CN111419208A - 一种基于加速度传感器的无束缚实时心率监测方法与系统 - Google Patents

一种基于加速度传感器的无束缚实时心率监测方法与系统 Download PDF

Info

Publication number
CN111419208A
CN111419208A CN202010287437.3A CN202010287437A CN111419208A CN 111419208 A CN111419208 A CN 111419208A CN 202010287437 A CN202010287437 A CN 202010287437A CN 111419208 A CN111419208 A CN 111419208A
Authority
CN
China
Prior art keywords
real
time
peak
heart rate
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010287437.3A
Other languages
English (en)
Inventor
杨丽
王宏丽
张�林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN202010287437.3A priority Critical patent/CN111419208A/zh
Publication of CN111419208A publication Critical patent/CN111419208A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6892Mats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters

Abstract

本发明公开一种基于加速度传感器的无束缚实时心率监测方法与系统,该监测系统无束缚,被试者不会产生不适感,检测方法简单,可以获得实时准确的心率检测结果。本发明监测方法提出了一种新的J波检测方法,原始信号通过预处理得到了波形成分更加简单的BCG能量波形,然后通过小波多分辨率峰值检测法,进行波峰检测,从而得到J波位置。与常用的J波检测法相比,本发明提出的新的J波检测法提高了检测结果的实时性与准确性。

Description

一种基于加速度传感器的无束缚实时心率监测方法与系统
技术领域
本发明涉及生物医学实时监测技术领域,具体涉及一种基于加速度传感器的无束缚实时心率监测方法与系统。
背景技术
目前,心脑血管疾病是我国的高发疾病,而且呈现出逐年上升的趋势。心脑血管疾病的发病率和致死率都非常高,严重威胁人类的生命健康。所以,了解、提前预防和发病早期的发现治疗就变得非常的有必要。人体是通过体内各部分组织和器官协调运行来维持人体的正常生命体征的。心率作为人体重要的生理参数之一,我们可以通过监测心率的方法来早期发现体内出现的心脑血管疾病,这样就可以在发病早期就进行治疗和干预,在最大程度上减少疾病所带来的损失。心率波所表现出的波形、幅值和周期,在很大程度上能够反映出人体心脑血管系统中很多生理病理的特征,所以对心率的监测与处理有很高的医学价值和应用前景。
如今,常用的心率检监测方法如心电图、心音图、心磁图等都需要专业的监测设备,而且在监测的时候会有很强的束缚性,给患者带来很大的不舒适性,所以很难用于日常的心率检测。而使用健康手环或者用测脉搏来代替心率的方法虽然简单、无束缚性,但是测量的准确度较差。因此现在提出了一些实时监测心率的新方法。
现在有很多方法能够进行心率实时监测,例如专利(CN207785148U)可穿戴的光纤实时心率监测装置,将的光纤环放置在手腕或胸口的织物上,将皮肤的颤动转化为光的相位变化,进一步将马赫曾德干涉信号转化为电信号来处理。由于该装置光纤环中的光纤的圈数和直径并不是固定的,所以测量的结果不够准确。因此开发一种无束缚实时心率监测系统非常具有医学价值和应用前景。
发明内容
本发明的目的在于针对现有技术的不足,本发明提出了一种基于加速度传感器的无束缚实时心率监测方法与系统。该方法可操作性强,干扰因素较小,结果可靠性较高;该系统简单,无束缚的监测方式可以提高监测舒适度,且可以解决极端被测试抗拒传统监测方式的难题。
本发明解决所述技术问题的技术方案是:设计一种基于加速度传感器的无束缚实时心率监测方法,其特征在于,该方法包括下述步骤:
步骤一、实时原始信号采集
通过加速度传感器采集平躺有被测者的护理床的床体加速度振动信号,加速度传感器的信号采集方向为平行于人体脊椎;加速度传感器将采集到的床体加速度振动信号发送到电路放大器,经电路放大器放大后再经信号采集器得到实时原始信号;
步骤二、实时原始信号处理
将步骤一得到的实时原始信号通过小波变换进行降噪;然后将降噪后的信号输入到通带为5~9Hz的巴特沃斯滤波器中进行去噪,获得概貌BCG波形;之后对去噪后的信号幅值取绝对值得到BCG波形的幅值分布;然后将取绝对值之后的信号输入到通带为0.2~1.2Hz的巴特沃斯滤波器中,再次进行带通滤波处理,获得幅值低频走势,即BCG能量波形;
步骤三、特征值提取
将步骤二得到的BCG能量波形使用小波多分辨率峰值检测的方法,进行波峰检测得到峰值;通过J波检测法利用BCG能量波形得到峰峰间期;
步骤四、心率值计算
首先利用步骤三中检测到的峰值通过式(1)获幅值阈值Fy
Figure BDA0002449067890000031
其中Ji为峰值;
利用步骤三中得到的峰峰间期通过式(2)获得频率阈值Py
Figure BDA0002449067890000032
其中Ti为峰峰间期;
通过测试起始时间段内得到的峰值和峰峰间期,得到初始幅值阈值Fy和初始频率阈值Py
利用得到的初始幅值阈值Fy识别出第一个心跳峰值点J1,进入实时测量状态,实测测量状态的峰峰间期记为Tn,实时心动频率Pn与Tn的联系如公式(3)所示:
Pn=1/Tn (3)
根据初始幅值阈值Fy和初始频率阈值Py来筛选有效实时峰值J n和有效实时心动频率Pn
实时输出心率Ps与实时心动频率Pn的关系如公式(4)所示:
Ps=60Pn (4)
统计出固定次数的有效心跳所对应的幅值阈值和频率阈值,称为自适应阈值,并作为下一个有效心跳计数周期内的初始幅值阈值和始得频率阈值,自适应阈值在每个有效心跳计数周期内更新一次,且每个有效心跳计数周期内得到一个平均心率,平均心率为该计数周期内所有实时输出心率Ps的平均值;把测试有效时间内的最后一个完整计数周期内的平均心率作为被测者的实时心率值,并作为最终测试结果。
进一步的,本发明设计一种基于加速度传感器的无束缚实时心率监测系统,该系统适用于如上所述的基于加速度传感器的无束缚实时心率监测方法,其特征在于,包括PC机、护理床、加速度传感器、电路放大器和信号采集器;加速度传感器放置在护理床的侧面床梁上,用于采集由被测者心冲击信号引起的护理床床体加速度振动信号,加速度传感器采集的信号方向平行于人体脊椎,能够在无束缚的情况下采集到由心冲击引起的护理床床体加速度振动信号;加速度传感器与电路放大器相连,电路放大器与信号采集器相连,加速度传感器采集到的床体加速度振动信号通过电路放大器传输到信号采集器中;信号采集器与PC机连接,PC机将接收到的经放大的床体加速度振动信号进行处理,并最后将处理得到的结果在屏幕上显示出来;信号采集器为PXI采集卡,通过基于PCI总线通讯协议来采集数据;
上述PC机中存储有信号处理模块,包括降噪模块、滤波模块、波形识别模块、实时心率计算模块和实时心率输出模块,各模块之间通过预设的驱动程序执行调用过程来对信号进行处理,并输出结果;所述降噪模块是将接收到的经放大的床体加速度振动信号进行降噪处理,经过小波变换降噪处理后得到初步降噪信号;滤波模块就是将初步降噪信号进行预处理,具体为:将初步降噪信号输入到通带为5~9Hz的巴特沃斯滤波器中进行去噪,即通过带通滤波进行去噪处理,获得概貌BCG波形;之后对去噪后的信号幅值取绝对值得到BCG波形的幅值分布;然后将取绝对值之后的信号输入到通带为0.2~1.2Hz的巴特沃斯滤波器中,再次进行带通滤波处理就可以获得幅值低频走势,即BCG能量波形;波形识别模块用于识别由滤波模块输出的BCG能量波形,使用小波多分辨率峰值检测的方法进行波峰检测,得到峰值;同时,用J波检测法得到峰峰间期;实时心率计算模块将波形识别模块得到的峰值和峰峰间期,通过特定的算法得出被测者的实时心率值,并通过实时心率输出模块将被测者的实时心率值显示在PC机的屏幕上;
所述PC机内部安装有LabVIEW平台,所述降噪模块、滤波模块、波形识别模块、实时心率计算模块和实时心率输出模块通过LabVIEW平台实现相应的功能。
相比较于现有的技术,本发明的有益效果是:本发明监测系统无束缚,被试者不会产生不适感,检测方法简单,可以获得实时准确的心率检测结果。本发明监测方法提出了一种新的J波检测方法,原始信号通过预处理得到了波形成分更加简单的BCG能量波形,然后通过小波多分辨率峰值检测法,进行波峰检测,从而得到J波位置。与常用的J波检测法相比,本发明提出的新的J波检测法提高了检测结果的实时性与准确性。
附图说明
图1为本发明所采用的加速度传感器的信号采集流程图。
图2为本发明方法的信号处理流程图。
图3为本发明实施例1所得的实时原始信号处理后得到的BCG能量波形图。
图4为图3所示BCG能量波形的波峰检测图。
图5为本发明系统一种实施例的装配示意图。
图中标号:1-PC机,2-护理床,3-加速度传感器,4-电路放大器,5-信号采集器。
具体实施方式
为了更加详细的说明本发明的基于加速度传感器的无束缚实时心率监测方法和系统,下面结合附图以及实施例对本发明做详细说明。
本发明一种基于加速度传感器的无束缚实时心率监测方法(简称方法),该方法包括下述步骤:
步骤一、实时原始信号采集
通过加速度传感器采集平躺有被测者的护理床的床体加速度振动信号,加速度传感器的信号采集方向为平行于人体脊椎;加速度传感器将采集到的床体加速度振动信号发送到电路放大器,经电路放大器放大后再经信号采集器得到实时原始信号。
步骤二、实时原始信号处理
将步骤一得到的实时原始信号通过小波变换进行降噪;然后将降噪后的信号输入到通带为5~9Hz的巴特沃斯滤波器中进行去噪,获得概貌BCG波形;之后对去噪后的信号幅值取绝对值得到BCG波形的幅值分布;然后将取绝对值之后的信号输入到通带为0.2~1.2Hz的巴特沃斯滤波器中,再次进行带通滤波处理,获得幅值低频走势,即BCG能量波形。
步骤三、特征值提取
将步骤二得到的BCG能量波形使用小波多分辨率峰值检测的方法,进行波峰检测得到峰值;通过J波检测法利用BCG能量波形得到峰峰间期。
步骤四、心率值计算
首先利用步骤三中检测到的峰值通过式(1)获幅值阈值Fy(单位为V):
Figure BDA0002449067890000071
其中Ji(单位为V)为峰值。
利用步骤三中得到的峰峰间期通过式(2)获得频率阈值Py(单位为次·s-1):
Figure BDA0002449067890000072
其中Ti(单位为s)为峰峰间期。
通过测试起始时间段内得到的峰值和峰峰间期,得到初始幅值阈值Fy和初始得频率阈值Py
利用得到的初始幅值阈值Fy识别出第一个心跳峰值点J1后,进入实时测量状态,实测测量状态的峰峰间期记为Tn(单位为s),实时心动频率Pn与Tn的联系如公式(3)所示:
Pn=1/Tn (3)
根据初始幅值阈值Fy和初始得频率阈值Py来筛选有效实时峰值J n和有效实时心动频率Pn,具体过程为:
设波峰时间点xn、xn+1的幅值为Jn、Jn+1;Tn为峰峰间期,则有Tn=xn+1-xn;Pn为心动实时频率且Pn=1/Tn。根Tn=xn+1-xn;Pn为心动实时频率且Pn=1/Tn。根据实验经验,如果同时满足:
Figure BDA0002449067890000073
则点Jn+1记为一次有效心跳,Tn记为一次有效心动周期。
实时输出心率Ps(单位为次·min-1)与实时心动频率Pn的关系如公式(4)所示:
Ps=60Pn (4)
统计出固定次数的有效心跳所对应的幅值阈值和频率阈值,称为自适应阈值,并作为下一个有效心跳计数周期内的初始幅值阈值和始得频率阈值,自适应阈值在每个有效心跳计数周期内更新一次,且每个有效心跳计数周期内得到一个平均心率,平均心率为该计数周期内所有实时输出心率Ps的平均值;把测试有效时间内的最后一个完整计数周期内的平均心率作为被测者的实时心率值,并作为最终测试结果。
进一步的,本发明提供一种基于加速度传感器的无束缚实时心率监测系统(简称系统,参见图5),包括PC机1、护理床2、加速度传感器3、电路放大器4和信号采集器5。加速度传感器3放置在护理床2的侧面床梁上,用于采集由被测者心冲击(BCG)信号引起的护理床2床体加速度振动信号,加速度传感器3采集的信号方向平行于人体脊椎,能够在无束缚的情况下采集到由心冲击引起的护理床2床体加速度振动信号。加速度传感器3与电路放大器4相连,电路放大器4与信号采集器5相连,加速度传感器3采集到的床体加速度振动信号通过电路放大器4传输到信号采集器5中;信号采集器5与PC机1连接,PC机将接收到的经放大的床体加速度振动信号(即实时原始信号))进行处理,并最后将处理得到的结果在屏幕上显示出来。信号采集器5为PXI采集卡,通过基于PCI总线通讯协议来采集数据。
放置在护理床2的侧面横梁上的加速度传感器3可以无束缚的采集到由心冲击引起的床体加速度振动信号。本实施例的加速度传感器为Kistler-8396A三轴加速度传感器。
上述信号采集器5为NI(美国国家仪器有限公司)的PXI-4462型同步采集卡,通过外触发对信号进行采集。
上述PC机1中存储有信号处理模块,包括降噪模块、滤波模块、波形识别模块、实时心率计算模块和实时心率输出模块,各模块之间通过预设的驱动程序执行调用过程来对信号进行处理,并输出结果。所述降噪模块是将接收到的经放大的床体加速度振动信号进行降噪处理,经过小波变换降噪处理后得到初步降噪信号。滤波模块就是将初步降噪信号进行预处理,具体为:将初步降噪信号输入到通带为5~9Hz的巴特沃斯滤波器中进行去噪,即通过带通滤波进行去噪处理,获得概貌BCG波形;之后对去噪后的信号幅值取绝对值得到BCG波形的幅值分布;然后将取绝对值之后的信号输入到通带为0.2~1.2Hz的巴特沃斯滤波器中,再次进行带通滤波处理就可以获得幅值低频走势,即BCG能量波形。波形识别模块用于识别由滤波模块输出的BCG能量波形,使用小波多分辨率峰值检测的方法进行波峰检测,得到峰值;同时,用J波检测法得到峰峰间期;实时心率计算模块将波形识别模块得到的峰值和峰峰间期,通过特定的算法得出被测者的实时心率值,并通过实时心率输出模块将被测者的实时心率值显示在PC机1的屏幕上。
所述加速度传感器的型号为Kistler-8396A三轴高灵敏加速度传感器,其作用是采集被测者的心冲击信号。工作原理是:加速度传感器放置在床梁上,加速度传感器采集的信号方向平行于人体脊椎,心冲击会引起床体的振动,所以加速度传感器能够在无束缚的情况下采集到由心冲击引起的床体加速度振动信号。
所述PC机1内部安装有LabVIEW平台,所述降噪模块、滤波模块、波形识别模块、实时心率计算模块和实时心率输出模块通过LabVIEW平台实现相应的功能。
实施例1
本实施例提供一种基于加速度传感器的无束缚实时心率监测方法和系统,所述方法包括下述步骤:
步骤一、实时原始信号采集
通过加速度传感器采集平躺有被测者的护理床的床体加速度振动信号,加速度传感器的信号采集方向为平行于人体脊椎;加速度传感器将采集到的床体加速度振动信号发送到电路放大器,经电路放大器放大后再经信号采集器得到实时原始信号。
步骤二、实时原始信号处理
将步骤一得到的实时原始信号通过小波变换进行降噪;然后将降噪后的信号输入到通带为5~9Hz的巴特沃斯滤波器中进行去噪,获得概貌BCG波形;之后对去噪后的信号幅值取绝对值得到BCG波形的幅值分布;然后将取绝对值之后的信号输入到通带为0.2~1.2Hz的巴特沃斯滤波器中,再次进行带通滤波处理,获得幅值低频走势,即BCG能量波形。
步骤三、特征值提取
将步骤二得到的BCG能量波形使用小波多分辨率峰值检测的方法,进行波峰检测得到峰值;通过J波检测法利用BCG能量波形得到峰峰间期。
步骤四、心率值计算
首先利用步骤三中检测到的峰值通过式(1)获幅值阈值Fy(单位为V):
Figure BDA0002449067890000111
其中Ji(单位为V)为峰值。
利用步骤三中得到的峰峰间期通过式(2)获得频率阈值Py(单位为次·s-1):
Figure BDA0002449067890000112
其中Ti(单位为s)为峰峰间期。
通过测试起始30s时间段内得到的峰值和峰峰间期,得到初始幅值阈值Fy和初始得频率阈值Py
利用得到的初始幅值阈值Fy识别出第一个心跳峰值点J1后,进入实时测量状态,实测测量状态的峰峰间期记为Tn(单位为s),实时心动频率Pn与Tn的联系如公式(3)所示:
Pn=1/Tn (3)
根据初始幅值阈值Fy和初始得频率阈值Py来筛选有效实时峰值J n和有效实时心动频率Pn,具体过程为:
设波峰时间点xn、xn+1的幅值为Jn、Jn+1;Tn为峰峰间期,则有Tn=xn+1-xn;Pn为心动实时频率且Pn=1/Tn。根Tn=xn+1-xn;Pn为心动实时频率且Pn=1/Tn。根据实验经验,如果同时满足:
Figure BDA0002449067890000113
则点Jn+1记为一次有效心跳,Tn记为一次有效心动周期。
实时输出心率Ps(单位为次·min-1)与实时心动频率Pn的关系如公式(4)所示:
Ps=60Pn (4)
统计出60次数的有效心跳所对应的幅值阈值和频率阈值,称为自适应阈值,并作为下一个有效心跳计数周期内的初始幅值阈值和始得频率阈值,自适应阈值在每个有效心跳计数周期内更新一次,且每个有效心跳计数周期内得到一个平均心率,平均心率为该计数周期内所有实时输出心率Ps的平均值;把测试有效时间2min内的最后一个完整计数周期内的平均心率作为被测者的实时心率值,并作为最终测试结果。
当统计有效心跳的次数设为60次时,则有自适应幅值阈值Fky(单位为V)由公式(5)计算得到:
Figure BDA0002449067890000121
其中Jki(单位为V)为60次有效心跳的峰值。
自适应频率阈值Pky(单位为次·s-1)由公式(6)计算得到:
Figure BDA0002449067890000122
其中Pki(单位为次·s-1)为实时心动频率。
在60次的计数周期内,平均心率Pm(单位为次·min-1)由公式(7)计算得到:
Figure BDA0002449067890000123
其中Psi(次·min-1)为实时输出心率,Psi=60Pki
所述基于加速度传感器的无束缚实时心率监测系统(简称系统,参见图5),包括PC机1、护理床2、加速度传感器3、电路放大器4和信号采集器5。加速度传感器3放置在护理床2的侧面床梁上,用于采集由被测者心冲击(BCG)信号引起的护理床2床体加速度振动信号,加速度传感器3采集的信号方向平行于人体脊椎,能够在无束缚的情况下采集到由心冲击引起的护理床2床体加速度振动信号。加速度传感器3与电路放大器4相连,电路放大器4与信号采集器5相连,加速度传感器3采集到的床体加速度振动信号通过电路放大器4传输到信号采集器5中;信号采集器5与PC机1连接,PC机将接收到的经放大的床体加速度振动信号(即实时原始信号))进行处理,并最后将处理得到的结果在屏幕上显示出来。信号采集器5为PXI采集卡,通过基于PCI总线通讯协议来采集数据。
放置在护理床2的侧面横梁上的加速度传感器3可以无束缚的采集到由心冲击引起的床体加速度振动信号。本实施例的加速度传感器为Kistler-8396A三轴加速度传感器。
上述信号采集器5为NI(美国国家仪器有限公司)的PXI-4462型同步采集卡,通过外触发对信号进行采集。
上述PC机1中存储有信号处理模块,包括降噪模块、滤波模块、波形识别模块、实时心率计算模块和实时心率输出模块,各模块之间通过预设的驱动程序执行调用过程来对信号进行处理,并输出结果。所述降噪模块是将接收到的经放大的床体加速度振动信号进行降噪处理,经过小波变换降噪处理后得到初步降噪信号。滤波模块就是将初步降噪信号进行预处理,具体为:将初步降噪信号输入到通带为5~9Hz的巴特沃斯滤波器中进行去噪,即通过带通滤波进行去噪处理,获得概貌BCG波形;之后对去噪后的信号幅值取绝对值得到BCG波形的幅值分布;然后将取绝对值之后的信号输入到通带为0.2~1.2Hz的巴特沃斯滤波器中,再次进行带通滤波处理就可以获得幅值低频走势,即BCG能量波形。波形识别模块用于识别由滤波模块输出的BCG能量波形,使用小波多分辨率峰值检测的方法进行波峰检测,得到峰值;同时,用J波检测法得到峰峰间期;实时心率计算模块将波形识别模块得到的峰值和峰峰间期,通过特定的算法得出被测者的实时心率值,并通过实时心率输出模块将被测者的实时心率值显示在PC机1的屏幕上。
所述加速度传感器的型号为Kistler-8396A三轴高灵敏加速度传感器,其作用是采集被测者的心冲击信号。工作原理是:加速度传感器放置在床梁上,加速度传感器采集的信号方向平行于人体脊椎,心冲击会引起床体的振动,所以加速度传感器能够在无束缚的情况下采集到由心冲击引起的床体加速度振动信号。
所述PC机1内部安装有LabVIEW平台,所述降噪模块、滤波模块、波形识别模块、实时心率计算模块和实时心率输出模块通过LabVIEW平台实现相应的功能。
本实施例待测者为男性,年龄22岁,身高173cm,体重65kg。
为了验证所述方法与系统的可靠性,检测过程中加入了专业心率测量仪器的对比实验,专业心率测量仪器为多导睡眠仪(N7000,Embla,美国)。
本实施例开始之前先对受试者的前胸进行简单清洁,之后将两枚一次性心电电极贴片与多导睡眠仪连接后分左右粘贴在受试者胸前并且左胸贴片靠近心尖部位,之后让受试者平躺在床上,且同时,加速度传感器放置在床梁上,使本发明方法与系统与专业心率测量仪器同时进行检测。
采用本实施例所述方法和系统所得到的待测者的实时心率值为76次˙min-1,而多导睡眠仪测得的心率为78次˙min-1,证明本发明基于加速度传感器的无束缚实时心率监测系统测量偏差在5%以下,计算结果准确可靠,并且测量方法无束缚性,不会导致受试者出现不适感。
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于加速度传感器的无束缚实时心率监测方法,其特征在于,该方法包括下述步骤:
步骤一、实时原始信号采集
通过加速度传感器采集平躺有被测者的护理床的床体加速度振动信号,加速度传感器的信号采集方向为平行于人体脊椎;加速度传感器将采集到的床体加速度振动信号发送到电路放大器,经电路放大器放大后再经信号采集器得到实时原始信号;
步骤二、实时原始信号处理
将步骤一得到的实时原始信号通过小波变换进行降噪;然后将降噪后的信号输入到通带为5~9Hz的巴特沃斯滤波器中进行去噪,获得概貌BCG波形;之后对去噪后的信号幅值取绝对值得到BCG波形的幅值分布;然后将取绝对值之后的信号输入到通带为0.2~1.2Hz的巴特沃斯滤波器中,再次进行带通滤波处理,获得幅值低频走势,即BCG能量波形;
步骤三、特征值提取
将步骤二得到的BCG能量波形使用小波多分辨率峰值检测的方法,进行波峰检测得到峰值;通过J波检测法利用BCG能量波形得到峰峰间期;
步骤四、心率值计算
首先利用步骤三中检测到的峰值通过式(1)获幅值阈值Fy
Figure FDA0002449067880000011
其中Ji为峰值;
利用步骤三中得到的峰峰间期通过式(2)获得频率阈值Py
Figure FDA0002449067880000012
其中Ti为峰峰间期;
通过测试起始时间段内得到的峰值和峰峰间期,得到初始幅值阈值Fy和初始得频率阈值Py
利用得到的初始幅值阈值Fy识别出第一个心跳峰值点J1后,进入实时测量状态,实时测量状态的峰峰间期记为Tn,实时心动频率Pn与Tn的联系如公式(3)所示:
Pn=1/Tn (3)
根据初始幅值阈值Fy和初始得频率阈值Py来筛选有效实时峰值Jn和有效实时心动频率Pn
实时输出心率Ps与实时心动频率Pn的关系如公式(4)所示:
Ps=60Pn (4)
统计出固定次数的有效心跳所对应的幅值阈值和频率阈值,称为自适应阈值,并作为下一个有效心跳计数周期内的初始幅值阈值和始得频率阈值,自适应阈值在每个有效心跳计数周期内更新一次,且每个有效心跳计数周期内得到一个平均心率,平均心率为该计数周期内所有实时输出心率Ps的平均值;把测试有效时间内的最后一个完整计数周期内的平均心率作为被测者的实时心率值,并作为最终测试结果。
2.根据权利要求1所述的一种基于加速度传感器的无束缚实时心率监测方法,其特征在于,所述的根据初始幅值阈值Fy和初始频率阈值Py来筛选有效实时峰值Jn和有效实时心动频率Pn,具体过程为:
设波峰时间点xn、xn+1的幅值为Jn、Jn+1;Tn为峰峰间期,则有Tn=xn+1-xn;Pn为心动实时频率且Pn=1/Tn;根Tn=xn+1-xn;Pn为心动实时频率且Pn=1/Tn;根据实验经验,如果同时满足:
Figure FDA0002449067880000021
则点Jn+1记为一次有效心跳,Tn记为一次有效心动周期。
3.根据权利要求1所述的一种基于加速度传感器的无束缚实时心率监测方法,其特征在于,所述统计有效心跳的次数为60次。
4.一种基于加速度传感器的无束缚实时心率监测系统,该系统适用于如权利要求1-3任一项所述的基于加速度传感器的无束缚实时心率监测方法,其特征在于,包括PC机、护理床、加速度传感器、电路放大器和信号采集器;加速度传感器放置在护理床的侧面床梁上,用于采集由被测者心冲击信号引起的护理床床体加速度振动信号,加速度传感器采集的信号方向平行于人体脊椎,能够在无束缚的情况下采集到由心冲击引起的护理床床体加速度振动信号;加速度传感器与电路放大器相连,电路放大器与信号采集器相连,加速度传感器采集到的床体加速度振动信号通过电路放大器传输到信号采集器中;信号采集器与PC机连接,PC机将接收到的经放大的床体加速度振动信号进行处理,并最后将处理得到的结果在屏幕上显示出来;信号采集器为PXI采集卡,通过基于PCI总线通讯协议来采集数据;
上述PC机中存储有信号处理模块,包括降噪模块、滤波模块、波形识别模块、实时心率计算模块和实时心率输出模块,各模块之间通过预设的驱动程序执行调用过程来对信号进行处理,并输出结果;所述降噪模块是将接收到的经放大的床体加速度振动信号进行降噪处理,经过小波变换降噪处理后得到初步降噪信号;滤波模块就是将初步降噪信号进行预处理,具体为:将初步降噪信号输入到通带为5~9Hz的巴特沃斯滤波器中进行去噪,即通过带通滤波进行去噪处理,获得概貌BCG波形;之后对去噪后的信号幅值取绝对值得到BCG波形的幅值分布;然后将取绝对值之后的信号输入到通带为0.2~1.2Hz的巴特沃斯滤波器中,再次进行带通滤波处理就可以获得幅值低频走势,即BCG能量波形;波形识别模块用于识别由滤波模块输出的BCG能量波形,使用小波多分辨率峰值检测的方法进行波峰检测,得到峰值;同时,用J波检测法得到峰峰间期;实时心率计算模块将波形识别模块得到的峰值和峰峰间期,通过特定的算法得出被测者的实时心率值,并通过实时心率输出模块将被测者的实时心率值显示在PC机的屏幕上;
所述PC机内部安装有LabVIEW平台,所述降噪模块、滤波模块、波形识别模块、实时心率计算模块和实时心率输出模块通过LabVIEW平台实现相应的功能。
5.根据权利要求4所述的一种基于加速度传感器的无束缚实时心率监测系统,其特征在于,所述加速度传感器为Kistler-8396A三轴加速度传感器。
6.根据权利要求4所述的一种基于加速度传感器的无束缚实时心率监测系统,其特征在于,所述信号采集器为美国国家仪器有限公司的PXI-4462型同步采集卡,通过外触发对信号进行采集。
CN202010287437.3A 2020-04-13 2020-04-13 一种基于加速度传感器的无束缚实时心率监测方法与系统 Withdrawn CN111419208A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010287437.3A CN111419208A (zh) 2020-04-13 2020-04-13 一种基于加速度传感器的无束缚实时心率监测方法与系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010287437.3A CN111419208A (zh) 2020-04-13 2020-04-13 一种基于加速度传感器的无束缚实时心率监测方法与系统

Publications (1)

Publication Number Publication Date
CN111419208A true CN111419208A (zh) 2020-07-17

Family

ID=71554006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010287437.3A Withdrawn CN111419208A (zh) 2020-04-13 2020-04-13 一种基于加速度传感器的无束缚实时心率监测方法与系统

Country Status (1)

Country Link
CN (1) CN111419208A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113080918A (zh) * 2021-03-10 2021-07-09 杭州澳芯科技有限公司 一种基于bcg的非接触式心率监测方法和系统
CN114469037A (zh) * 2022-01-29 2022-05-13 武汉大学 一种基于毫米波雷达的高可靠心率测量方法
CN114732383A (zh) * 2022-06-13 2022-07-12 深圳市华屹医疗科技有限公司 体征指标监测方法、装置、设备、存储介质和程序产品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107198516A (zh) * 2017-07-11 2017-09-26 河北工业大学 一种无束缚检测呼吸率心率的方法及智能床
CN108992053A (zh) * 2018-06-21 2018-12-14 河北工业大学 一种实时的无束缚检测心率和心跳间隔的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107198516A (zh) * 2017-07-11 2017-09-26 河北工业大学 一种无束缚检测呼吸率心率的方法及智能床
CN108992053A (zh) * 2018-06-21 2018-12-14 河北工业大学 一种实时的无束缚检测心率和心跳间隔的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田浩辰 等: "基于振动加速度的无束缚心冲击检测与心率提取方法研究", 《生物医学工程学杂志》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113080918A (zh) * 2021-03-10 2021-07-09 杭州澳芯科技有限公司 一种基于bcg的非接触式心率监测方法和系统
CN114469037A (zh) * 2022-01-29 2022-05-13 武汉大学 一种基于毫米波雷达的高可靠心率测量方法
CN114469037B (zh) * 2022-01-29 2024-01-12 武汉大学 一种基于毫米波雷达的心率测量方法
CN114732383A (zh) * 2022-06-13 2022-07-12 深圳市华屹医疗科技有限公司 体征指标监测方法、装置、设备、存储介质和程序产品

Similar Documents

Publication Publication Date Title
Nayak et al. Filtering techniques for ECG signal processing
US7025729B2 (en) Apparatus for detecting sleep apnea using electrocardiogram signals
CN111419208A (zh) 一种基于加速度传感器的无束缚实时心率监测方法与系统
KR100719068B1 (ko) 전전두엽에서 측정한 뇌파 데이터의 고속푸리에변환을 통한누적데이터의 패턴분석을 이용한 건강진단 장치 및 그방법
EP4154805A1 (en) Apparatus for monitoring heart rate and respiration
JP2005503883A (ja) 胎児心拍の監視装置
Yang et al. A pilot study on fetal heart rate extraction from wearable abdominal inertial sensors
US7783341B2 (en) Method and apparatus for discerning therapeutic signals from noise in physiological data
CN110353646A (zh) 非接触式心率检测方法
Turnip et al. An application of modified filter algorithm fetal electrocardiogram signals with various subjects
WO2020024312A1 (zh) 一种呼吸信号的提取方法、装置、处理设备和系统
KR102592050B1 (ko) 소동물용 휴대용 심전도 전극 및 심전도 측정 시스템
EP3675718B1 (en) Multisensor cardiac stroke volume monitoring system and analytics
Gavriel et al. Smartphone as an ultra-low cost medical tricorder for real-time cardiological measurements via ballistocardiography
Jegan et al. Low cost and improved performance measures on filtering techniques for ECG signal processing and TCP/IP based monitoring using LabVIEW
Hegde et al. A review on ECG signal processing and HRV analysis
Mann et al. Heart Rate Monitoring Using Heart Acoustics
Desai et al. A comparison and quantification of fetal heart rate variability using Doppler ultrasound and direct electrocardiography acquisition techniques
CN212853501U (zh) 心音信号采集分析系统
CN210019403U (zh) 一种体音监测仪
Viunytskyi et al. Fetal ECG and heart rhythm analyzing using BabyCard
KR20220162767A (ko) 원격 환자 검진 및 분류를 위한 시스템 및 방법
Khan et al. A highly integrated computing platform for continuous, non-invasive bp estimation
Barleanu et al. Wearable ballistocardiography system for heartbeat detection
US20210321925A1 (en) Ecg monitor device with electrode pad

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200717