CN212540852U - 光学系统、取像模组及电子设备 - Google Patents

光学系统、取像模组及电子设备 Download PDF

Info

Publication number
CN212540852U
CN212540852U CN202021498718.5U CN202021498718U CN212540852U CN 212540852 U CN212540852 U CN 212540852U CN 202021498718 U CN202021498718 U CN 202021498718U CN 212540852 U CN212540852 U CN 212540852U
Authority
CN
China
Prior art keywords
lens
optical system
lens element
image
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202021498718.5U
Other languages
English (en)
Inventor
王妮妮
刘彬彬
李明
邹海荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Jingchao Optical Co Ltd
Original Assignee
Jiangxi Jingchao Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Jingchao Optical Co Ltd filed Critical Jiangxi Jingchao Optical Co Ltd
Priority to CN202021498718.5U priority Critical patent/CN212540852U/zh
Application granted granted Critical
Publication of CN212540852U publication Critical patent/CN212540852U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本实用新型涉及一种光学系统、取像模组及电子设备。光学系统包括光阑;具有正屈折力的第一透镜,物侧面于近轴处为凸面;具有屈折力的第二透镜;具有屈折力的第三透镜;具有屈折力的第四透镜;具有屈折力的第五透镜;具有正屈折力的第六透镜,像侧面于近轴处为凸面;具有屈折力的第七透镜;具有屈折力的第八透镜,像侧面于近轴处为凹面;光学系统满足:(MIN6*MAX8/MAX6*MIN8)≤2;MIN6为第六透镜于光轴方向上的最小厚度,MAX6为第六透镜于光轴方向上的最大厚度,MIN8为第八透镜于光轴方向上的最小厚度,MAX8为第八透镜于光轴方向上的最大厚度。光学系统的广角特性及像散能够得到平衡。

Description

光学系统、取像模组及电子设备
技术领域
本实用新型涉及摄像领域,特别是涉及一种光学系统、取像模组及电子设备。
背景技术
随着摄像技术的发展,人们对摄像装置的摄像功能要求越来越高,在追求高成像质量的同时,也对视场角提出了更高的要求。摄像装置的最大视场角越大,在拍摄时能够获取的信息也就越多,进而提高拍摄效率。但是,目前的摄像装置中,当光学系统拥有大视场时,广角特性与像散难以得到平衡,即在拥有大视场的同时,像散通常较大,影响光学系统的成像质量。
实用新型内容
基于此,有必要针对目前的光学系统中大视场与像散难以得到平衡的问题,提供一种光学系统、取像模组及电子设备。
一种光学系统,由物侧至像侧依次包括:
光阑;
具有正屈折力的第一透镜,所述第一透镜的物侧面于近轴处为凸面;
具有屈折力的第二透镜;
具有屈折力的第三透镜;
具有屈折力的第四透镜;
具有屈折力的第五透镜;
具有正屈折力的第六透镜,所述第六透镜的像侧面于近轴处为凸面;
具有屈折力的第七透镜;
具有屈折力的第八透镜,所述第八透镜的像侧面于近轴处为凹面;
且所述光学系统满足以下条件式:
(MIN6*MAX8/MAX6*MIN8)≤2;
其中,MIN6为所述第六透镜的最大有效孔径内,所述第六透镜于平行于光轴方向上的最小厚度,MAX6为所述第六透镜的最大有效孔径内,所述第六透镜于平行于光轴方向上的最大厚度,MIN8为所述第八透镜的最大有效孔径内,所述第八透镜于平行于光轴方向上的最小厚度,MAX8为所述第八透镜的最大有效孔径内,所述第八透镜于平行于光轴方向上的最大厚度。
上述光学系统,满足上述条件式时,能够对所述第六透镜及所述第八透镜的厚度进行合理配置,以平衡广角特性与像散,使所述光学系统在拥有大视场的同时,像散不至于过大,进而保证所述光学系统具有优良的成像质量。另外,还能够提高所述第六透镜及所述第八透镜在生产过程中的注塑成型良率,进而降低生产成本。
在其中一个实施例中,所述光学系统满足以下条件式:
(SAG61+SAG62)/(SAG71+SAG72)≤2;
其中,SAG61为所述第六透镜的物侧面与光轴的交点至所述第六透镜的物侧面的最大有效半径位置于平行于光轴方向上的距离,SAG62为所述第六透镜的像侧面与光轴的交点至所述第六透镜的像侧面的最大有效半径位置于平行于光轴方向上的距离,SAG71为所述第七透镜的物侧面与光轴的交点至所述第七透镜的物侧面的最大有效半径位置于平行于光轴方向上的距离,SAG72为所述第七透镜的像侧面与光轴的交点至所述第七透镜的像侧面的最大有效半径位置于平行于光轴方向上的距离。满足上述条件式时,能够对所述第六透镜及所述第七透镜进行合理配置,以降低所述第六透镜及所述第七透镜在注塑成型过程中产生的公差,以及镜筒成型过程中产生的公差在组装时对所述光学系统的成像质量的影响。同时也有利于平衡所述光学系统的广角特性以及畸变,使所述光学系统在具备大视场的同时,畸变不至于过大,进而保证所述光学系统具有优良的成像质量。
在其中一个实施例中,所述光学系统满足以下条件式:
0≤Y71-Y62≤1mm;
其中,Y62为所述第六透镜的像侧面的最大有效孔径,Y71为所述第七透镜的物侧面的最大有效孔径。满足上述条件式时,能够对所述第六透镜及所述第七透镜进行合理配置,使所述光学系统的结构更加紧凑,以满足小型化设计的需求,同时使所述光学系统具有较大视场。另外,所述光学系统的结构更加紧凑,能够使所述第六透镜及所述第七透镜于边缘处的空气间隔较短,由此可省去所述第六透镜及所述第七透镜之间的压片,进而减少杂散光的产生,提高所述光学系统的成像质量。
在其中一个实施例中,所述光学系统满足以下条件式:
3mm/度≤100*ΣCT/FOV≤5mm/度;
其中,ΣCT为所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜、所述第七透镜以及所述第八透镜于光轴上的厚度之和,FOV为所述光学系统的最大视场角。满足上述条件式时,能够平衡广角特性以及所述光学系统中各透镜于光轴上的厚度,使所述光学系统在具有大视场的同时,也能够拥有较短的系统总长。
在其中一个实施例中,所述光学系统满足以下条件式:
0≤(CT7+CT8)/CT6≤2;
其中,CT6为所述第六透镜于光轴上的厚度,CT7为所述第七透镜于光轴上的厚度,CT8为所述第八透镜于光轴上的厚度。满足上述条件式时,能够对所述第六透镜、所述第七透镜以及所述第八透镜于光轴上的厚度进行合理配置,以平衡所述光学系统的广角特性以及像差,使所述光学系统在具有大视场的同时,像差也不会过大,进而保证所述光学系统具有优良的成像质量。
在其中一个实施例中,所述光学系统满足以下条件式:
(ET2+ET3)/(CT2+CT3)≤1;
其中,ET2为所述第二透镜的物侧面的最大有效孔径处至所述第二透镜的像侧面的最大有效孔径处于平行于光轴方向上的距离,ET3为所述第三透镜的物侧面的最大有效孔径处至所述第三透镜的像侧面的最大有效孔径处于平行于光轴方向上的距离,CT2为所述第二透镜于光轴处的厚度,CT3为所述第三透镜于光轴处的厚度。满足上述条件式时,能够对所述第二透镜以及所述第三透镜的厚度进行合理配置,有利于实现大视场的效果。同时能够使经所述第二透镜及所述第三透镜的光线偏折角度更小,以减少所述光学系统中杂散光的产生,提升所述光学系统的成像质量。另外,也能够降低所述第二透镜及所述第三透镜的敏感度,有利于所述第二透镜及所述第三透镜的注塑成型和组装,提高所述第二透镜及所述第三透镜的注塑成型良率,以降低所述第二透镜及所述第三透镜的生产成本。
在其中一个实施例中,所述光学系统满足以下条件式:
1≤TTL/f≤2;
其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,f为所述光学系统的总有效焦距。满足上述条件式时,能够对所述光学系统的系统总长以及总有效焦距进行合理配置,以缩短所述光学系统的系统总长,实现小型化设计。
在其中一个实施例中,所述光学系统满足以下条件式:
1≤TTL/ImgH≤2;
其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,ImgH为所述光学系统于成像面上有效像素区域的对角线长度的一半。满足上述条件式时,有利于缩短所述光学系统的系统总长,以实现小型化设计。
在其中一个实施例中,所述光学系统满足以下条件式:
-10≤f67/f≤3;
其中,f67为所述第六透镜及所述第七透镜的组合焦距,f为所述光学系统的总有效焦距。满足上述条件式时,能够对所述第六透镜、所述第七透镜的组合焦距以及所述光学系统的总有效焦距进行合理配置,以利于校正所述光学系统于不同孔径位置的轴外光线产生的球差,进而提升所述光学系统的成像质量。
在其中一个实施例中,所述光学系统满足以下条件式:
-23≤f4/f≤24;
其中,f4为所述第四透镜的有效焦距,f为所述光学系统的总有效焦距。满足上述条件式时,能够对所述第四透镜的有效焦距以及所述光学系统的总有效焦距进行合理配置,以扩大所述光学系统的最大视场角,实现大视场的效果,同时有利于缩短所述光学系统的系统总长,实现小型化设计。
一种取像模组,包括感光元件以及上述任一实施例所述的光学系统,所述感光元件设置于所述光学系统的像侧,光线经所述光学系统后于所述感光元件上成像。在所述取像模组中采用上述光学系统,通过平衡所述光学系统的广角特性及像散,保证所述取像模组在具有大视场的同时,像散也不会过大,进而保证所述取像模组具有优良的成像质量。
一种电子设备,包括壳体以及上述的取像模组,所述取像模组设置于所述壳体。在所述电子设备中采用上述取像模组,使所述电子设备在具有大视场的同时,像散也不会过大,进而保证所述电子设备具有优良的成像质量。
附图说明
图1为本申请第一实施例中的光学系统的示意图;
图2为本申请第一实施例中的光学系统的球差图、像散图及畸变图;
图3为本申请第二实施例中的光学系统的示意图;
图4为本申请第二实施例中的光学系统的球差图、像散图及畸变图;
图5为本申请第三实施例中的光学系统的示意图;
图6为本申请第三实施例中的光学系统的球差图、像散图及畸变图;
图7为本申请第四实施例中的光学系统的示意图;
图8为本申请第四实施例中的光学系统的球差图、像散图及畸变图;
图9为本申请第五实施例中的光学系统的示意图;
图10为本申请第五实施例中的光学系统的球差图、像散图及畸变图;
图11为本申请第六实施例中的光学系统的示意图;
图12为本申请第六实施例中的光学系统的球差图、像散图及畸变图;
图13为本申请第七实施例中的光学系统的示意图;
图14为本申请第七实施例中的光学系统的球差图、像散图及畸变图;
图15为本申请一实施例中的取像模组的示意图;
图16为本申请一实施例中的电子设备的示意图。
具体实施方式
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图对本实用新型的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本实用新型。但是本实用新型能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本实用新型内涵的情况下做类似改进,因此本实用新型不受下面公开的具体实施例的限制。
在本实用新型的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本实用新型的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,光学系统100由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10,第六透镜L6包括物侧面S11及像侧面S12,第七透镜L7包括物侧面S13及像侧面S14,第八透镜L8包括物侧面S15及像侧面S16。
其中,第一透镜L1具有正屈折力,有助于缩短光学系统100的总长,且第一透镜L1的物侧面S1于近轴处为凸面,可进一步加强第一透镜L1的正屈折力,使光学系统100于光轴方向的尺寸变得更短,有利于光学系统100的小型化设计。第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第七透镜L7均具有屈折力。第六透镜L6具有正屈折力,且第六透镜L6的像侧面S12于近轴处为凸面。第八透镜L8具有屈折力,且第八透镜L8的像侧面S16于近轴处为凹面。
另外,在一些实施例中,光学系统100设置有光阑STO,光阑STO可设置于第一透镜L1的物侧。在一些实施例中,光学系统100还包括设置于第八透镜L8像侧的红外滤光片L9,红外滤光片L9包括物侧面S17及像侧面S18。进一步地,光学系统100还包括位于第八透镜L8像侧的像面S19,像面S19即为光学系统100的成像面,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8调节后能够成像于像面S19。值得注意的是,红外滤光片L9可为红外截止滤光片,用于滤除干扰光,防止干扰光到达光学系统100的像面S19而影响正常成像。
在一些实施例中,光学系统100的各透镜的物侧面和像侧面均为非球面。非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,光学系统100的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学系统100中各透镜的表面可以是非球面或球面的任意组合。
在一些实施例中,光学系统100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学系统100的重量并降低生产成本,配合光学系统的较小尺寸以实现光学系统的轻小型化设计。而采用玻璃材质的透镜使光学系统100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学系统100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7或第八透镜L8中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
并且,在一些实施例中,光学系统100满足条件式:(MIN6*MAX8/MAX6*MIN8)≤2;其中,在第六透镜L6的最大有效孔径内,MIN6为第六透镜L6于平行于光轴方向上的最小厚度,MAX6为第六透镜L6于平行于光轴方向上的最大厚度,在第八透镜L8的最大有效孔径内,MIN8为第八透镜L8于平行于光轴方向上的最小厚度,MAX8为第八透镜L8于平行于光轴方向上的最大厚度。具体地,(MIN6*MAX8/MAX6*MIN8)可以为:0.810、0.885、0.912、0.963、1.058、1.132、1.297、1.326、1.455或1.573。满足上述条件式时,能够对第六透镜L6及第八透镜L8的厚度进行合理配置,以平衡广角特性与像散,使光学系统100在拥有大视场的同时,像散不至于过大,进而保证光学系统100具有优良的成像质量。另外,还能够提高第六透镜L6及第八透镜L8在生产过程中的注塑成型良率,进而降低生产成本进一步地,在一些实施例中,光学系统100满足条件式:0.81≤(MIN6*MAX8/MAX6*MIN8)≤1.57。满足上述关系式时,能够更好地平衡光学系统100的大视场以及像散,且第六透镜L6及第八透镜L8的注塑成型良率也更大。
在一些实施例中,光学系统100满足条件式:(SAG61+SAG62)/(SAG71+SAG72)≤2;其中,SAG61为第六透镜L6的物侧面S11与光轴的交点至第六透镜L6的物侧面S11的最大有效半径位置于平行于光轴方向上的距离,SAG62为第六透镜L6的像侧面S12与光轴的交点至第六透镜L6的像侧面S12的最大有效半径位置于平行于光轴方向上的距离,SAG71为第七透镜L7的物侧面S13与光轴的交点至第七透镜L7的物侧面S13的最大有效半径位置于平行于光轴方向上的距离,SAG72为第七透镜L7的像侧面S14与光轴的交点至第七透镜L7的像侧面S14的最大有效半径位置于平行于光轴方向上的距离。具体地,(SAG61+SAG62)/(SAG71+SAG72)可以为:0.498、0.556、0.628、0.795、0.835、0.966、0.987、1.023、1.165或1.243。满足上述条件式时,能够对第六透镜L6及第七透镜L7进行合理配置,以降低第六透镜L6及第七透镜L7在注塑成型过程中产生的公差,以及镜筒成型过程中产生的公差在组装时对光学系统100的成像质量的影响。同时也有利于平衡光学系统100的广角特性以及畸变,使光学系统100在具备大视场的同时,畸变不至于过大,进而保证光学系统100具有优良的成像质量。进一步地,在一些实施例中,光学系统100满足条件式:0.5≤(SAG61+SAG62)/(SAG71+SAG72)≤1.24。满足上述条件式时,能够更好地平衡光学系统100的大视场以及畸变,也能够进一步降低第六透镜L6及第七透镜L7在注塑成型过程中产生的公差对光学系统100的成像质量的影响。
在一些实施例中,光学系统100满足条件式:0≤Y71-Y62≤1;其中,Y62为第六透镜L6的像侧面S12的最大有效孔径,Y71为第七透镜L7的物侧面S13的最大有效孔径。具体地,Y71-Y62可以为:0.101、0.159、0.214、0.239、0.357、0.369、0.412、0.475、0.503或0.512,数值单位为mm。满足上述条件式时,能够对第六透镜L6及第七透镜L7进行合理配置,使光学系统100的结构更加紧凑,以满足小型化设计的需求,同时使光学系统100具有较大视场。另外,光学系统100的结构更加紧凑,能够使第六透镜L6及第七透镜L7于边缘处的空气间隔较短,由此可省去第六透镜L5及第七透镜L7之间的压片,进而减少杂散光的产生,提高光学系统100的成像质量。进一步地,在一些实施例中,光学系统100满足条件式:0.1≤Y71-Y62≤0.51。满足上述条件式时,光学系统100更容易实现小型化设计以及大视场的效果,同时光学系统100的成像质量也更佳。
在一些实施例中,光学系统100满足条件式:3≤100*ΣCT/FOV≤5;其中,ΣCT为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8于光轴上的厚度之和,FOV为光学系统100的最大视场角。具体地,100*ΣCT/FOV可以为:3.042、3.189、3.252、3.561、3.675、3.852、4.023、4.567、4.711或4.926,数值单位为mm/度。满足上述条件式时,能够平衡广角特性以及光学系统100中各透镜于光轴上的厚度,使光学系统100在具有大视场的同时,也能够拥有较短的系统总长。进一步地,在一些实施例中,光学系统100满足条件式:3.04≤100*ΣCT/FOV≤4.93。满足上述条件式时,能够更好地平衡大视场以及光学系统100中各透镜于光轴上的厚度。
在一些实施例中,光学系统100满足条件式:0≤(CT7+CT8)/CT6≤2;其中,CT6为第六透镜L6于光轴上的厚度,CT7为第七透镜L7于光轴上的厚度,CT8为第八透镜L8于光轴上的厚度。具体地,(CT7+CT8)/CT6可以为:0.883、0.935、1.028、1.136、1.298、1.374、1.432、1.521、1.693或1.707。满足上述条件式时,能够对第六透镜L6、第七透镜L7以及第八透镜L8于光轴上的厚度进行合理配置,以平衡光学系统100的广角特性以及像差,使光学系统100在具有大视场的同时,像差也不会过大,进而保证光学系统100具有优良的成像质量。进一步地,在一些实施例中,光学系统100满足条件式:0.88≤(CT7+CT8)/CT6≤1.71。满足上述条件式时,能够更好地平衡光学系统100的大视场以及像差。
在一些实施例中,光学系统100满足条件式:(ET2+ET3)/(CT2+CT3)≤1;其中,ET2为第二透镜L2的物侧面S3的最大有效孔径处至第二透镜L2的像侧面S4的最大有效孔径处于平行于光轴方向上的距离,ET3为第三透镜L3的物侧面S5的最大有效孔径处至第三透镜的像侧面S6的最大有效孔径处于平行于光轴方向上的距离,CT2为第二透镜L2于光轴处的厚度,CT3为第三透镜L3于光轴处的厚度。具体地,(ET2+ET3)/(CT2+CT3)可以为:0.831、0.845、0.856、0.869、0.872、0.883、0.895、0.918、0.925或0.938。满足上述条件式时,能够对第二透镜L2以及第三透镜L3的厚度进行合理配置,有利于实现大视场的效果。同时能够使经第二透镜L2及第三透镜L3的光线偏折角度更小,以减少光学系统100中杂散光的产生,提升光学系统100的成像质量。另外,也能够降低第二透镜L2及第三透镜L3的敏感度,有利于第二透镜L2及第三透镜L3的注塑成型和组装,提高第二透镜L2及第三透镜L3的注塑成型良率,以降低第二透镜L2及第三透镜L3的生产成本。进一步地,在一些实施例中,光学系统100满足条件式:0.83≤(ET2+ET3)/(CT2+CT3)≤0.94。满足上述条件式时,光学系统100的大视场效果以及成像质量更佳,且第二透镜L2及第三透镜L3的注塑成型良率也更高。
在一些实施例中,光学系统100满足条件式:1≤TTL/f≤2;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴上的距离,f为光学系统100的总有效焦距。具体地,TTL/f可以为:1.312、1.335、1.357、1.369、1.387、1.401、1.425、1.453、1.462或1.478。满足上述条件式时,能够对光学系统100的系统总长以及总有效焦距进行合理配置,以缩短光学系统100的系统总长,实现小型化设计。进一步地,在一些实施例中,光学系统100满足条件式:1.31≤TTL/f≤1.48。满足上述条件式时,光学系统100更容易实现小型化设计。
在一些实施例中,光学系统100满足条件式:1≤TTL/ImgH≤2;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴上的距离,ImgH为光学系统100于成像面上有效像素区域的对角线长度的一半。具体地,TTL/ImgH可以为:1.223、1.253、1.268、1.295、1.311、1.375、1.426、1.487、1.510或1.558。满足上述条件式时,有利于缩短光学系统100的系统总长,以实现小型化设计。进一步地,在一些实施例中,光学系统100满足条件式:1.22≤TTL/ImgH≤1.56。满足上述条件式时,光学系统100更容易实现小型化设计。
在一些实施例中,光学系统100满足条件式:-10≤f67/f≤3;其中,f67为第六透镜L6及第七透镜L7的组合焦距,f为光学系统100的总有效焦距。具体地,f67/f可以为:-9.584、-8.102、-6.564、-2.398、-0.325、1.092、1.157、1.253、1.374或1.401。满足上述条件式时,能够对第六透镜L6、第七透镜L7的组合焦距以及光学系统100的总有效焦距进行合理配置,以利于校正光学系统100于不同孔径位置的轴外光线产生的球差,进而提升光学系统100的成像质量。进一步地,在一些实施例中,光学系统100满足条件式:-9.58≤f67/f≤1.4。满足上述条件式时,光学系统100的成像质量更佳。
在一些实施例中,光学系统100满足条件式:-23≤f4/f≤24;其中,f4为第四透镜L4的有效焦距,f为光学系统100的总有效焦距。具体地,f4/f可以为:-22.380、-20.528、-18.012、-15.320、-5.693、0.368、5.369、10.471、15.678或23.416。满足上述条件式时,能够对第四透镜L4的有效焦距以及光学系统100的总有效焦距进行合理配置,以扩大光学系统100的最大视场角,实现大视场的效果,同时有利于缩短光学系统100的系统总长,实现小型化设计。进一步地,在一些实施例中,光学系统100满足条件式:-22.38≤f4/f≤23.42。满足上述条件式时,光学系统100更容易实现大视场效果以及小型化设计。
并且,在一些实施例中,光学系统100满足条件式:3.43≤f≤4.75;2.02≤FNO≤2.48;78.36≤FOV≤97.5;ImgH=4.00;4.89≤TTL≤6.23;其中,f为光学系统100的总有效焦距,单位为mm;FNO为光学系统100的光圈数;FOV为光学系统100的最大视场角,单位为度;ImgH为光学系统100于成像面上有效像素区域的对角线长度的一半,单位为mm;TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴上的距离,单位为mm。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1和图2,图1为第一实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7以及具有负屈折力的第八透镜L8。图2由左至右依次为第一实施例中光学系统100的球差、像散及畸变的曲线图,其中像散图和畸变图均为555nm下的曲线图,其他实施例相同。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凸面,于圆周处为凹面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凹面,于圆周处为凹面;
第六透镜L6的像侧面S12于近轴处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近轴处为凹面,于圆周处为凹面;
第七透镜L7的像侧面S14于近轴处为凹面,于圆周处为凸面;
第八透镜L8的物侧面S15于近轴处为凸面,于圆周处为凸面;
第八透镜L8的像侧面S16于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的物侧面和像侧面均为非球面。
需要注意的是,在本申请中,当描述透镜的一个表面于近轴处(该侧面的中心区域)为凸面时,可理解为该透镜的该表面于光轴附近的区域为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效半径处的区域为凹面。举例而言,当该表面于光轴处为凸面,且于圆周处也为凸面时,该表面由中心(光轴)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的材质均为塑料。
并且,光学系统100满足条件式:(MIN6*MAX8/MAX6*MIN8)=1.402;其中,MIN6为第六透镜L6于平行于光轴方向上的最小厚度,MAX6为第六透镜L6于平行于光轴方向上的最大厚度,MIN8为第八透镜L8于平行于光轴方向上的最小厚度,MAX8为第八透镜L8于平行于光轴方向上的最大厚度。满足上述条件式时,能够对第六透镜L6及第八透镜L8的厚度进行合理配置,以平衡广角特性与像散,使光学系统100在拥有大视场的同时,像散不至于过大,进而保证光学系统100具有优良的成像质量。另外,还能够提高第六透镜L6及第八透镜L8在生产过程中的注塑成型良率,进而降低生产成本。
光学系统100满足条件式:(SAG61+SAG62)/(SAG71+SAG72)=0.852;其中,SAG61为第六透镜L6的物侧面S11与光轴的交点至第六透镜L6的物侧面S11的最大有效半径位置于平行于光轴方向上的距离,SAG62为第六透镜L6的像侧面S12与光轴的交点至第六透镜L6的像侧面S12的最大有效半径位置于平行于光轴方向上的距离,SAG71为第七透镜L7的物侧面S13与光轴的交点至第七透镜L7的物侧面S13的最大有效半径位置于平行于光轴方向上的距离,SAG72为第七透镜L7的像侧面S14与光轴的交点至第七透镜L7的像侧面S14的最大有效半径位置于平行于光轴方向上的距离。满足上述条件式时,能够对第六透镜L6及第七透镜L7进行合理配置,以降低第六透镜L6及第七透镜L7在注塑成型过程中产生的公差,以及镜筒成型过程中产生的公差在组装时对光学系统100的成像质量的影响。同时也有利于平衡光学系统100的广角特性以及畸变,使光学系统100在具备大视场的同时,畸变不至于过大,进而保证光学系统100具有优良的成像质量。
光学系统100满足条件式:Y71-Y62=0.303;其中,Y62为第六透镜L6的像侧面S12的最大有效孔径,Y71为第七透镜L7的物侧面S13的最大有效孔径。满足上述条件式时,能够对第六透镜L6及第七透镜L7进行合理配置,使光学系统100的结构更加紧凑,以满足小型化设计的需求,同时使光学系统100具有较大视场。另外,光学系统100的结构更加紧凑,能够使第六透镜L6及第七透镜L7于边缘处的空气间隔较短,由此可省去第六透镜L5及第七透镜L7之间的压片,进而减少杂散光的产生,提高光学系统100的成像质量。
光学系统100满足条件式:100*ΣCT/FOV=4.555;其中,ΣCT为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8于光轴上的厚度之和,FOV为光学系统100的最大视场角。满足上述条件式时,能够平衡广角特性以及光学系统100中各透镜于光轴上的厚度,使光学系统100在具有大视场的同时,也能够拥有较短的系统总长。
光学系统100满足条件式:(CT7+CT8)/CT6=1.707;其中,CT6为第六透镜L6于光轴上的厚度,CT7为第七透镜L7于光轴上的厚度,CT8为第八透镜L8于光轴上的厚度。满足上述条件式时,能够对第六透镜L6、第七透镜L7以及第八透镜L8于光轴上的厚度进行合理配置,以平衡光学系统100的广角特性以及像差,使光学系统100在具有大视场的同时,像差也不会过大,进而保证光学系统100具有优良的成像质量。
光学系统100满足条件式:(ET2+ET3)/(CT2+CT3)=0.831;其中,ET2为第二透镜L2的物侧面S3的最大有效孔径处至第二透镜L2的像侧面S4的最大有效孔径处于平行于光轴方向上的距离,ET3为第三透镜L3的物侧面S5的最大有效孔径处至第三透镜L3的像侧面S6的最大有效孔径处于平行于光轴方向上的距离,CT2为第二透镜L2于光轴处的厚度,CT3为第三透镜L3于光轴处的厚度。满足上述条件式时,能够对第二透镜L2以及第三透镜L3的厚度进行合理配置,有利于实现大视场的效果。同时能够使经第二透镜L2及第三透镜L3的光线偏折角度更小,以减少光学系统100中杂散光的产生,提升光学系统100的成像质量。另外,也能够降低第二透镜L2及第三透镜L3的敏感度,有利于第二透镜L2及第三透镜L3的注塑成型和组装,提高第二透镜L2及第三透镜L3的注塑成型良率,以降低第二透镜L2及第三透镜L3的生产成本。
光学系统100满足条件式:TTL/f=1.353;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴上的距离,f为光学系统100的总有效焦距。满足上述条件式时,能够对光学系统100的系统总长以及总有效焦距进行合理配置,以缩短光学系统100的系统总长,实现小型化设计。
光学系统100满足条件式:TTL/ImgH=1.475;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴上的距离,ImgH为光学系统100于成像面上有效像素区域的对角线长度的一半。满足上述条件式时,有利于缩短光学系统100的系统总长,以实现小型化设计。
光学系统100满足条件式:f67/f=1.352;其中,f67为第六透镜L6及第七透镜L7的组合焦距,f为光学系统100的总有效焦距。满足上述条件式时,能够对第六透镜L6、第七透镜L7的组合焦距以及光学系统100的总有效焦距进行合理配置,以利于校正光学系统100于不同孔径位置的轴外光线产生的球差,进而提升光学系统100的成像质量。
光学系统100满足条件式:f4/f=-3.456;其中,f4为第四透镜L4的有效焦距,f为光学系统100的总有效焦距。满足上述条件式时,能够对第四透镜L4的有效焦距以及光学系统100的总有效焦距进行合理配置,以扩大光学系统100的最大视场角,实现大视场的效果,同时有利于缩短光学系统100的系统总长,实现小型化设计。
另外,光学系统100的各项参数由表1给出。其中,表1中的像面S19可理解为光学系统100的成像面。由物面(图未示出)至像面S19的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴处的曲率半径。面序号1和面序号2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面于光轴上的距离。
需要注意的是,在该实施例及以下各实施例中,光学系统100也可不设置红外滤光片L9,但此时第八透镜L8的像侧面S16至像面S19的距离保持不变。
在第一实施例中,光学系统100的总有效焦距f=4.36mm,光圈数FNO=2.36,最大视场角FOV=83.2°。
且各透镜的焦距、折射率和阿贝数为波长=555nm下的数值,其他实施例也相同。
表1
Figure BDA0002602788130000081
Figure BDA0002602788130000091
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表2给出。其中,面序号从1-16分别表示像侧面或物侧面S1-S16。而从上到下的K-A20分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8表示八次非球面系数,以此类推。另外,非球面系数公式如下:
Figure BDA0002602788130000092
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c为非球面顶点的曲率,k为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
Figure BDA0002602788130000093
Figure BDA0002602788130000101
第二实施例
请参见图3和图4,图3为第二实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7以及具有负屈折力的第八透镜L8。图4由左至右依次为第二实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凹面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凸面,于圆周处为凸面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近轴处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近轴处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近轴处为凹面,于圆周处为凹面;
第七透镜L7的像侧面S14于近轴处为凸面,于圆周处为凹面;
第八透镜L8的物侧面S15于近轴处为凸面,于圆周处为凸面;
第八透镜L8的像侧面S16于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的材质均为塑料。
另外,光学系统100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
Figure BDA0002602788130000111
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
Figure BDA0002602788130000112
Figure BDA0002602788130000121
并且,根据上述所提供的各参数信息,可推得以下关系:
(MIN6*MAX8/MAX6*MIN8)=1.284;(SAG61+SAG62)/(SAG71+SAG72)=0.498;
Y71-Y62=0.101;100*ΣCT/FOV=4.183;(CT7+CT8)/CT6=1.054;
(ET2+ET3)/(CT2+CT3)=0.928;TTL/f=1.333;TTL/ImgH=1.463;
f67/f=1.156;f4/f=20.477。
第三实施例
请参见图5和图6,图5为第三实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7以及具有负屈折力的第八透镜L8。图6由左至右依次为第三实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近轴处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凹面,于圆周处为凹面;
第六透镜L6的像侧面S12于近轴处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近轴处为凹面,于圆周处为凹面;
第七透镜L7的像侧面S14于近轴处为凹面,于圆周处为凸面;
第八透镜L8的物侧面S15于近轴处为凸面,于圆周处为凹面;
第八透镜L8的像侧面S16于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的材质均为塑料。
另外,光学系统100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
Figure BDA0002602788130000131
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
Figure BDA0002602788130000132
Figure BDA0002602788130000141
并且,根据上述所提供的各参数信息,可推得以下关系:
(MIN6*MAX8/MAX6*MIN8)=1.437;(SAG61+SAG62)/(SAG71+SAG72)=0.631;
Y71-Y62=0.431;100*ΣCT/FOV=3.042;(CT7+CT8)/CT6=0.883;
(ET2+ET3)/(CT2+CT3)=0.924;TTL/f=1.362;TTL/ImgH=1.223;
f67/f=1.401;f4/f=23.416。
第四实施例
请参见图7和图8,图7为第四实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7以及具有负屈折力的第八透镜L8。图8由左至右依次为第四实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凹面,于圆周处为凹面;
第六透镜L6的像侧面S12于近轴处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近轴处为凹面,于圆周处为凹面;
第七透镜L7的像侧面S14于近轴处为凸面,于圆周处为凸面;
第八透镜L8的物侧面S15于近轴处为凸面,于圆周处为凹面;
第八透镜L8的像侧面S16于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的材质均为塑料。
另外,光学系统100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
Figure BDA0002602788130000151
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表8
Figure BDA0002602788130000152
Figure BDA0002602788130000161
并且,根据上述所提供的各参数信息,可推得以下关系:
(MIN6*MAX8/MAX6*MIN8)=1.414;(SAG61+SAG62)/(SAG71+SAG72)=0.899;
Y71-Y62=0.363;100*ΣCT/FOV=4.813;(CT7+CT8)/CT6=1.195;
(ET2+ET3)/(CT2+CT3)=0.871;TTL/f=1.320;TTL/ImgH=1.538;
f67/f=1.355;f4/f=-3.332。
第五实施例
请参见图9和图10,图9为第五实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8。图10由左至右依次为第五实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凹面,于圆周处为凹面;
第六透镜L6的像侧面S12于近轴处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近轴处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近轴处为凹面,于圆周处为凸面;
第八透镜L8的物侧面S15于近轴处为凸面,于圆周处为凸面;
第八透镜L8的像侧面S16于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的材质均为塑料。
另外,光学系统100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表9
Figure BDA0002602788130000171
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
Figure BDA0002602788130000172
Figure BDA0002602788130000181
并且,根据上述所提供的各参数信息,可推得以下关系:
(MIN6*MAX8/MAX6*MIN8)=1.337;(SAG61+SAG62)/(SAG71+SAG72)=1.243;
Y71-Y62=0.512;100*ΣCT/FOV=3.218;(CT7+CT8)/CT6=1.098;
(ET2+ET3)/(CT2+CT3)=0.938;TTL/f=1.478;TTL/ImgH=1.268;
f67/f=1.108;f4/f=-10.788。
第六实施例
请参见图11和图12,图11为第六实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7以及具有正屈折力的第八透镜L8。图12由左至右依次为第六实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近轴处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凸面,于圆周处为凹面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凹面,于圆周处为凹面;
第六透镜L6的像侧面S12于近轴处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近轴处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近轴处为凹面,于圆周处为凸面;
第八透镜L8的物侧面S15于近轴处为凸面,于圆周处为凸面;
第八透镜L8的像侧面S16于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的材质均为塑料。
另外,光学系统100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表11
Figure BDA0002602788130000191
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表12
Figure BDA0002602788130000192
Figure BDA0002602788130000201
并且,根据上述所提供的各参数信息,可推得以下关系:
(MIN6*MAX8/MAX6*MIN8)=0.810;(SAG61+SAG62)/(SAG71+SAG72)=0.734;
Y71-Y62=0.361;100*ΣCT/FOV=4.926;(CT7+CT8)/CT6=1.461;
(ET2+ET3)/(CT2+CT3)=0.914;TTL/f=1.312;TTL/ImgH=1.558;
f67/f=-9.584;f4/f=-22.380。
第七实施例
请参见图13和图14,图13为第七实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7以及具有负屈折力的第八透镜L8。图14由左至右依次为第七实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近轴处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凹面,于圆周处为凹面;
第六透镜L6的像侧面S12于近轴处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近轴处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近轴处为凹面,于圆周处为凸面;
第八透镜L8的物侧面S15于近轴处为凹面,于圆周处为凸面;
第八透镜L8的像侧面S16于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的材质均为塑料。
另外,光学系统100的各项参数由表13给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表13
Figure BDA0002602788130000211
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表14给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表14
Figure BDA0002602788130000212
Figure BDA0002602788130000221
并且,根据上述所提供的各参数信息,可推得以下关系:
(MIN6*MAX8/MAX6*MIN8)=1.573;(SAG61+SAG62)/(SAG71+SAG72)=0.674;
Y71-Y62=0.141;100*ΣCT/FOV=4.441;(CT7+CT8)/CT6=1.453;
(ET2+ET3)/(CT2+CT3)=0.846;TTL/f=1.333;TTL/ImgH=1.500;
f67/f=1.161;f4/f=-2.147。
请参见图15,在一些实施例中,光学系统100可与感光元件210组装形成取像模组200。此时,感光元件210的感光面可视为光学系统100的像面S19。取像模组200还可设置有红外滤光片L9,红外滤光片L9设置于第八透镜L8的像侧面S16与像面S19之间。具体地,感光元件210可以为电荷耦合元件(ChargeCoupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在取像模组200中采用上述光学系统100,通过平衡光学系统100的广角特性及像散,保证取像模组200在具有大视场的同时,像散也不会过大,进而保证取像模组200具有优良的成像质量。
请参见图15和图16,在一些实施例中,取像模组200可运用于电子设备300中,电子设备包括壳体310,取像模组200设置于壳体310。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪等车载摄像设备或智能手表等可穿戴装置。在电子设备300中采用取像模组200,使电子设备300在具有大视场的同时,像散也不会过大,进而保证电子设备300具有优良的成像质量。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。

Claims (12)

1.一种光学系统,其特征在于,由物侧至像侧依次包括:
光阑;
具有正屈折力的第一透镜,所述第一透镜的物侧面于近轴处为凸面;
具有屈折力的第二透镜;
具有屈折力的第三透镜;
具有屈折力的第四透镜;
具有屈折力的第五透镜;
具有正屈折力的第六透镜,所述第六透镜的像侧面于近轴处为凸面;
具有屈折力的第七透镜;
具有屈折力的第八透镜,所述第八透镜的像侧面于近轴处为凹面;
且所述光学系统满足以下条件式:
(MIN6*MAX8/MAX6*MIN8)≤2;
其中,在所述第六透镜的最大有效孔径内,MIN6为所述第六透镜于平行于光轴方向上的最小厚度,MAX6为所述第六透镜于平行于光轴方向上的最大厚度,在所述第八透镜的最大有效孔径内,MIN8为所述第八透镜于平行于光轴方向上的最小厚度,MAX8为所述第八透镜于平行于光轴方向上的最大厚度。
2.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
(SAG61+SAG62)/(SAG71+SAG72)≤2;
其中,SAG61为所述第六透镜的物侧面与光轴的交点至所述第六透镜的物侧面的最大有效半径位置于平行于光轴方向上的距离,SAG62为所述第六透镜的像侧面与光轴的交点至所述第六透镜的像侧面的最大有效半径位置于平行于光轴方向上的距离,SAG71为所述第七透镜的物侧面与光轴的交点至所述第七透镜的物侧面的最大有效半径位置于平行于光轴方向上的距离,SAG72为所述第七透镜的像侧面与光轴的交点至所述第七透镜的像侧面的最大有效半径位置于平行于光轴方向上的距离。
3.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0≤Y71-Y62≤1mm;
其中,Y62为所述第六透镜的像侧面的最大有效孔径,Y71为所述第七透镜的物侧面的最大有效孔径。
4.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
3mm/度≤100*ΣCT/FOV≤5mm/度;
其中,ΣCT为所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜、所述第七透镜以及所述第八透镜于光轴上的厚度之和,FOV为所述光学系统的最大视场角。
5.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0≤(CT7+CT8)/CT6≤2;
其中,CT6为所述第六透镜于光轴上的厚度,CT7为所述第七透镜于光轴上的厚度,CT8为所述第八透镜于光轴上的厚度。
6.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
(ET2+ET3)/(CT2+CT3)≤1;
其中,ET2为所述第二透镜的物侧面的最大有效孔径处至所述第二透镜的像侧面的最大有效孔径处于平行于光轴方向上的距离,ET3为所述第三透镜的物侧面的最大有效孔径处至所述第三透镜的像侧面的最大有效孔径处于平行于光轴方向上的距离,CT2为所述第二透镜于光轴处的厚度,CT3为所述第三透镜于光轴处的厚度。
7.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
1≤TTL/f≤2;
其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,f为所述光学系统的总有效焦距。
8.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
1≤TTL/ImgH≤2;
其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,ImgH为所述光学系统于成像面上有效像素区域的对角线长度的一半。
9.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
-10≤f67/f≤3;
其中,f67为所述第六透镜及所述第七透镜的组合焦距,f为所述光学系统的总有效焦距。
10.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
-23≤f4/f≤24;
其中,f4为所述第四透镜的有效焦距,f为所述光学系统的总有效焦距。
11.一种取像模组,其特征在于,包括感光元件以及权利要求1-10任一项所述的光学系统,所述感光元件设置于所述光学系统的像侧,光线经所述光学系统后于所述感光元件上成像。
12.一种电子设备,其特征在于,包括壳体以及权利要求11所述的取像模组,所述取像模组设置于壳体。
CN202021498718.5U 2020-07-23 2020-07-23 光学系统、取像模组及电子设备 Active CN212540852U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202021498718.5U CN212540852U (zh) 2020-07-23 2020-07-23 光学系统、取像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202021498718.5U CN212540852U (zh) 2020-07-23 2020-07-23 光学系统、取像模组及电子设备

Publications (1)

Publication Number Publication Date
CN212540852U true CN212540852U (zh) 2021-02-12

Family

ID=74518485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202021498718.5U Active CN212540852U (zh) 2020-07-23 2020-07-23 光学系统、取像模组及电子设备

Country Status (1)

Country Link
CN (1) CN212540852U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803166B (zh) * 2021-12-28 2023-05-21 大陸商玉晶光電(廈門)有限公司 光學成像鏡頭

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803166B (zh) * 2021-12-28 2023-05-21 大陸商玉晶光電(廈門)有限公司 光學成像鏡頭

Similar Documents

Publication Publication Date Title
CN113138458B (zh) 光学系统、取像模组及电子设备
CN112987258B (zh) 光学系统、取像模组及电子设备
CN114114654B (zh) 光学系统、取像模组及电子设备
CN113552696A (zh) 光学系统、取像模组及电子设备
CN111736306A (zh) 光学系统、取像模组及电子设备
CN112612117A (zh) 光学系统、取像模组及电子设备
CN210924082U (zh) 摄像透镜组
CN111781705A (zh) 光学系统、取像模组及电子设备
CN111812804A (zh) 光学系统、取像模组及电子设备
CN111338057A (zh) 光学系统、取像模组及电子设备
CN112987259B (zh) 光学系统、取像模组及电子设备
CN113156612B (zh) 光学系统、取像模组及电子设备
CN113189748A (zh) 光学系统、取像模组及电子设备
CN211786331U (zh) 光学系统、取像模组及电子设备
CN113219628A (zh) 光学系统、取像模组及电子设备
CN212540852U (zh) 光学系统、取像模组及电子设备
CN114994880B (zh) 光学系统、镜头模组及电子设备
CN114740596B (zh) 光学系统、取像模组及电子设备
CN114326019B (zh) 光学系统、取像模组及电子设备
CN113900226B (zh) 光学系统、取像模组及电子设备
CN114326052B (zh) 光学系统、取像模组及电子设备
CN113741008B (zh) 光学系统、取像模组及电子设备
CN113900225B (zh) 光学系统、取像模组及电子设备
CN212540848U (zh) 光学系统、取像模组及电子设备
CN213182173U (zh) 光学系统、取像模组及电子设备

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant