机与氢氧燃料电池的海上液冷系统 Active CN111425351B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010229371.2A CN111425351B (zh) 2020-03-27 2020-03-27 基于风力发电机与氢氧燃料电池的海上液冷系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010229371.2A CN111425351B (zh) 2020-03-27 2020-03-27 基于风力发电机与氢氧燃料电池的海上液冷系统

Publications (2)

Publication Number Publication Date
CN111425351A CN111425351A (zh) 2020-07-17
CN111425351B true CN111425351B (zh) 2021-06-08

Family

ID=71548938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010229371.2A Active CN111425351B (zh) 2020-03-27 2020-03-27 基于风力发电机与氢氧燃料电池的海上液冷系统

Country Status (1)

Country Link
CN (1) CN111425351B (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1018569C2 (nl) * 2001-07-17 2003-01-23 Ceap B V Mobiele energiecentrale.
CN1776223A (zh) * 2005-11-23 2006-05-24 王登祥 风力发电方法及所用的设备
SE531159C2 (sv) * 2006-10-06 2009-01-07 Morphic Technologies Ab Publ Metod och arrangemang för att producera metanol
US20080226954A1 (en) * 2007-03-16 2008-09-18 Samsung Electro-Mechanics Co., Ltd. Hydrogen generating apparatus, fuel cell power generation system, method of controlling hydrogen generating quantity and recorded medium recorded program performing the same
EP3402912A4 (en) * 2016-01-15 2019-10-23 Skyre, Inc. HYDROGEN SYSTEM AND METHOD OF OPERATION
US10164429B1 (en) * 2017-09-15 2018-12-25 Cloyd J. Combs Electrical power plant
CN109728324A (zh) * 2017-10-31 2019-05-07 上海申龙客车有限公司 一种带有冷却水水质控制的新能源客车燃料电池系统
CN107769255B (zh) * 2017-11-23 2020-09-25 哈尔滨工程大学 一种基于海上风电制氢的变速恒频风力发电系统的控制方法
CN209555382U (zh) * 2018-12-13 2019-10-29 山东明宇新能源技术有限公司 一种基于弃风弃电制氢的热电联供装置

Also Published As

Publication number Publication date
CN111425351A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
CN104145420B (zh) 可再生能源发电系统
US6841893B2 (en) Hydrogen production from hydro power
CN111364052A (zh) 一种宽功率电解水制氢系统及方法
CN107017651A (zh) 一种风电制氢储能的氢燃料复合电池及其发电方法
CN211872097U (zh) 一种宽功率电解水制氢系统
CN105862066B (zh) 一种高压质子膜水电解装置及方法
CN101514462A (zh) 一种超纯水膜电解装置
WO2015159817A1 (ja) 水素ガス発生システム
MX2011008711A (es) Aparato y metodo para controlar la nucleacion durante electrolisis.
CN114395775A (zh) 一种闭式清洁能源制氢储能系统
CN215925090U (zh) 一种风电制氢储能系统
CN110565108A (zh) 一种风光水联合制氢系统及制氢方法
CN114031143A (zh) 可无人值守的工业废液处理和水-氢-电联产系统及方法
CN213680909U (zh) 电解水氢热联供装置
CN113629731A (zh) 一种风光结合的稳定电解水制氢系统
CN111425351B (zh) 基于风力发电机与氢氧燃料电池的海上液冷系统
US11018350B2 (en) Ionic electric power station
CN212318219U (zh) 一种基于风力发电机与氢氧燃料电池的海上液冷系统
CN112832943A (zh) 一种基于海流能的淡-氢联供海水资源综合利用系统
CN218030439U (zh) 一种船用增程发电机的供电系统和电解槽结构
CN109576731B (zh) 液态金属磁流体直接电解水制氢装置及方法
CN215209640U (zh) 基于光伏电池的质子交换膜电解制氢装置
CN215817549U (zh) 一种风光结合的稳定电解水制氢系统
CN212849881U (zh) 一种热能深度利用的电储氢热一体化能源系统
CN110067702A (zh) 基于固体氢技术的风电储能系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Room 702, building 3, No. 371, Mingxing Road, Xiaoshan Economic and Technological Development Zone, Xiaoshan District, Hangzhou City, Zhejiang Province 311200

Patentee after: Xiangbo heat transfer technology Co.,Ltd.

Address before: Room 702, building 3, No. 371, Mingxing Road, Xiaoshan Economic and Technological Development Zone, Xiaoshan District, Hangzhou City, Zhejiang Province 311200

Patentee before: XENBO (HANGZHOU) HEAT TRANSFER SCIENCE & TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder