CN111416036B - 一种自支撑的磁电纳米复合结构及其制备方法 - Google Patents

一种自支撑的磁电纳米复合结构及其制备方法 Download PDF

Info

Publication number
CN111416036B
CN111416036B CN202010198089.2A CN202010198089A CN111416036B CN 111416036 B CN111416036 B CN 111416036B CN 202010198089 A CN202010198089 A CN 202010198089A CN 111416036 B CN111416036 B CN 111416036B
Authority
CN
China
Prior art keywords
magnetoelectric
self
ferrite
supporting
strontium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010198089.2A
Other languages
English (en)
Other versions
CN111416036A (zh
Inventor
刘明
王志广
胡忠强
周子尧
杜琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202010198089.2A priority Critical patent/CN111416036B/zh
Publication of CN111416036A publication Critical patent/CN111416036A/zh
Application granted granted Critical
Publication of CN111416036B publication Critical patent/CN111416036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth-based oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • H10N35/85Magnetostrictive active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种自支撑的磁电纳米复合结构及其制备方法,包括钛酸锶衬底、铝酸锶牺牲层和铁酸铋/铁酸钴磁电复合薄膜;钛酸锶衬底、铝酸锶牺牲层和铁酸铋/铁酸钴磁电复合薄膜自下而上依次设置,形成自支撑的磁电纳米复合结构;铁酸铋/铁酸钴磁电复合薄膜中铁酸铋为网格状结构,铁酸钴填充在网格结构内。本发明有利于提高磁电耦合性能,在能量存储与转换,磁存储及磁传感等方面有潜在的应用价值。

Description

一种自支撑的磁电纳米复合结构及其制备方法
技术领域
本发明属于磁电纳米复合结构技术领域,特别涉及一种自支撑的磁电纳米复合结构及其制备方法。
背景技术
随着新型器件小型化技术的发展,人们越来越有兴趣将电和磁结合到多功能薄膜材料中,以获得潜在的应用。磁电材料可以实现在外部磁场/电场下表现出诱导极化/磁化,在新型多功能器件中有着广阔的应用前景。与单相磁电材料相比,由压电相和磁致伸缩相组成的磁电复合材料由于具有更强的磁电耦合和更高的使用温度受到人们的广泛关注。对于这种复合材料,磁电耦合效应是相应功能相的压电和磁致伸缩系数的乘积。在微观或纳米尺度上,目前已被广泛研究的磁电复合薄膜的相连通结构包括:(0-3)型颗粒复合材料,(2-2)型层压材料复合材料和(1-3)型。然而,(2-2)薄膜连接的有效磁电耦合性能受到薄膜和衬底的夹持效应的限制,而(0-3)结构中由于磁性颗粒分布在铁电相中的随机性容易产生介质泄漏电流路径,且其磁电耦合效应强烈依赖于磁偏压和磁场频率。(1-3) 结构垂直排列生长的纳米复合材料薄膜,其中两相材料可以自组装并外延生长,为垂直界面耦合和微结构调整提供了一种有力的方法,该结构降低了薄膜在垂直结构中的夹紧效应,此外由于较大的界面比表面积可以产生有效的磁电耦合。然而,薄膜中组分相的形貌随衬底取向和相组分的变化而显著变化,目前这种异质结构的设计和控制仍然是一个挑战。
发明内容
本发明的目的在于提供一种自支撑的磁电纳米复合结构及其制备方法,以解决上述问题。
为实现上述目的,本发明采用以下技术方案:
一种自支撑的磁电纳米复合结构,包括钛酸锶衬底、铝酸锶牺牲层和铁酸铋/铁酸钴磁电复合薄膜;钛酸锶衬底、铝酸锶牺牲层和铁酸铋/铁酸钴磁电复合薄膜自下而上依次设置,形成自支撑的磁电纳米复合结构;铁酸铋/铁酸钴磁电复合薄膜中铁酸铋为网格状结构,铁酸钴填充在网格结构内。
进一步的,铝酸锶牺牲层为立方相,立方相的铝酸锶晶格常数为
Figure BDA0002418355420000021
钛酸锶衬底为立方结,
Figure BDA0002418355420000022
铝酸锶和钛酸锶的晶格常数为倍数关系。
进一步的,铝酸锶牺牲层的厚度为20~50nm;铁酸铋/铁酸钴磁电复合薄膜的厚度为 300~500nm。
进一步的,钛酸锶衬底包括晶面取向为001、110和111方向的三种钛酸锶单晶。
进一步的,一种自支撑的磁电纳米复合结构的制备方法,包括以下步骤:
步骤1,以铝酸锶为靶材,采用脉冲激光沉积法在钛酸锶衬底的表面上进行第一层沉积,形成铝酸锶牺牲层;
步骤2,以复合铁酸铋/铁酸钴为靶材,采用脉冲激光沉积法在铝酸锶牺牲层的表面上进行第二次沉积;
步骤3,在室温下,在50%稀盐酸中对退火后的铁酸铋/铁酸钴蚀刻1小时,以获得表面织构;
步骤4,在所生长铁酸铋/铁酸钴自组装薄膜上表面覆盖PMMA,然后置于去离子水中浸泡,使铝酸锶牺牲层在室温下被去离子水完全溶解,剥离出柔性自支撑铁酸铋/铁酸钴自组装薄膜。
进一步的,第一沉积过程中钛酸锶衬底的温度为800℃;沉积氧压为20Pa;激光能量为1.04W;频率为3Hz;沉积时间为15~20min;
第二沉积过程中生长温度为700℃,氧气气氛氧压为20Pa,沉积速率为10Hz,此时激光能量密度3J/cm2,靶基距为6cm。
进一步的,衬底材料还能够为聚对苯二甲酸乙二醇酯、聚二甲基硅氧烷、聚乙烯和聚丙烯中的任意一种;PMMA基片以及衬底需预先用去丙酮、乙醇、离子水超声清洗10分钟。
进一步的,步骤2中的靶材为以复合铁酸铋0.65/铁酸钴0.35为靶材。
与现有技术相比,本发明有以下技术效果:
本发明设计了一种新的策略来制备一种自支撑的纳米复合异质结构,以克服现存磁电复合薄膜磁电耦合效应和实际应用环境受衬底束缚作用影响和限制的问题。通过在水溶性铝酸锶(Sr3Al2O6,简称为SAO)牺牲层上生长(1-3)型BiFeO3/CoFe2O4(BFO/CFO) 磁电复合薄膜,随后在磁电复合薄膜上覆盖一层柔性PMMA后将其浸泡于水中一段时间后去除衬底,得到自支撑的柔性BFO/CFO自组装磁电复合薄膜。新的异质外延薄膜在压电和磁致伸缩相之间具有良好的连通性,此外本发明提出的自支撑磁电复合薄膜结构克服了基底的束缚作用,有利于提高磁电耦合性能,在能量存储与转换,磁存储及磁传感等方面有潜在的应用价值,其柔性特点可进一步应用于相关柔性器件,为磁电薄膜在微器件中的应用开辟了一条新的途径。
附图说明
图1为本发明提供的BFO/CFO自组装薄膜的结构示意图;
图2是本发明提供的自支撑BFO/CFO自组装薄膜的制备方法的流程示意图;
图3a-d为柔性自支撑BFO/CFO自组装薄膜结构的剥离示意图;
图4为<001>STO衬底上外延生长的BFO/CFO自组装薄膜的SEM图。
具体实施方式
以下结合附图对本发明进一步说明:
请参阅图1至图4,一种自支撑的磁电纳米复合结构,包括钛酸锶衬底、铝酸锶牺牲层和铁酸铋/铁酸钴磁电复合薄膜;钛酸锶衬底、铝酸锶牺牲层和铁酸铋/铁酸钴磁电复合薄膜自下而上依次设置,形成自支撑的磁电纳米复合结构;铁酸铋/铁酸钴磁电复合薄膜中铁酸铋为网格状结构,铁酸钴填充在网格结构内。从下至上依次包括钛酸锶(SrTiO3,简称为STO)衬底、铝酸锶(Sr3Al2O6,简称为SAO)牺牲层、铁酸铋/铁酸钴(BiFeO3/CoFe2O4,简称BFO/CFO)磁电复合薄膜。
铝酸锶牺牲层为立方相,立方相的铝酸锶晶格常数为
Figure BDA0002418355420000041
钛酸锶衬底为立方结,
Figure BDA0002418355420000042
铝酸锶和钛酸锶的晶格常数为倍数关系,故可以外延生长。
铝酸锶牺牲层的厚度为20~50nm;SAO作为牺牲层能够在室温下被去离子水完全溶解,从而完全释放上层的BFO/CFO复合薄膜。铁酸铋/铁酸钴磁电复合薄膜的厚度为300~500nm。
钛酸锶衬底包括晶面取向为001、110和111方向的三种钛酸锶单晶。以获得的不同结构外延生长的BFO/CFO自组装纳米结构。
所述BFO具有菱形R3c结构,可以描述为伪立方
Figure BDA0002418355420000043
而CFO为具有立方Fm3m结构的铁磁尖晶石结构
Figure BDA0002418355420000044
其磁易轴沿<100>方向。所述BFO/CFO自组装异质结构具有垂直对齐的界面,由于BFO和CFO的晶格失配(8.39>3.96*2)而在CFO 纳米晶之间产生压缩应变。当CFO颗粒尺寸减小到微米级别,形状各向异性能量将占主导地位。因此,调整CFO纳米阵列的形状和纵横比是控制磁性能的有效手段。
一种自支撑的磁电纳米复合结构的制备方法,包括以下步骤:
步骤1,以铝酸锶为靶材,采用脉冲激光沉积法在钛酸锶衬底的表面上进行第一层沉积,形成铝酸锶牺牲层;
步骤2,以复合铁酸铋/铁酸钴为靶材,采用脉冲激光沉积法在铝酸锶牺牲层的表面上进行第二次沉积;
步骤3,在室温下,在50%稀盐酸中对退火后的铁酸铋/铁酸钴蚀刻1小时,以获得表面织构;
步骤4,在所生长铁酸铋/铁酸钴自组装薄膜上表面覆盖PMMA,然后置于去离子水中浸泡,使铝酸锶牺牲层在室温下被去离子水完全溶解,剥离出柔性自支撑铁酸铋/铁酸钴自组装薄膜。
第一沉积过程中钛酸锶衬底的温度为800℃;沉积氧压为20Pa;激光能量为1.04W;频率为3Hz;沉积时间为15~20min;
第二沉积过程中生长温度为700℃,氧气气氛氧压为20Pa,沉积速率为10Hz,此时激光能量密度3J/cm2,靶基距为6cm。
衬底材料还能够为聚对苯二甲酸乙二醇酯、聚二甲基硅氧烷、聚乙烯和聚丙烯中的任意一种;PMMA基片以及衬底需预先用去丙酮、乙醇、离子水超声清洗10分钟。便于后续铁电薄膜的沉积和生长。
步骤2中的靶材为以复合铁酸铋0.65/铁酸钴0.35为靶材。
在本发明中,通过改变STO衬底的取向等条件可有效调控所生长的BFO/CFO自组装纳米结构形貌,图4为<001>取向STO衬底上生长的BFO/CFO的SEM图;
本发明中,用于支撑薄膜转移的柔性衬底材料还可为聚对苯二甲酸乙二醇酯、聚二甲基硅氧烷、聚乙烯和聚丙烯中的任意一种,但不限于此。PMMA基片需预先用去丙酮、乙醇、离子水超声清洗10分钟,以去除粘附在基片表面的有机物、金属离子和杂质微粒子,便于有机铁电薄膜的吸附和后续的材料结构和物理性能测试。
本发明中,得到的BFO/CFO自组装薄膜可直接采用支撑层作为柔性功能层,也可去掉支撑层将自支撑的BFO/CFO自组装薄膜转移应用到具体工作环境中。

Claims (5)

1.一种自支撑的磁电纳米复合结构,其特征在于,包括钛酸锶衬底、铝酸锶牺牲层和铁酸铋/铁酸钴磁电复合薄膜;钛酸锶衬底、铝酸锶牺牲层和铁酸铋/铁酸钴磁电复合薄膜自下而上依次设置,形成自支撑的磁电纳米复合结构;铁酸铋/铁酸钴磁电复合薄膜中铁酸铋为网格状结构,铁酸钴填充在网格结构内;
铝酸锶牺牲层为立方相,立方相的铝酸锶晶格常数为
Figure FDA0003308667470000011
钛酸锶衬底为立方结,
Figure FDA0003308667470000012
铝酸锶和钛酸锶的晶格常数为倍数关系;
铝酸锶牺牲层的厚度为20~50nm;铁酸铋/铁酸钴磁电复合薄膜的厚度为300~500nm;
钛酸锶衬底包括晶面取向为001、110和111方向的三种钛酸锶单晶。
2.一种自支撑的磁电纳米复合结构的制备方法,其特征在于,基于权利要求1所述的自支撑的磁电纳米复合结构,包括以下步骤:
步骤1,以铝酸锶为靶材,采用脉冲激光沉积法在钛酸锶衬底的表面上进行第一层沉积,形成铝酸锶牺牲层;
步骤2,以复合铁酸铋/铁酸钴为靶材,采用脉冲激光沉积法在铝酸锶牺牲层的表面上进行第二次沉积;
步骤3,在室温下,在50%稀盐酸中对退火后的铁酸铋/铁酸钴蚀刻1小时,以获得表面织构;
步骤4,在所生长铁酸铋/铁酸钴自组装薄膜上表面覆盖PMMA,然后置于去离子水中浸泡,使铝酸锶牺牲层在室温下被去离子水完全溶解,剥离出柔性自支撑铁酸铋/铁酸钴自组装薄膜。
3.根据权利要求2所述的一种自支撑的磁电纳米复合结构的制备方法,其特征在于,第一沉积过程中钛酸锶衬底的温度为800℃;沉积氧压为20Pa;激光能量为1.04W;频率为3Hz;沉积时间为15~20min;
第二沉积过程中生长温度为700℃,氧气气氛氧压为20Pa,沉积速率为10Hz,此时激光能量密度3J/cm2,靶基距为6cm。
4.根据权利要求2所述的一种自支撑的磁电纳米复合结构的制备方法,其特征在于,衬底材料还能够为聚对苯二甲酸乙二醇酯、聚二甲基硅氧烷、聚乙烯和聚丙烯中的任意一种;PMMA基片以及衬底需预先用去丙酮、乙醇、离子水超声清洗10分钟。
5.根据权利要求 2所述的一种自支撑的磁电纳米复合结构的制备方法,其特征在于,步骤2中的靶材为以复合铁酸铋0.65/铁酸钴0.35为靶材。
CN202010198089.2A 2020-03-19 2020-03-19 一种自支撑的磁电纳米复合结构及其制备方法 Active CN111416036B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010198089.2A CN111416036B (zh) 2020-03-19 2020-03-19 一种自支撑的磁电纳米复合结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010198089.2A CN111416036B (zh) 2020-03-19 2020-03-19 一种自支撑的磁电纳米复合结构及其制备方法

Publications (2)

Publication Number Publication Date
CN111416036A CN111416036A (zh) 2020-07-14
CN111416036B true CN111416036B (zh) 2022-03-08

Family

ID=71493200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010198089.2A Active CN111416036B (zh) 2020-03-19 2020-03-19 一种自支撑的磁电纳米复合结构及其制备方法

Country Status (1)

Country Link
CN (1) CN111416036B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216507B (zh) * 2020-09-30 2022-03-15 电子科技大学 无支撑铁氧体磁性薄膜的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681715A (zh) * 2015-03-06 2015-06-03 西安电子科技大学 基于钛酸钡与铁酸钴的双层自支撑磁电复合薄膜制备方法
CN104692828A (zh) * 2015-03-06 2015-06-10 西安电子科技大学 多层钛酸钡与多层铁酸钴磁电复合薄膜的制备与转移方法
CN108574043A (zh) * 2017-12-29 2018-09-25 西安电子科技大学 基于磁电复合薄膜的柔性磁场强度传感器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120058323A1 (en) * 2007-08-02 2012-03-08 Los Alamos National Security, Llc Control of Strain Through Thickness in Epitaxial Films Via Vertical Nanocomposite Heteroepitaxy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681715A (zh) * 2015-03-06 2015-06-03 西安电子科技大学 基于钛酸钡与铁酸钴的双层自支撑磁电复合薄膜制备方法
CN104692828A (zh) * 2015-03-06 2015-06-10 西安电子科技大学 多层钛酸钡与多层铁酸钴磁电复合薄膜的制备与转移方法
CN108574043A (zh) * 2017-12-29 2018-09-25 西安电子科技大学 基于磁电复合薄膜的柔性磁场强度传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Interfacial strain driven magnetoelectric coupling in (111)-oriented self-assembled BiFeO3–CoFe2O4 thin films;Lei Wang等;《Journal of Materials Chemistry C》;20200202;正文第2页左栏试验部分 *

Also Published As

Publication number Publication date
CN111416036A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
Baek et al. Epitaxial integration of perovskite-based multifunctional oxides on silicon
Nechache et al. Epitaxial patterning of Bi2FeCrO6 double perovskite nanostructures: multiferroic at room temperature
Lu et al. Synthesis of single-crystal La0. 67Sr0. 33MnO3 freestanding films with different crystal-orientation
Deng et al. Three-dimensional phases-connectivity and strong magnetoelectric response of self-assembled feather-like CoFe2O4–BaTiO3 nanostructures
CN101913907A (zh) 一种在衬底上制备生长位置精确可控的ZnO纳米/微米棒晶的方法
Huang et al. Pulsed laser deposition of complex oxide heteroepitaxy
CN111416036B (zh) 一种自支撑的磁电纳米复合结构及其制备方法
CN102071399B (zh) 全钙钛矿多铁性磁电复合薄膜
Wan et al. Controllable phase connectivity and magnetoelectric coupling behavior in CoFe2O4–Pb (Zr, Ti) O3 nanostructured films
Li et al. Towards high-performance linear piezoelectrics: Enhancing the piezoelectric response of zinc oxide thin films through epitaxial growth on flexible substrates
Huang et al. Flexible strategy of epitaxial oxide thin films
CN111446363B (zh) 一种自支撑的三维自组装磁电复合薄膜结构及其制备方法
CN102030559A (zh) 图案化纳米模板及其制备方法
Han et al. Freestanding Perovskite Oxide Membranes: A New Playground for Novel Ferroic Properties and Applications
Srivastava et al. Formation of hierarchical structures of Fe 2 O 3 by the liquid–liquid interface technique
Yuan et al. The exchange bias in polycrystalline BiFeO3/Ni81Fe19 bilayers on Si substrate with LaNiO3 buffer layer
CN103276360B (zh) 一种磁性纳米线阵列薄膜及其制备方法
Zhang et al. Ferroelectricity in hexagonal YFeO3 film at room temperature
CN110668503B (zh) 一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料及其制备方法
Shen et al. A generalized synthesis method for freestanding multiferroic two-dimensional layered supercell oxide films via a sacrificial buffer layer
Orlov et al. Influence of process temperature on ZnO nanostructures formation
Young et al. Magnetic properties of La-doped and Cu-doped ZnO nanowires fabricated by hydrothermal method
Mun et al. Magnetic property modulation of Ni thin films transferred onto flexible substrates
CN108588834B (zh) 具有强磁电耦合效应的二维单晶PbTiO3-CoFe2O4复合纳米材料的制备方法
Hajra et al. Room temperature magnetoelectric coupling in single crystal Bi2Fe4O9 nanotubes grown within an anodic aluminum oxide template

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant