CN111424237A - 一种用于选择性吸收太阳光谱的膜层的制备方法 - Google Patents

一种用于选择性吸收太阳光谱的膜层的制备方法 Download PDF

Info

Publication number
CN111424237A
CN111424237A CN202010429299.8A CN202010429299A CN111424237A CN 111424237 A CN111424237 A CN 111424237A CN 202010429299 A CN202010429299 A CN 202010429299A CN 111424237 A CN111424237 A CN 111424237A
Authority
CN
China
Prior art keywords
film
chromium
prepared
target material
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010429299.8A
Other languages
English (en)
Inventor
于春锋
李方军
张谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Sanqi Energy Co ltd
Original Assignee
Shandong Sanqi Energy Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Sanqi Energy Co ltd filed Critical Shandong Sanqi Energy Co ltd
Priority to CN202010429299.8A priority Critical patent/CN111424237A/zh
Publication of CN111424237A publication Critical patent/CN111424237A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本申请提供了一种用于选择性吸收太阳光谱的膜层的制备方法,膜层包括6层,从下到上依次为氧化铬材质的强化膜、铜材质的低发射率膜、氮化铬材质的缓冲膜、氮氧化铬、氮化铬以及氧化铬的混合物材质的过渡膜、氧化铬材质的吸收膜、二氧化硅材质的抗反射膜,其中强化膜、缓冲膜、过渡膜、吸收膜以及抗反射膜均为通过反应性溅镀制备得到,低发射率膜为通过直流溅镀制备得到;经检测,本申请制备的膜层的吸收率为93%~97%,比现有技术提高了3%~9%;本申请制备的膜层的发射率为3%~5%,比现有技术降低了3%~12%;附着力为1级;采用本申请制备的膜层的太阳能集热器的热效率可达80.4%,比现有技术提高了6%~8.4%。

Description

一种用于选择性吸收太阳光谱的膜层的制备方法
技术领域
本发明涉及太阳能吸热薄膜技术领域,尤其是涉及一种用于选择性吸收太阳光谱的膜层的制备方法。
背景技术
在平板型太阳能集热器的生产中,往往要在吸热体(吸热板)的基材的外表面镀一层薄膜,以提高对太阳热能的吸收,以往使用的化学镀膜,对环境污染大,而且对太阳热能的吸收不好。
由于在溅镀化合物薄膜时,若直接以化合物当作靶材,则所溅镀出来的薄膜会与靶材成份有所差别,且因为不同物质被离子击出的溅击产额不同,因此不容易控制化合物的成份组成与性质。为了得到高质量的化合物薄膜,通常在溅镀金属靶时,通入与被溅射出的物质反应的气体,相互反应生成所需的化合物沉积在基材上,此种溅镀系统称为反应性溅镀。如果所通入的气体含量刚好足够与溅射出的原子进行反应,使得在靶材表面甚少形成化合物,则有利溅射的进行。相反地,如果通入过量的气体,则不仅在基材上与溅射出的原子进行反应,也会在靶面上与靶材反应生成化合物。
因此,如何提高吸热体的基材的外表面上的薄膜对太阳热能的吸收,提高光热转换的效率,是本领域技术人员急需解决的技术问题。
发明内容
本发明实施例的目的在于提供一种用于选择性吸收太阳光谱的膜层的制备方法。
为解决上述的技术问题,本发明提供的技术方案为:
一种用于选择性吸收太阳光谱的膜层的制备方法,包括以下依次进行的步骤:
1)反应性溅镀制备强化膜:在第一真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氧气发生化学反应生成氧化铬,反应生成的氧化铬沉积在吸热体的基材的外表面上形成强化膜;
2)溅镀制备低发射率膜:在第二真空镀膜室中,氩离子撞击靶材,撞击出来的铜离子沉积在步骤1)制得的强化膜的外表面上形成低发射率膜;
3)反应性溅镀制备缓冲膜:在第三真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氮气发生化学反应生成氮化铬,反应生成的氮化铬沉积在步骤2)制得的低发射率膜的外表面上形成缓冲膜;
4)反应性溅镀制备过渡膜:在第四真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氧气与氮气发生化学反应生成氮氧化铬、氮化铬以及氧化铬,反应生成的氮氧化铬、氮化铬以及氧化铬沉积在步骤3)制得的缓冲膜的外表面上形成过渡膜;
5)反应性溅镀制备吸收膜:在第五真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氧气发生化学反应生成氧化铬,反应生成的氧化铬沉积在步骤4)制得的过渡膜的外表面上形成吸收膜;
6)反应性溅镀制备抗反射膜:在第六真空镀膜室中,氩离子撞击靶材,撞击出来的硅离子与通入的氧气发生化学反应生成二氧化硅,反应生成的二氧化硅沉积在步骤5)制得的吸收膜的外表面上形成抗反射膜,完成后在吸热体的基材的外表面上制得包括6层的膜层。
优选的,步骤1)中,靶材为铬靶,氩气流量为50~200sccm,氧气流量为10~200sccm,制得的强化膜的厚度为30~120nm。
优选的,步骤2)中,靶材为铜靶,氩气流量为50~500sccm,制得的低发射率膜的厚度为180~220nm。
优选的,步骤3)中,靶材为铬靶,氩气流量为50~300sccm,氮气流量为10~100sccm,制得的缓冲膜的厚度为30~150nm。
优选的,步骤4)中,靶材为铬靶,氩气流量为50~500sccm,氮气流量为10~200sccm,氧气流量为10~200sccm,制得的过渡膜的厚度为30~100nm。
优选的,步骤5)中,靶材为铬靶,氩气流量为50~300sccm,氧气流量为10~200sccm,制得的吸收膜的厚度为30~120nm。
优选的,步骤6)中,靶材为硅靶,氩气流量为50~500sccm,氧气流量为50~200sccm,制得的抗反射膜的厚度为60~200nm。
优选的,步骤1)中,吸热体的基材为不锈钢片、铝板或铜板。
本申请提供了一种用于选择性吸收太阳光谱的膜层的制备方法,吸热体由基材以及设置在基材的外表面上的膜层构成,膜层包括6层,从下到上依次为氧化铬材质的强化膜、铜材质的低发射率膜、氮化铬材质的缓冲膜、氮氧化铬、氮化铬以及氧化铬的混合物材质的过渡膜、氧化铬材质的吸收膜、二氧化硅材质的抗反射膜,其中强化膜、缓冲膜、过渡膜、吸收膜以及抗反射膜均为通过反应性溅镀制备得到,铜材质的低发射率膜为通过直流溅镀制备得到;
经检测,本申请制备的膜层的吸收率为93%~97%,比现有技术中膜层的吸收率提高了3%~9%;本申请制备的膜层的发射率为3%~5%,比现有技术中膜层的发射率降低了3%~12%;膜层的附着力根据标准要求测试,结果为1级;本申请制备的膜层的光热转换的效率为77%~82%,比现有技术中膜层的光热转换的效率提高了6%~10%;经国家节能产品质量监督检验中心检测,该六层膜的膜层具有优异的性能,大大优于国家标准要求,太阳吸收比α(AM1.5)达0.94,半球发射比εh(80℃)仅为0.038。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请提供了一种用于选择性吸收太阳光谱的膜层的制备方法,包括以下依次进行的步骤:
1)反应性溅镀制备强化膜:在第一真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氧气发生化学反应生成氧化铬,反应生成的氧化铬沉积在吸热体的基材的外表面上形成强化膜;
2)溅镀制备低发射率膜:在第二真空镀膜室中,氩离子撞击靶材,撞击出来的铜离子沉积在步骤1)制得的强化膜的外表面上形成低发射率膜;
3)反应性溅镀制备缓冲膜:在第三真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氮气发生化学反应生成氮化铬,反应生成的氮化铬沉积在步骤2)制得的低发射率膜的外表面上形成缓冲膜;
4)反应性溅镀制备过渡膜:在第四真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氧气与氮气发生化学反应生成氮氧化铬、氮化铬以及氧化铬,反应生成的氮氧化铬、氮化铬以及氧化铬沉积在步骤3)制得的缓冲膜的外表面上形成过渡膜;
5)反应性溅镀制备吸收膜:在第五真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氧气发生化学反应生成氧化铬,反应生成的氧化铬沉积在步骤4)制得的过渡膜的外表面上形成吸收膜;
6)反应性溅镀制备抗反射膜:在第六真空镀膜室中,氩离子撞击靶材,撞击出来的硅离子与通入的氧气发生化学反应生成二氧化硅,反应生成的二氧化硅沉积在步骤5)制得的吸收膜的外表面上形成抗反射膜,完成后在吸热体的基材的外表面上制得包括6层的膜层。
在本申请的一个实施例中,步骤1)中,靶材为铬靶,氩气流量为50~200sccm,氧气流量为10~200sccm,制得的强化膜的厚度为30~120nm。
在本申请的一个实施例中,步骤2)中,靶材为铜靶,氩气流量为50~500sccm,制得的低发射率膜的厚度为180~220nm。
在本申请的一个实施例中,步骤3)中,靶材为铬靶,氩气流量为50~300sccm,氮气流量为10~100sccm,制得的缓冲膜的厚度为30~150nm。
在本申请的一个实施例中,步骤4)中,靶材为铬靶,氩气流量为50~500sccm,氮气流量为10~200sccm,氧气流量为10~200sccm,制得的过渡膜的厚度为30~100nm。
在本申请的一个实施例中,步骤5)中,靶材为铬靶,氩气流量为50~300sccm,氧气流量为10~200sccm,制得的吸收膜的厚度为30~120nm。
在本申请的一个实施例中,步骤6)中,靶材为硅靶,氩气流量为50~500sccm,氧气流量为50~200sccm,制得的抗反射膜的厚度为60~200nm。
在本申请的一个实施例中,步骤1)中,吸热体的基材为不锈钢片、铝板或铜板。
本申请中,sccm为体积流量单位,意义为标况毫升/分钟。
本申请提供的膜层能够选择性吸收太阳光谱,其中的原理是:太阳辐射到地球上的绝大部分能量,来源于0.20~3.0μm波长范围的紫外线、可见光和红外线,这个波长范围内的能量占地球外太阳辐射总能量的98.07%;而热辐射的波长范围主要集中在2.5~30μm。光谱选择性吸收涂层是应用在吸热体上的,它就是利用太阳辐射的波长范围(主要集中在0.20~3.0μm)与热辐射的波长范围不相同这一特性,可以增强吸热体对太阳辐射吸收的同时,减少吸热体向环境的热辐射损失。选择性涂层材料的最大特点在于,它们对不同光谱区的辐射具有不同的热辐射性质。厚度为0.1~2μm的薄层金属氧化物或硫化物,如氧化铜、氧化铬等,具有很高的太阳辐射吸收比和长波辐射透射比。6层构成的膜层的缓冲膜、过渡膜、吸收膜的主要成分是氧化铬等氧化物,能够吸收波长范围为0.20~3.0μm的太阳辐射能量并转化为热能。
本申请实现了用于选择性吸收太阳光谱的膜层的吸收率高、发射率低以及附着力好,其中的工作原理是:在2500nm波长以下的太阳光反射光谱,反射率越低,吸收率越高,相反的,在2500nm波长以上的太阳光反射光谱,反射率越高,发射率越低;对基材表面作预处理,增加吸热体表面粗超度,能有效增强附着力,根据标准要求测试,结果为1级。
本申请提高了膜层的光热转换的效率,其中的工作原理是:纯铜、黄铜的低发射率在金属中最低,仅为0.03~0.05,因此本申请溅镀制备了铜离子膜,作为低发射率膜,以降低膜层的发射率;
抗反射膜是利用材料表面的反射能力与其折射率有关这一特性,通过降低材料表面的折射率,减少材料对太阳辐射的反射,在金属表面做多孔的二氧化硅膜层,其折射率较低,可使太阳反射比大大降低;
氧化铬等氧化物具有高吸收率,经检测,本申请制备的膜层的太阳吸收率为93%~97%。
实施例1
一种用于选择性吸收太阳光谱的膜层的制备方法,包括以下依次进行的步骤:
1)反应性溅镀制备强化膜:在第一真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氧气发生化学反应生成氧化铬,反应生成的氧化铬沉积在吸热体的基材的外表面上形成强化膜;
步骤1)中,吸热体的基材为不锈钢片;
步骤1)中,靶材为铬靶,功率为9kW,电压为500V,真空度为8.0E-6Torr,镀膜速度为6mm/s,氩气流量为120sccm,氧气流量为80sccm,制得的强化膜的厚度为70nm;膜厚是根据工艺要求可调整的;
2)溅镀制备低发射率膜:在第二真空镀膜室中,氩离子撞击靶材,撞击出来的铜离子沉积在步骤1)制得的强化膜的外表面上形成低发射率膜;
步骤2)中,靶材为铜靶,功率为7kW,电压为520V,真空度为8.0E-6Torr,镀膜速度为6mm/s,氩气流量为320sccm,制得的低发射率膜的厚度为200nm;
3)反应性溅镀制备缓冲膜:在第三真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氮气发生化学反应生成氮化铬,反应生成的氮化铬沉积在步骤2)制得的低发射率膜的外表面上形成缓冲膜;
步骤3)中,靶材为铬靶,功率为7kW,电压为420V,真空度为8.0E-6Torr,镀膜速度为6mm/s,氩气流量为240sccm,氮气流量为43sccm,制得的缓冲膜的厚度为90nm;
4)反应性溅镀制备过渡膜:在第四真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氧气与氮气发生化学反应生成氮氧化铬、氮化铬以及氧化铬,反应生成的氮氧化铬、氮化铬以及氧化铬沉积在步骤3)制得的缓冲膜的外表面上形成过渡膜;
步骤4)中,靶材为铬靶,功率为15kW,电压为510V,真空度为8.0E-6Torr,镀膜速度为6mm/s,氩气流量为90sccm,氮气流量为70sccm,氧气流量为50sccm,制得的过渡膜的厚度为70nm;
5)反应性溅镀制备吸收膜:在第五真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氧气发生化学反应生成氧化铬,反应生成的氧化铬沉积在步骤4)制得的过渡膜的外表面上形成吸收膜;
步骤5)中,靶材为铬靶,功率为11kW,电压为500V,真空度为8.0E-6Torr,镀膜速度为6mm/s,氩气流量为110sccm,氧气流量为90sccm,制得的吸收膜的厚度为80nm;
6)反应性溅镀制备抗反射膜:在第六真空镀膜室中,氩离子撞击靶材,撞击出来的硅离子与通入的氧气发生化学反应生成二氧化硅,反应生成的二氧化硅沉积在步骤5)制得的吸收膜的外表面上形成抗反射膜,完成后在吸热体的基材的外表面上制得包括6层的膜层;
步骤6)中,靶材为硅靶,功率为6kW,电压为560V,真空度为8.0E-6Torr,镀膜速度为6mm/s,氩气流量为220sccm,氧气流量为30sccm,制得的抗反射膜的厚度为120nm。
经检测,本实施例1制备的膜层的吸收率为94%,比现有技术中膜层的吸收率提高了3%~9%;本申请制备的膜层的发射率为4%,比现有技术中膜层的发射率降低了3%~12%;膜层的附着力根据标准要求测试,结果为1级;采用本申请制备的膜层的太阳能集热器的热效率为80.4%,比采用现有技术中膜层的太阳能集热器的热效率提高了6%~8.4%。
本发明未详尽描述的方法和装置均为现有技术,不再赘述。
本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (8)

1.一种用于选择性吸收太阳光谱的膜层的制备方法,其特征在于,包括以下依次进行的步骤:
1)反应性溅镀制备强化膜:在第一真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氧气发生化学反应生成氧化铬,反应生成的氧化铬沉积在吸热体的基材的外表面上形成强化膜;
2)溅镀制备低发射率膜:在第二真空镀膜室中,氩离子撞击靶材,撞击出来的铜离子沉积在步骤1)制得的强化膜的外表面上形成低发射率膜;
3)反应性溅镀制备缓冲膜:在第三真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氮气发生化学反应生成氮化铬,反应生成的氮化铬沉积在步骤2)制得的低发射率膜的外表面上形成缓冲膜;
4)反应性溅镀制备过渡膜:在第四真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氧气与氮气发生化学反应生成氮氧化铬、氮化铬以及氧化铬,反应生成的氮氧化铬、氮化铬以及氧化铬沉积在步骤3)制得的缓冲膜的外表面上形成过渡膜;
5)反应性溅镀制备吸收膜:在第五真空镀膜室中,氩离子撞击靶材,撞击出来的铬离子与通入的氧气发生化学反应生成氧化铬,反应生成的氧化铬沉积在步骤4)制得的过渡膜的外表面上形成吸收膜;
6)反应性溅镀制备抗反射膜:在第六真空镀膜室中,氩离子撞击靶材,撞击出来的硅离子与通入的氧气发生化学反应生成二氧化硅,反应生成的二氧化硅沉积在步骤5)制得的吸收膜的外表面上形成抗反射膜,完成后在吸热体的基材的外表面上制得包括6层的膜层。
2.根据权利要求1所述的一种用于选择性吸收太阳光谱的膜层的制备方法,其特征在于,步骤1)中,靶材为铬靶,氩气流量为50~200sccm,氧气流量为10~200sccm,制得的强化膜的厚度为30~120nm。
3.根据权利要求1所述的一种用于选择性吸收太阳光谱的膜层的制备方法,其特征在于,步骤2)中,靶材为铜靶,氩气流量为50~500sccm,制得的低发射率膜的厚度为180~220nm。
4.根据权利要求1所述的一种用于选择性吸收太阳光谱的膜层的制备方法,其特征在于,步骤3)中,靶材为铬靶,氩气流量为50~300sccm,氮气流量为10~100sccm,制得的缓冲膜的厚度为30~150nm。
5.根据权利要求1所述的一种用于选择性吸收太阳光谱的膜层的制备方法,其特征在于,步骤4)中,靶材为铬靶,氩气流量为50~500sccm,氮气流量为10~200sccm,氧气流量为10~200sccm,制得的过渡膜的厚度为30~100nm。
6.根据权利要求1所述的一种用于选择性吸收太阳光谱的膜层的制备方法,其特征在于,步骤5)中,靶材为铬靶,氩气流量为50~300sccm,氧气流量为10~200sccm,制得的吸收膜的厚度为30~120nm。
7.根据权利要求1所述的一种用于选择性吸收太阳光谱的膜层的制备方法,其特征在于,步骤6)中,靶材为硅靶,氩气流量为50~500sccm,氧气流量为50~200sccm,制得的抗反射膜的厚度为60~200nm。
8.根据权利要求1所述的一种用于选择性吸收太阳光谱的膜层的制备方法,其特征在于,步骤1)中,吸热体的基材为不锈钢片、铝板或铜板。
CN202010429299.8A 2020-05-20 2020-05-20 一种用于选择性吸收太阳光谱的膜层的制备方法 Pending CN111424237A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010429299.8A CN111424237A (zh) 2020-05-20 2020-05-20 一种用于选择性吸收太阳光谱的膜层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010429299.8A CN111424237A (zh) 2020-05-20 2020-05-20 一种用于选择性吸收太阳光谱的膜层的制备方法

Publications (1)

Publication Number Publication Date
CN111424237A true CN111424237A (zh) 2020-07-17

Family

ID=71553230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010429299.8A Pending CN111424237A (zh) 2020-05-20 2020-05-20 一种用于选择性吸收太阳光谱的膜层的制备方法

Country Status (1)

Country Link
CN (1) CN111424237A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782422A (zh) * 2009-11-11 2012-11-14 阿尔姆科-蒂诺克斯有限责任公司 用于吸收太阳能的光学作用多层系统
WO2014007218A1 (ja) * 2012-07-03 2014-01-09 旭硝子株式会社 光選択吸収膜、集熱管および太陽熱発電装置
CN105091377A (zh) * 2015-09-01 2015-11-25 中国建筑材料科学研究总院 一种太阳能选择性吸收涂层及其制备方法
CN105222381A (zh) * 2014-11-28 2016-01-06 中国建筑材料科学研究总院 一种双吸收层太阳光谱选择性吸收涂层及其制备方法
CN106288462A (zh) * 2016-08-26 2017-01-04 中国建筑材料科学研究总院 一种太阳能选择性吸收涂层及其制备方法
CN106679202A (zh) * 2016-12-20 2017-05-17 北京天瑞星光热技术有限公司 塔式集热器光热转化涂层及其制备方法
CN206222719U (zh) * 2016-08-26 2017-06-06 中国建筑材料科学研究总院 一种太阳能选择性吸收涂层
US10436955B2 (en) * 2014-10-27 2019-10-08 Almeco Gmbh Temperature- and corrosion-stable surface reflector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782422A (zh) * 2009-11-11 2012-11-14 阿尔姆科-蒂诺克斯有限责任公司 用于吸收太阳能的光学作用多层系统
WO2014007218A1 (ja) * 2012-07-03 2014-01-09 旭硝子株式会社 光選択吸収膜、集熱管および太陽熱発電装置
US10436955B2 (en) * 2014-10-27 2019-10-08 Almeco Gmbh Temperature- and corrosion-stable surface reflector
CN105222381A (zh) * 2014-11-28 2016-01-06 中国建筑材料科学研究总院 一种双吸收层太阳光谱选择性吸收涂层及其制备方法
CN105091377A (zh) * 2015-09-01 2015-11-25 中国建筑材料科学研究总院 一种太阳能选择性吸收涂层及其制备方法
CN106288462A (zh) * 2016-08-26 2017-01-04 中国建筑材料科学研究总院 一种太阳能选择性吸收涂层及其制备方法
CN206222719U (zh) * 2016-08-26 2017-06-06 中国建筑材料科学研究总院 一种太阳能选择性吸收涂层
CN106679202A (zh) * 2016-12-20 2017-05-17 北京天瑞星光热技术有限公司 塔式集热器光热转化涂层及其制备方法

Similar Documents

Publication Publication Date Title
CN108866483B (zh) 一种智能热控器件及其制备方法
CN201218622Y (zh) 一种太阳能选择性吸收涂层
CN103388917B (zh) 一种太阳能选择性吸收涂层及其制备方法
CN101905953A (zh) 一种镀有可钢化减反射膜层的光伏玻璃及其制作方法
CN103162452B (zh) 抗氧化性太阳光谱选择性吸收涂层及其制备方法
CN105091377B (zh) 一种太阳能选择性吸收涂层及其制备方法
CN108917210A (zh) 一种自掺杂纳米复合光热转换涂层及其制备方法
CN100532997C (zh) 一种太阳能选择性吸收涂层及其制备方法
CN107270564B (zh) 一种太阳光热吸收涂层
CN111172506A (zh) 一种Ti掺杂氧化钛复合太阳能选择性吸收涂层及其制备方法
CN109457219B (zh) 一种中低温太阳光谱选择性吸收涂层及其制备方法
CN106500374A (zh) 一种双相纳米复合太阳能吸收涂层及制造方法
CN1360084A (zh) 太阳光谱选择性吸收涂层
CN201463375U (zh) 一种太阳能集热管
CN111424237A (zh) 一种用于选择性吸收太阳光谱的膜层的制备方法
CN1584445A (zh) NiCrOXNY太阳光谱选择性吸收薄膜及制备方法
CN102305484A (zh) 具有陷光结构的太阳能集热管
CN209484869U (zh) 双过渡层复合吸收型太阳光谱选择性吸收涂层
CN108468033B (zh) 一种耐高温太阳能选择性吸收涂层及其制备方法
CN108645061B (zh) 多层复合太阳光谱选择性吸收涂层及其制备方法
CN102721208A (zh) 太阳能集热器集热板
CN208472182U (zh) 一种耐高温太阳能选择性吸收涂层
CN102734966A (zh) 槽式太阳能中温选择吸收涂层
CN102734965A (zh) 中高温太阳能集热管涂层
CN102721206A (zh) 中高温太阳能集热器集热管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200717