CN111413781B - 一种红外镜头 - Google Patents

一种红外镜头 Download PDF

Info

Publication number
CN111413781B
CN111413781B CN202010268990.2A CN202010268990A CN111413781B CN 111413781 B CN111413781 B CN 111413781B CN 202010268990 A CN202010268990 A CN 202010268990A CN 111413781 B CN111413781 B CN 111413781B
Authority
CN
China
Prior art keywords
lens
infrared
optical axis
satisfied
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010268990.2A
Other languages
English (en)
Other versions
CN111413781A (zh
Inventor
王�锋
孙加安
周明明
马庆鸿
万良伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huizhou xingjuyu Intelligent Technology Co.,Ltd.
Original Assignee
Huizhou Xingjuyu Optical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Xingjuyu Optical Co ltd filed Critical Huizhou Xingjuyu Optical Co ltd
Priority to CN202010268990.2A priority Critical patent/CN111413781B/zh
Publication of CN111413781A publication Critical patent/CN111413781A/zh
Application granted granted Critical
Publication of CN111413781B publication Critical patent/CN111413781B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/008Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明提供了一种红外镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜以及第五透镜,第二透镜的物侧表面为凹面;光圈为FNO,所述第二透镜物侧面的曲率半径为R21,所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,且满足下列关系式:200<(FNO*R21)/SAG21<400。本发明的有益效果在于:在保证结构紧凑的情况下实现红外成像以及深度感知、且具有成像质量较好、进光量大等优点;使用一片可过滤可见光材质镜片,其镜片本身就可以过滤大部分可见光,使红外成像更清晰,更少受到可见光干扰;进一步提升光圈值和成像像高。

Description

一种红外镜头
【技术领域】
本发明涉及光学镜头技术领域,特别涉及一种红外镜头。
【背景技术】
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemicondctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化红外镜头俨然成为目前市场上的主流。
在相关技术中,为获得较佳的成像品质,传统搭载于手机相机、电视、体感游戏机等上的镜头多采用多片式透镜结构,但是,随着镜片的增多,造成镜头体积笨重,生产成本增加,且成像质量降低。
【发明内容】
基于此,有必要设计一种红外镜头,其能够在保证结构紧凑的情况下具有成像质量较好,生产成本较低、红外成像更清晰、受可见光干扰少等优点。
为了实现上述目的,本发明提供的技术方案如下:
一种红外镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜以及第五透镜,所述第一透镜、所述第二透镜、所述第三透镜以及所述第四透镜的光焦度均为正,所述第五透镜的光焦度为负,所述第二透镜的物侧表面的靠近光轴的部分为凸面,靠近外边缘的部分为凹面;光圈为FNO,所述第二透镜物侧面的曲率半径为R21,所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,且满足下列关系式:
200<(FNO*R21)/SAG21<400。
优选的,所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,所述第一透镜的折射率为n1,且满足下列关系式:
0.28<SAG21*n1<0.4。
优选的,所述红外镜头的焦距为f,所述第二透镜的焦距为f2,所述第五透镜的焦距为f5,且满足下列关系式:
1.2<|f/f2|+|f/f5|<1.7。
优选的,所述第二透镜物侧面的曲率半径为R21,所述第四透镜像侧面的曲率半径为R42,且满足下列关系式:
-30<R21/R42<-20。
优选的,所述第二透镜像侧面的曲率半径为R22,所述第四透镜物侧面的曲率半径为R41,且满足下列关系式:
1<R22/R41<5。
优选的,所述第四透镜在光轴上的中心厚度为CT4,所述第一透镜至第五透镜分别在光轴上的中心厚度之和为ΣCT,且满足下列关系式:
0.1<CT4/ΣCT<0.15。
优选的,所述红外镜头的光学总长为TTL,所述红外镜头的后焦距为BFL,且满足下列关系式:
4.5<TTL/BFL<4.8。
优选的,光圈FNO<1.07。
本发明的有益效果在于:
1、在保证结构紧凑的情况下实现红外成像以及深度感知、且具有成像质量较好、进光量大等优点;
2、使用一片可过滤可见光材质镜片,其镜片本身就可以过滤大部分可见光,使红外成像更清晰,更少受到可见光干扰;
3、采用五片镜片,进一步提升光圈值和成像像高。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明实施例1的红外镜头的结构示意图;
图2是实施例1的红外镜头的球差曲线图;
图3是实施例1的红外镜头的像散和畸变曲线图;
图4是实施例1的红外镜头的倍率色差曲线图;
图5是本发明实施例2的红外镜头的结构示意图;
图6是实施例2的红外镜头的球差曲线图;
图7是实施例2的红外镜头的像散和畸变曲线图;
图8是实施例2的红外镜头的倍率色差曲线图;
图9是本发明实施例3的红外镜头的结构示意图;
图10是实施例3的红外镜头的球差曲线图;
图11是实施例3的红外镜头的像散和畸变曲线图;
图12是实施例3的红外镜头的倍率色差曲线图;
图13是本发明实施例4的红外镜头的结构示意图;
图14是实施例4的红外镜头的球差曲线图;
图15是实施例4的红外镜头的像散和畸变曲线图;
图16是实施例4的红外镜头的倍率色差曲线图;
图17是本发明实施例5的红外镜头的结构示意图;
图18是实施例5的红外镜头的球差曲线图;
图19是实施例5的红外镜头的像散和畸变曲线图;
图20是实施例5的红外镜头的倍率色差曲线图;
图21是本发明实施例6的红外镜头的结构示意图;
图22是实施例6的红外镜头的球差曲线图;
图23是实施例6的红外镜头的像散和畸变曲线图;
图24是实施例6的红外镜头的倍率色差曲线图;
图25是本发明实施例7的红外镜头的结构示意图;
图26是实施例7的红外镜头的球差曲线图;
图27是实施例7的红外镜头的像散和畸变曲线图;
图28是实施例7的红外镜头的倍率色差曲线图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1所示,本发明提供了一种红外镜头,包括五个透镜,具体的,所述红外镜头,沿光轴由物侧至像侧依序包括:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。
本发明的红外镜头可以包括由五个透镜构成的光学成像系统。即,红外镜头可由所述第一透镜L1至所述第五透镜L5构成。然而,红外镜头不仅限于包括五个透镜,而根据需要还可以包括其他构成要素。例如,红外镜头还包括调节光量的光圈。此外,靠近所述第五透镜的像侧面上还可顺序设置有滤光片及像面,所述像面上设置有图像传感器,所述图像传感器可以是现有技术中的各类图像传感器,即,图像传感器是利用光电器件的光电转换功能,将感光面上的光像转换为与光像成相应比例关系的电信号,与光敏二极管,光敏三极管等“点”光源的光敏元件相比,图像传感器是将其受光面上的光像,分成许多小单元,将其转换成可用的电信号的一种功能器件。
如此,外界事物折射的光线顺序通过所述第一透镜至所述第五透镜后,经所述滤光片,入射至所述像面上,经过所述像面上的所述图像传感器传换成可以传导的电信号。
进一步地,所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4以及所述第五透镜L5为塑料透镜或者玻璃透镜。其中,所述第一透镜L1至所述第五透镜L5分别为五个独立的透镜,且每相邻两个透镜之间设置有间隔,即,每相邻两个透镜之间并未相互接合,而是每相邻两个透镜之间设置有空气间距。
请参阅图1,第二透镜L2的物侧表面为凹面;光圈为FNO,所述第二透镜L2物侧面的曲率半径为R21,所述第二透镜L2物侧面的最大有效半径位置在水平光轴上的垂直投影点为SAG21,且满足下列关系式:200<(FNO*R21)/SAG21<400。
进一步需要具体说明的是,红外镜头沿光轴由物侧至像侧顺序包括五个透镜L1-L5,第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;第四透镜L4具有物侧面S7和像侧面S8;第五透镜L5具有物侧面S9和像侧面S10。可选地,红外镜头还可包括具有物侧面S11和像侧面S12的滤光片L6,滤光片L6可为带通滤光片。在本实施例的摄像光学透镜组中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
进一步地,所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,所述第一透镜的折射率为n1,且满足下列关系式:0.28<SAG21*n1<0.4。
进一步地,所述红外镜头的焦距为f,所述第二透镜的焦距为f2,所述第五透镜的焦距为f5,且满足下列关系式:1.2<|f/f2|+|f/f5|<1.7。
进一步地,所述第二透镜物侧面的曲率半径为R21,所述第四透镜像侧面的曲率半径为R42,且满足下列关系式:-30<R21/R42<-20。
进一步地,所述第二透镜像侧面的曲率半径为R22,所述第四透镜物侧面的曲率半径为R41,且满足下列关系式:1<R22/R41<5。
进一步地,所述第四透镜在光轴上的中心厚度为CT4,所述第一透镜至第五透镜分别在光轴上的中心厚度之和为ΣCT,且满足下列关系式:0.1<CT4/ΣCT<0.15。
进一步地,所述红外镜头的光学总长为TTL,所述红外镜头的后焦距为BFL,且满足下列关系式:4.5<TTL/BFL<4.8。
进一步地,光圈FNO<1.07。
根据本发明的上述实施方式的红外镜头可采用多个透镜,例如上文所述的五个。通过合理分配各透镜的光焦度、表面类型、各透镜之间的轴上间距等,可有效增加所述红外镜头的有效通光直径,保证镜头的小型化并提高成像品质,并且使得所述红外镜头更有利于生产加工。在本发明的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到周边曲率是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点,能够使得视野变得更大而真实。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而提高成像质量。
下面参照附图进一步描述可适用于上述实施方式的红外镜头的具体实施例。
实施例1
以下参照图1至图4,描述根据本发明实施例1的红外镜头。图1示出了根据本发明实施例1的红外镜头的结构示意图。
如图1所示,红外镜头沿光轴由物侧至像侧顺序包括五个透镜L1-L5,第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;第四透镜L4具有物侧面S7和像侧面S8;第五透镜L5具有物侧面S9和像侧面S10。可选地,红外镜头还可包括具有物侧面S11和像侧面S12的滤光片L6,滤光片L6可为带通滤光片。在本实施例的红外镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
其中,实施例1的红外镜头的有效焦距EFL、全视场角FOV、光学总长TTL、光圈Fno、表面类型、曲率半径、厚度、材料及圆锥系数,如表1所示:
表1
Figure GDA0003195216380000061
Figure GDA0003195216380000071
由表1可知,光圈为FNO,所述第二透镜物侧面的曲率半径为R21,所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,且满足下列关系式:200<(FNO*R21)/SAG21<400,具体的,(FNO*R21)/SAG21=266.784;所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,所述第一透镜的折射率为n1,且满足下列关系式:0.28<SAG21*n1<0.4,具体的,SAG21*n1=0.310;所述红外镜头的光学总长为TTL,所述红外镜头的后焦距为BFL,且满足下列关系式:4.5<TTL/BFL<4.8,具体的,TTL/BFL=4.584。
本实施例采用了五个透镜作为示例,通过合理分配各镜片的光焦度与表面类型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的有效通光直径与镜头的小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面表面类型x由以下函数关系限定:
所述红外镜头的非球面函数关系为:
Figure GDA0003195216380000072
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表1中曲率半径r的倒数);k为圆锥常数(在上表1中已给出);Ai是非球面第i-n阶的修正系数,各镜片面S1-S10的高次项系数A4、A6、A8、A10、A12、A14及A16,如表2所示:
表2
Figure GDA0003195216380000073
Figure GDA0003195216380000081
由表1和2可知,在该实施例中,所述红外镜头的焦距为f,所述第二透镜的焦距为f2,所述第五透镜的焦距为f5,且满足下列关系式:1.2<|f/f2|+|f/f5|<1.7,具体的,|f/f2|+|f/f5|=1.487;所述第二透镜物侧面的曲率半径为R21,所述第四透镜像侧面的曲率半径为R42,且满足下列关系式:-30<R21/R42<-20,具体的,R21/R42=-20.364;所述第二透镜像侧面的曲率半径为R22,所述第四透镜物侧面的曲率半径为R41,且满足下列关系式:1<R22/R41<5,具体的,R22/R41=2.158;所述第四透镜在光轴上的中心厚度为CT4,所述第一透镜至第五透镜分别在光轴上的中心厚度之和为ΣCT,且满足下列关系式:0.1<CT4/ΣCT<0.15具体的,CT4/ΣCT=0.107。
图2示出了实施例1的红外镜头的球差曲线,其表示不同孔径角U的光线交光轴于不同点上,相对于理想象点的位置有不同的偏离。图3示出了实施例1的红外镜头的像散曲线,其表示子午像面弯曲和弧矢像面弯曲。图3示出了实施例1的红外镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4示出了实施例1的红外镜头的倍率色差曲线,其表示光线经由红外镜头后在成像面上的不同的像高的偏差。根据图2至图4可知,实施例1所给出的红外镜头能够实现良好的成像品质。
实施例2
以下参照图5至图8,描述根据本发明实施例2的红外镜头。图5示出了根据本发明实施例2的红外镜头的结构示意图。
如图5所示,红外镜头沿光轴由物侧至像侧顺序包括五个透镜L1-L5,第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;第四透镜L4具有物侧面S7和像侧面S8;第五透镜L5具有物侧面S9和像侧面S10。可选地,红外镜头还可包括具有物侧面S11和像侧面S12的滤光片L6,滤光片L6可为带通滤光片。在本实施例的红外镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
其中,实施例2的红外镜头的有效焦距EFL、全视场角FOV、光学总长TTL、光圈Fno、表面类型、曲率半径、厚度、材料及圆锥系数,如表3所示:
表3
Figure GDA0003195216380000091
由表3可知,光圈为FNO,所述第二透镜物侧面的曲率半径为R21,所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,且满足下列关系式:200<(FNO*R21)/SAG21<400,具体的,(FNO*R21)/SAG21=398.984;所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,所述第一透镜的折射率为n1,且满足下列关系式:0.28<SAG21*n1<0.4,具体的,SAG21*n1=0.330;所述红外镜头的光学总长为TTL,所述红外镜头的后焦距为BFL,且满足下列关系式:4.5<TTL/BFL<4.8,具体的,TTL/BFL=4.785。
本实施例采用了五个透镜作为示例,通过合理分配各镜片的光焦度与表面类型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的有效通光直径与镜头的小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面表面类型x由以下函数关系限定:
所述红外镜头的非球面函数关系为:
Figure GDA0003195216380000101
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表3中曲率半径r的倒数);k为圆锥常数(在上表3中已给出);Ai是非球面第i-n阶的修正系数,各镜片面S1-S10的高次项系数A4、A6、A8、A10、A12、A14及A16,如表4所示:
表4
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.4822004E-02 1.3147748E-01 -2.3135152E-01 2.1333413E-01 -7.6605420E-02 -7.2455998E-04 -2.2020358E-03
S2 1.3940305E-01 -4.7104605E-01 8.4368166E-01 -8.0078265E-01 2.8402026E-01 -7.7675883E-04 -6.8429835E-03
S3 -8.1516321E-02 -3.6346915E-01 5.1022961E-01 -3.6351119E-01 -2.1056708E-02 -6.7524055E-03 -8.7273289E-03
S4 -2.7936819E-01 1.0907492E-01 -2.4463016E-01 2.6935389E-01 -1.1180885E-01 -1.8798691E-03 -2.1489012E-03
S5 -5.3284658E-01 1.3532832E+00 -9.4716490E-01 3.2267581E-01 9.3312554E-03 7.9146620E-03 2.4195242E-03
S6 2.8260545E-02 3.3706677E-01 -2.4812157E-02 -2.8170877E-01 1.8414375E-01 8.0488394E-03 5.3152493E-03
S7 -9.2791189E-02 3.9036199E-01 -3.7791346E-01 2.8530463E-02 5.6465169E-02 -1.8358249E-03 -4.5598578E-03
S8 -6.2918840E-01 1.4704104E+00 -1.2916007E+00 5.1420236E-01 -7.8503630E-02 -2.6317654E-04 -1.3243927E-04
S9 -1.3173460E-02 1.2462456E-01 -7.0515479E-02 1.1704271E-02 7.2483724E-04 1.6650166E-04 -1.5114682E-04
S10 -2.0287250E-01 9.6096362E-02 -4.6230252E-02 1.3868936E-02 -1.7876593E-03 -3.6142381E-06 -3.4141556E-06
由表3和4可知,在该实施例中,所述红外镜头的焦距为f,所述第二透镜的焦距为f2,所述第五透镜的焦距为f5,且满足下列关系式:1.2<|f/f2|+|f/f5|<1.7,具体的,|f/f2|+|f/f5|=1.287;所述第二透镜物侧面的曲率半径为R21,所述第四透镜像侧面的曲率半径为R42,且满足下列关系式:-30<R21/R42<-20,具体的,R21/R42=-29.649;所述第二透镜像侧面的曲率半径为R22,所述第四透镜物侧面的曲率半径为R41,且满足下列关系式:1<R22/R41<5,具体的,R22/R41=1.446;所述第四透镜在光轴上的中心厚度为CT4,所述第一透镜至第五透镜分别在光轴上的中心厚度之和为ΣCT,且满足下列关系式:0.1<CT4/ΣCT<0.15具体的,CT4/ΣCT=0.115。
图6示出了实施例2的红外镜头的球差曲线,其表示不同孔径角U的光线交光轴于不同点上,相对于理想象点的位置有不同的偏离。图7示出了实施例2的红外镜头的像散曲线,其表示子午像面弯曲和弧矢像面弯曲。图7示出了实施例2的红外镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8示出了实施例2的红外镜头的倍率色差曲线,其表示光线经由红外镜头后在成像面上的不同的像高的偏差。根据图6至图8可知,实施例2所给出的红外镜头能够实现良好的成像品质。
实施例3
以下参照图9至图12,描述根据本发明实施例3的红外镜头。图9示出了根据本发明实施例3的红外镜头的结构示意图。
如图9所示,红外镜头沿光轴由物侧至像侧顺序包括五个透镜L1-L5,第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;第四透镜L4具有物侧面S7和像侧面S8;第五透镜L5具有物侧面S9和像侧面S10。可选地,红外镜头还可包括具有物侧面S11和像侧面S12的滤光片L6,滤光片L6可为带通滤光片。在本实施例的红外镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
其中,实施例3的红外镜头的有效焦距EFL、全视场角FOV、光学总长TTL、光圈Fno、表面类型、曲率半径、厚度、材料及圆锥系数,如表5所示:
表5
Figure GDA0003195216380000111
由表5可知,光圈为FNO,所述第二透镜物侧面的曲率半径为R21,所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,且满足下列关系式:200<(FNO*R21)/SAG21<400,具体的,(FNO*R21)/SAG21=200.837;所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,所述第一透镜的折射率为n1,且满足下列关系式:0.28<SAG21*n1<0.4,具体的,SAG21*n1=0.293;所述红外镜头的光学总长为TTL,所述红外镜头的后焦距为BFL,且满足下列关系式:4.5<TTL/BFL<4.8,具体的,TTL/BFL=4.584。
本实施例采用了五个透镜作为示例,通过合理分配各镜片的光焦度与表面类型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的有效通光直径与镜头的小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面表面类型x由以下函数关系限定:
所述红外镜头的非球面函数关系为:
Figure GDA0003195216380000121
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表5中曲率半径r的倒数);k为圆锥常数(在上表5中已给出);Ai是非球面第i-n阶的修正系数,各镜片面S1-S10的高次项系数A4、A6、A8、A10、A12、A14及A16,如表6所示:
表6
面号 A4 A6 A8 A10 A12 A14 A16
S1 -3.1692686E-02 1.4529254E-01 -2.3561727E-01 2.0992518E-01 -7.5199020E-02 1.9864112E-03 -1.4409195E-03
S2 1.5914079E-01 -4.7441113E-01 8.4267325E-01 -7.9841307E-01 2.8572726E-01 -2.1584082E-04 -8.8333999E-03
S3 -7.0662922E-02 -3.5519425E-01 5.0720480E-01 -3.6574025E-01 -2.0187571E-02 -2.9006535E-03 -1.0391347E-03
S4 -2.7487375E-01 1.1226387E-01 -2.4400702E-01 2.6996643E-01 -1.1063983E-01 -5.5823388E-04 -6.2362600E-04
S5 -5.6441363E-01 1.3500750E+00 -9.5658625E-01 3.1023428E-01 2.1711768E-02 3.0314298E-02 -3.0556948E-02
S6 2.8633020E-02 3.0670055E-01 -5.7340755E-02 -2.6965135E-01 2.2504500E-01 1.4369949E-02 -4.3053500E-02
S7 -5.1613862E-02 4.0801685E-01 -3.7362201E-01 5.0320061E-02 5.1874880E-02 -8.1186368E-03 -5.4241091E-03
S8 -6.2537172E-01 1.5128363E+00 -1.2793830E+00 5.0558798E-01 -8.3210220E-02 -8.9009102E-04 1.2377170E-03
S9 3.0703913E-02 7.3549494E-02 -5.9859729E-02 2.0589508E-02 -1.7905102E-03 -7.2644086E-04 8.1691401E-05
S10 -1.6182035E-01 4.6980159E-02 2.6513325E-04 -4.8256216E-03 -1.8098556E-03 1.7844503E-03 -3.1967956E-04
由表5和6可知,在该实施例中,所述红外镜头的焦距为f,所述第二透镜的焦距为f2,所述第五透镜的焦距为f5,且满足下列关系式:1.2<|f/f2|+|f/f5|<1.7,具体的,|f/f2|+|f/f5|=1.495;所述第二透镜物侧面的曲率半径为R21,所述第四透镜像侧面的曲率半径为R42,且满足下列关系式:-30<R21/R42<-20,具体的,R21/R42=-20.094;所述第二透镜像侧面的曲率半径为R22,所述第四透镜物侧面的曲率半径为R41,且满足下列关系式:1<R22/R41<5,具体的,R22/R41=1.605;所述第四透镜在光轴上的中心厚度为CT4,所述第一透镜至第五透镜分别在光轴上的中心厚度之和为ΣCT,且满足下列关系式:0.1<CT4/ΣCT<0.15具体的,CT4/ΣCT=0.150。
图10示出了实施例3的红外镜头的球差曲线,其表示不同孔径角U的光线交光轴于不同点上,相对于理想象点的位置有不同的偏离。图11示出了实施例3的红外镜头的像散曲线,其表示子午像面弯曲和弧矢像面弯曲。图11示出了实施例3的红外镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12示出了实施例3的红外镜头的倍率色差曲线,其表示光线经由红外镜头后在成像面上的不同的像高的偏差。根据图10至图12可知,实施例3所给出的红外镜头能够实现良好的成像品质。
实施例4
以下参照图13至图16,描述根据本发明实施例1的红外镜头。图13示出了根据本发明实施例4的红外镜头的结构示意图。
如图13所示,红外镜头沿光轴由物侧至像侧顺序包括五个透镜L1-L5,第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;第四透镜L4具有物侧面S7和像侧面S8;第五透镜L5具有物侧面S9和像侧面S10。可选地,红外镜头还可包括具有物侧面S11和像侧面S12的滤光片L6,滤光片L6可为带通滤光片。在本实施例的红外镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
其中,实施例4的红外镜头的有效焦距EFL、全视场角FOV、光学总长TTL、光圈Fno、表面类型、曲率半径、厚度、材料及圆锥系数,如表7所示:
表7
Figure GDA0003195216380000131
Figure GDA0003195216380000141
由表7可知,光圈为FNO,所述第二透镜物侧面的曲率半径为R21,所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,且满足下列关系式:200<(FNO*R21)/SAG21<400,具体的,(FNO*R21)/SAG21=278.428;所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,所述第一透镜的折射率为n1,且满足下列关系式:0.28<SAG21*n1<0.4,具体的,SAG21*n1=0.394;所述红外镜头的光学总长为TTL,所述红外镜头的后焦距为BFL,且满足下列关系式:4.5<TTL/BFL<4.8,具体的,TTL/BFL=4.715。
本实施例采用了五个透镜作为示例,通过合理分配各镜片的光焦度与表面类型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的有效通光直径与镜头的小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面表面类型x由以下函数关系限定:
所述红外镜头的非球面函数关系为:
Figure GDA0003195216380000142
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表7中曲率半径r的倒数);k为圆锥常数(在上表7中已给出);Ai是非球面第i-n阶的修正系数,各镜片面S1-S10的高次项系数A4、A6、A8、A10、A12、A14及A16,如表8所示:
表8
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.6351474E-02 1.3212390E-01 -2.3056362E-01 2.1072664E-01 -7.5077454E-02 -5.6741832E-04 -2.6260632E-03
S2 1.3634176E-01 -4.7156112E-01 8.4507147E-01 -8.0381193E-01 2.8006877E-01 -4.9085443E-03 2.2628049E-04
S3 -1.0347865E-01 -3.7903324E-01 5.0853073E-01 -3.6318215E-01 -2.2195382E-02 -1.6641163E-02 -3.3781679E-02
S4 -2.8309837E-01 1.0272351E-01 -2.4999806E-01 2.6580669E-01 -1.1324225E-01 -1.8840626E-03 -1.1202892E-03
S5 -5.5281238E-01 1.3381559E+00 -9.5548524E-01 3.3762133E-01 2.2589865E-02 1.1427760E-02 -2.1770565E-02
S6 6.9521634E-03 3.2343691E-01 -1.5836006E-02 -2.6821633E-01 2.0639853E-01 1.1084788E-02 -3.3847644E-02
S7 -7.0956471E-02 4.1811807E-01 -3.6527008E-01 3.5730296E-02 5.5148526E-02 -4.3008242E-03 -6.9911583E-03
S8 -6.2888308E-01 1.5001480E+00 -1.2873861E+00 5.1089595E-01 -8.1821629E-02 -9.0317976E-04 8.4883512E-04
S9 -4.0442064E-03 1.0171584E-01 -6.9224572E-02 1.4585750E-02 1.1272382E-03 -2.1687858E-05 -2.5655581E-04
S10 -2.1807439E-01 1.2064172E-01 -5.1694605E-02 1.2047805E-02 -1.3436180E-03 2.3422312E-04 -6.3208423E-05
由表7和8可知,在该实施例中,所述红外镜头的焦距为f,所述第二透镜的焦距为f2,所述第五透镜的焦距为f5,且满足下列关系式:1.2<|f/f2|+|f/f5|<1.7,具体的,|f/f2|+|f/f5|=1.354;所述第二透镜物侧面的曲率半径为R21,所述第四透镜像侧面的曲率半径为R42,且满足下列关系式:-30<R21/R42<-20,具体的,R21/R42=-22.207;所述第二透镜像侧面的曲率半径为R22,所述第四透镜物侧面的曲率半径为R41,且满足下列关系式:1<R22/R41<5,具体的,R22/R41=1.715;所述第四透镜在光轴上的中心厚度为CT4,所述第一透镜至第五透镜分别在光轴上的中心厚度之和为ΣCT,且满足下列关系式:0.1<CT4/ΣCT<0.15具体的,CT4/ΣCT=0.111。
图14示出了实施例4的红外镜头的球差曲线,其表示不同孔径角U的光线交光轴于不同点上,相对于理想象点的位置有不同的偏离。图15示出了实施例4的红外镜头的像散曲线,其表示子午像面弯曲和弧矢像面弯曲。图15示出了实施例4的红外镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16示出了实施例4的红外镜头的倍率色差曲线,其表示光线经由红外镜头后在成像面上的不同的像高的偏差。根据图14至图16可知,实施例4所给出的红外镜头能够实现良好的成像品质。
实施例5
以下参照图17至图20,描述根据本发明实施例5的红外镜头。图17示出了根据本发明实施例5的红外镜头的结构示意图。
如图17所示,红外镜头沿光轴由物侧至像侧顺序包括五个透镜L1-L5,第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;第四透镜L4具有物侧面S7和像侧面S8;第五透镜L5具有物侧面S9和像侧面S10。可选地,红外镜头还可包括具有物侧面S11和像侧面S12的滤光片L6,滤光片L6可为带通滤光片。在本实施例的红外镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
其中,实施例5的红外镜头的有效焦距EFL、全视场角FOV、光学总长TTL、光圈Fno、表面类型、曲率半径、厚度、材料及圆锥系数,如表9所示:
表9
Figure GDA0003195216380000161
由表9可知,光圈为FNO,所述第二透镜物侧面的曲率半径为R21,所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,且满足下列关系式:200<(FNO*R21)/SAG21<400,具体的,(FNO*R21)/SAG21=262.056;所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,所述第一透镜的折射率为n1,且满足下列关系式:0.28<SAG21*n1<0.4,具体的,SAG21*n1=0.305;所述红外镜头的光学总长为TTL,所述红外镜头的后焦距为BFL,且满足下列关系式:4.5<TTL/BFL<4.8,具体的,TTL/BFL=4.952。
本实施例采用了五个透镜作为示例,通过合理分配各镜片的光焦度与表面类型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的有效通光直径与镜头的小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面表面类型x由以下函数关系限定:
所述红外镜头的非球面函数关系为:
Figure GDA0003195216380000171
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表9中曲率半径r的倒数);k为圆锥常数(在上表9中已给出);Ai是非球面第i-n阶的修正系数,各镜片面S1-S10的高次项系数A4、A6、A8、A10、A12、A14及A16,如表10所示:
表10
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.0622734E-02 1.2655072E-01 -2.3487030E-01 2.1358723E-01 -7.5772631E-02 -3.5297347E-04 -5.5047209E-04
S2 1.3720661E-01 -4.7055721E-01 8.4330738E-01 -8.0494470E-01 2.7937852E-01 -7.2616942E-04 -6.6386808E-04
S3 -6.4121502E-02 -3.6957076E-01 5.0250071E-01 -3.6425479E-01 -1.7303604E-02 -3.2011825E-04 -3.7220925E-04
S4 -2.7709169E-01 1.1110078E-01 -2.4457466E-01 2.6969611E-01 -1.1061930E-01 -9.0109576E-05 -6.1534073E-05
S5 -5.2281260E-01 1.3536532E+00 -9.5117779E-01 3.1914696E-01 2.3937536E-03 3.9546776E-03 1.1031472E-03
S6 2.9811403E-02 3.6602713E-01 -1.6298646E-02 -2.8652264E-01 1.7361387E-01 2.7290147E-03 1.1168071E-03
S7 -8.3400081E-02 3.8792614E-01 -3.8225794E-01 2.2604333E-02 5.4151385E-02 5.5285849E-04 -2.1492678E-03
S8 -6.1399980E-01 1.4616126E+00 -1.2976208E+00 5.1474187E-01 -7.9039352E-02 -4.8172998E-04 8.0193066E-05
S9 -1.4422381E-03 1.2108347E-01 -6.9336675E-02 9.7713974E-03 -3.3158137E-04 4.0567577E-05 3.1662167E-05
S10 -2.1634634E-01 1.0199446E-01 -4.7217031E-02 1.3747190E-02 -2.0082232E-03 -1.2523650E-05 3.6278779E-06
由表9和10可知,在该实施例中,所述红外镜头的焦距为f,所述第二透镜的焦距为f2,所述第五透镜的焦距为f5,且满足下列关系式:1.2<|f/f2|+|f/f5|<1.7,具体的,|f/f2|+|f/f5|=1.693;所述第二透镜物侧面的曲率半径为R21,所述第四透镜像侧面的曲率半径为R42,且满足下列关系式:-30<R21/R42<-20,具体的,R21/R42=-20.112;所述第二透镜像侧面的曲率半径为R22,所述第四透镜物侧面的曲率半径为R41,且满足下列关系式:1<R22/R41<5,具体的,R22/R41=1.798;所述第四透镜在光轴上的中心厚度为CT4,所述第一透镜至第五透镜分别在光轴上的中心厚度之和为ΣCT,且满足下列关系式:0.1<CT4/ΣCT<0.15具体的,CT4/ΣCT=0.124。
图18示出了实施例5的红外镜头的球差曲线,其表示不同孔径角U的光线交光轴于不同点上,相对于理想象点的位置有不同的偏离。图19示出了实施例5的红外镜头的像散曲线,其表示子午像面弯曲和弧矢像面弯曲。图19示出了实施例5的红外镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图20示出了实施例5的红外镜头的倍率色差曲线,其表示光线经由红外镜头后在成像面上的不同的像高的偏差。根据图18至图20可知,实施例5所给出的红外镜头能够实现良好的成像品质。
实施例6
以下参照图21至图24,描述根据本发明实施例6的红外镜头。图21示出了根据本发明实施例6的红外镜头的结构示意图。
如图21所示,红外镜头沿光轴由物侧至像侧顺序包括五个透镜L1-L5,第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;第四透镜L4具有物侧面S7和像侧面S8;第五透镜L5具有物侧面S9和像侧面S10。可选地,红外镜头还可包括具有物侧面S11和像侧面S12的滤光片L6,滤光片L6可为带通滤光片。在本实施例的红外镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
其中,实施例1的红外镜头的有效焦距EFL、全视场角FOV、光学总长TTL、光圈Fno、表面类型、曲率半径、厚度、材料及圆锥系数,如表11所示:
表11
Figure GDA0003195216380000181
Figure GDA0003195216380000191
由表11可知,光圈为FNO,所述第二透镜物侧面的曲率半径为R21,所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,且满足下列关系式:200<(FNO*R21)/SAG21<400,具体的,(FNO*R21)/SAG21=213.109;所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,所述第一透镜的折射率为n1,且满足下列关系式:0.28<SAG21*n1<0.4,具体的,SAG21*n1=0.317;所述红外镜头的光学总长为TTL,所述红外镜头的后焦距为BFL,且满足下列关系式:4.5<TTL/BFL<4.8,具体的,TTL/BFL=4.765。
本实施例采用了五个透镜作为示例,通过合理分配各镜片的光焦度与表面类型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的有效通光直径与镜头的小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面表面类型x由以下函数关系限定:
所述红外镜头的非球面函数关系为:
Figure GDA0003195216380000192
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表11中曲率半径r的倒数);k为圆锥常数(在上表11中已给出);Ai是非球面第i-n阶的修正系数,各镜片面S1-S10的高次项系数A4、A6、A8、A10、A12、A14及A16,如表12所示:
表12
Figure GDA0003195216380000193
Figure GDA0003195216380000201
由表11和12可知,在该实施例中,所述红外镜头的焦距为f,所述第二透镜的焦距为f2,所述第五透镜的焦距为f5,且满足下列关系式:1.2<|f/f2|+|f/f5|<1.7,具体的,|f/f2|+|f/f5|=1.342;所述第二透镜物侧面的曲率半径为R21,所述第四透镜像侧面的曲率半径为R42,且满足下列关系式:-30<R21/R42<-20,具体的,R21/R42=-25.089;所述第二透镜像侧面的曲率半径为R22,所述第四透镜物侧面的曲率半径为R41,且满足下列关系式:1<R22/R41<5,具体的,R22/R41=4.999;所述第四透镜在光轴上的中心厚度为CT4,所述第一透镜至第五透镜分别在光轴上的中心厚度之和为ΣCT,且满足下列关系式:0.1<CT4/ΣCT<0.15具体的,CT4/ΣCT=0.104。
图22示出了实施例6的红外镜头的球差曲线,其表示不同孔径角U的光线交光轴于不同点上,相对于理想象点的位置有不同的偏离。图23示出了实施例1的红外镜头的像散曲线,其表示子午像面弯曲和弧矢像面弯曲。图23示出了实施例1的红外镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图24示出了实施例1的红外镜头的倍率色差曲线,其表示光线经由红外镜头后在成像面上的不同的像高的偏差。根据图22至图24可知,实施例6所给出的红外镜头能够实现良好的成像品质。
实施例7
以下参照图25至图28,描述根据本发明实施例7的红外镜头。图25示出了根据本发明实施例7的红外镜头的结构示意图。
如图25所示,红外镜头沿光轴由物侧至像侧顺序包括五个透镜L1-L5,第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;第四透镜L4具有物侧面S7和像侧面S8;第五透镜L5具有物侧面S9和像侧面S10。可选地,红外镜头还可包括具有物侧面S11和像侧面S12的滤光片L6,滤光片L6可为带通滤光片。在本实施例的红外镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
其中,实施例7的红外镜头的有效焦距EFL、全视场角FOV、光学总长TTL、光圈Fno、表面类型、曲率半径、厚度、材料及圆锥系数,如表13所示:
表13
Figure GDA0003195216380000211
由表13可知,光圈为FNO,所述第二透镜物侧面的曲率半径为R21,所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,且满足下列关系式:200<(FNO*R21)/SAG21<400,具体的,(FNO*R21)/SAG21=204.328;所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,所述第一透镜的折射率为n1,具体的,SAG21*n1=0.319;所述红外镜头的光学总长为TTL,所述红外镜头的后焦距为BFL,且满足下列关系式:4.5<TTL/BFL<4.8,具体的,TTL/BFL=4.668。
本实施例采用了五个透镜作为示例,通过合理分配各镜片的光焦度与表面类型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的有效通光直径与镜头的小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面表面类型x由以下函数关系限定:
所述红外镜头的非球面函数关系为:
Figure GDA0003195216380000221
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表13中曲率半径r的倒数);k为圆锥常数(在上表13中已给出);Ai是非球面第i-n阶的修正系数,各镜片面S1-S10的高次项系数A4、A6、A8、A10、A12、A14及A16,如表14所示:
表14
面号 A4 A6 A8 A10 A12 A14 A16
S1 -3.2621562E-02 1.5317775E-01 -2.3746419E-01 1.9316759E-01 -6.5738887E-02 9.3656074E-03 -1.0912207E-02
S2 1.6803614E-01 -5.0033226E-01 8.4928231E-01 -7.8458626E-01 2.7436918E-01 -8.2020880E-03 -2.6345221E-03
S3 -8.2319966E-02 -3.4065568E-01 4.7453347E-01 -3.5697311E-01 -2.0925112E-02 3.6557444E-03 -9.8876565E-03
S4 -2.6620809E-01 1.0724456E-01 -2.4658450E-01 2.6559457E-01 -1.1454944E-01 -2.1076893E-03 1.3848202E-03
S5 -5.2960132E-01 1.2784688E+00 -9.6540002E-01 3.2967366E-01 3.5747914E-02 3.5851576E-02 -5.7644768E-02
S6 4.6596465E-02 2.5962508E-01 -8.9586329E-02 -1.9371688E-01 2.1796555E-01 -2.0966830E-02 -2.1935427E-02
S7 -5.2274561E-02 4.4759108E-01 -4.3667404E-01 6.2037901E-02 6.1285141E-02 4.2744530E-04 -1.2369996E-02
S8 -5.9763821E-01 1.4713320E+00 -1.2745522E+00 5.1242741E-01 -8.2864603E-02 -1.5925382E-03 1.0013389E-03
S9 7.7915755E-03 1.1498280E-01 -7.3750098E-02 1.6698607E-02 1.8596329E-03 -1.4553953E-03 1.7726959E-04
S10 -1.9452182E-01 6.9302645E-02 -1.3152522E-02 -1.0760252E-03 -1.5426098E-03 1.2958627E-03 -2.3076681E-04
由表13和14可知,在该实施例中,所述红外镜头的焦距为f,所述第二透镜的焦距为f2,所述第五透镜的焦距为f5,且满足下列关系式:1.2<|f/f2|+|f/f5|<1.7,具体的,|f/f2|+|f/f5|=1.318;所述第二透镜物侧面的曲率半径为R21,所述第四透镜像侧面的曲率半径为R42,且满足下列关系式:-30<R21/R42<-20,具体的,R21/R42=-20.350;所述第二透镜像侧面的曲率半径为R22,所述第四透镜物侧面的曲率半径为R41,且满足下列关系式:1<R22/R41<5,具体的,R22/R41=2.298;所述第四透镜在光轴上的中心厚度为CT4,所述第一透镜至第五透镜分别在光轴上的中心厚度之和为ΣCT,且满足下列关系式:0.1<CT4/ΣCT<0.15具体的,CT4/ΣCT=0.150。
图26示出了实施例7的红外镜头的球差曲线,其表示不同孔径角U的光线交光轴于不同点上,相对于理想象点的位置有不同的偏离。图27示出了实施例7的红外镜头的像散曲线,其表示子午像面弯曲和弧矢像面弯曲。图27示出了实施例7的红外镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图28示出了实施例7的红外镜头的倍率色差曲线,其表示光线经由红外镜头后在成像面上的不同的像高的偏差。根据图26至图28可知,实施例7所给出的红外镜头能够实现良好的成像品质。
本发明的有益效果在于:
1、在保证结构紧凑的情况下实现红外成像以及深度感知、且具有成像质量较好、进光量大等优点;
2、使用一片可过滤可见光材质镜片,其镜片本身就可以过滤大部分可见光,使红外成像更清晰,更少受到可见光干扰;
3、采用五片镜片,进一步提升光圈值和成像像高。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施方式仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种红外镜头,其特征在于,自物侧至像侧依序由以下五片透镜组成:第一透镜,第二透镜,第三透镜,第四透镜以及第五透镜,所述第一透镜、所述第二透镜、所述第三透镜以及所述第四透镜的光焦度均为正,所述第五透镜的光焦度为负,所述第二透镜的物侧表面的靠近光轴的部分为凸面,靠近外边缘的部分为凹面;光圈为FNO,所述第二透镜物侧面的曲率半径为R21,所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,且满足下列关系式:
200<(FNO*R21)/SAG21<400。
2.根据权利要求1所述的一种红外镜头,其特征在于,所述第二透镜物侧面的最大有效半径位置在水平光轴上的垂直投影点到所述第二透镜物侧面与光轴的交点之间的距离为SAG21,所述第一透镜的折射率为n1,且满足下列关系式:
0.28<SAG21*n1<0.4。
3.根据权利要求1所述的一种红外镜头,其特征在于,所述红外镜头的焦距为f,所述第二透镜的焦距为f2,所述第五透镜的焦距为f5,且满足下列关系式:
1.2<|f/f2|+|f/f5|<1.7。
4.根据权利要求1所述的一种红外镜头,其特征在于,所述第二透镜物侧面的曲率半径为R21,所述第四透镜像侧面的曲率半径为R42,且满足下列关系式:
-30<R21/R42<-20。
5.根据权利要求1所述的一种红外镜头,其特征在于,所述第二透镜像侧面的曲率半径为R22,所述第四透镜物侧面的曲率半径为R41,且满足下列关系式:
1<R22/R41<5。
6.根据权利要求1所述的一种红外镜头,其特征在于,所述第四透镜在光轴上的中心厚度为CT4,所述第一透镜至第五透镜分别在光轴上的中心厚度之和为ΣCT,且满足下列关系式:
0.1<CT4/ΣCT<0.15。
7.根据权利要求1所述的一种红外镜头,其特征在于,所述红外镜头的光学总长为TTL,所述红外镜头的后焦距为BFL,且满足下列关系式:
4.5<TTL/BFL<4.8。
8.根据权利要求1所述的一种红外镜头,其特征在于,光圈FNO<1.07。
CN202010268990.2A 2020-04-08 2020-04-08 一种红外镜头 Active CN111413781B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010268990.2A CN111413781B (zh) 2020-04-08 2020-04-08 一种红外镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010268990.2A CN111413781B (zh) 2020-04-08 2020-04-08 一种红外镜头

Publications (2)

Publication Number Publication Date
CN111413781A CN111413781A (zh) 2020-07-14
CN111413781B true CN111413781B (zh) 2021-11-19

Family

ID=71491701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010268990.2A Active CN111413781B (zh) 2020-04-08 2020-04-08 一种红外镜头

Country Status (1)

Country Link
CN (1) CN111413781B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163970A (ja) * 2013-02-21 2014-09-08 Konica Minolta Inc 撮像光学系ユニットならびに撮像装置およびデジタル機器
JP6324830B2 (ja) * 2014-07-14 2018-05-16 カンタツ株式会社 撮像レンズ
CN108614346B (zh) * 2016-12-13 2020-03-20 新巨科技股份有限公司 六片式广角镜片组
CN207198444U (zh) * 2017-09-22 2018-04-06 福建师范大学 一种成像较好的1600万像素手机镜头

Also Published As

Publication number Publication date
CN111413781A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
CN107505686B (zh) 光学影像拾取系统以及取像装置
CN112987258B (zh) 光学系统、取像模组及电子设备
CN114442278A (zh) 摄像镜头
CN110737071A (zh) 摄像光学镜头
CN111474679A (zh) 光学成像透镜组
CN113946038A (zh) 光学镜头、摄像模组及电子设备
CN210924082U (zh) 摄像透镜组
CN111123487B (zh) 一种红外镜头
CN112987259B (zh) 光学系统、取像模组及电子设备
CN113156612B (zh) 光学系统、取像模组及电子设备
CN112799211B (zh) 光学系统、取像模组及电子设备
CN111007657B (zh) 一种红外镜头
CN114675408B (zh) 光学系统、取像模组及电子设备
CN114740596B (zh) 光学系统、取像模组及电子设备
CN111708147B (zh) 一种4p微距镜头
CN115586621A (zh) 光学镜头、摄像模组及电子设备
CN113741005B (zh) 光学系统、取像模组及电子设备
CN111045194A (zh) 一种红外镜头
CN111413781B (zh) 一种红外镜头
CN111708151B (zh) 一种4p广角屏下指纹镜头
CN212540852U (zh) 光学系统、取像模组及电子设备
CN114675407A (zh) 光学系统、镜头模组及电子设备
CN111367052B (zh) 一种红外镜头
CN111458841B (zh) 一种红外镜头
CN113376810A (zh) 光学系统、取像模组及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220411

Address after: 516000 third floor on the right side of building C plant (main gate) in hanyabeidi section, Ganpo village, Zhenlong Town, Huiyang District, Huizhou City, Guangdong Province

Patentee after: Huizhou xingjuyu Intelligent Technology Co.,Ltd.

Address before: 516200 hanyabei section, longganpo village, Huiyang District, Huizhou City, Guangdong Province

Patentee before: HUIZHOU XINGJUYU OPTICAL CO.,LTD.

TR01 Transfer of patent right