CN111413436B - Method for identifying lamb mutton and adult mutton - Google Patents

Method for identifying lamb mutton and adult mutton Download PDF

Info

Publication number
CN111413436B
CN111413436B CN202010326945.8A CN202010326945A CN111413436B CN 111413436 B CN111413436 B CN 111413436B CN 202010326945 A CN202010326945 A CN 202010326945A CN 111413436 B CN111413436 B CN 111413436B
Authority
CN
China
Prior art keywords
mutton
lamb
adult
analysis
identifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010326945.8A
Other languages
Chinese (zh)
Other versions
CN111413436A (en
Inventor
徐贞贞
王济世
徐雷
杨曙明
陈爱亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Quality Standards and Testing Technology for Agro Products of Henan Academy of Agricultural Science
Original Assignee
Institute of Quality Standards and Testing Technology for Agro Products of Henan Academy of Agricultural Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Quality Standards and Testing Technology for Agro Products of Henan Academy of Agricultural Science filed Critical Institute of Quality Standards and Testing Technology for Agro Products of Henan Academy of Agricultural Science
Priority to CN202010326945.8A priority Critical patent/CN111413436B/en
Publication of CN111413436A publication Critical patent/CN111413436A/en
Application granted granted Critical
Publication of CN111413436B publication Critical patent/CN111413436B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • G01N30/8679Target compound analysis, i.e. whereby a limited number of peaks is analysed

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention discloses a method for identifying lamb mutton and adult mutton, which comprises the steps of extracting metabonomics data of a sample to be detected, and carrying out chemometrics analysis on the detection data to extract characteristic information; the invention provides a reliable and rapid identification method for distinguishing lamb mutton and adult mutton, the method is convenient, sensitive and accurate, and the rapid discrimination of mutton can be realized by screening the difference markers through the analysis model.

Description

Method for identifying lamb mutton and adult mutton
Technical Field
The invention relates to the technical field of food authenticity detection, in particular to a method for identifying lamb mutton and adult mutton.
Background
Along with the development of social economy, the living standard of people is greatly improved. The consumer's consumption concept of meat products has been shifted from pure "quantity demand" to "quality demand". Mutton is deeply welcomed by consumers by virtue of the characteristics of high protein, low fat and delicious meat, so the demand of mutton is continuously increased, but some illegal vendors often use some cheap meat to sell as mutton under the drive of interests, such as duck meat and the like, and the rights and interests of consumers are seriously influenced. At present, researchers have developed many technologies aiming at the problem of mutton adulteration, such as PCR technology for nucleic acid detection, enzyme-linked immunosorbent assay technology, electronic nose technology for odor detection and the like. The PCR technology often needs to design primers and amplify genes aiming at different species, and false negative results are easy to occur; the development of enzyme-linked immunosorbent assay requires the finding of antigens with high specificity and thermal stability; the electronic nose technology mainly aims at detecting volatile flavor substances, and the sensor has selectivity on compounds. It is worth noting that the above techniques have certain limitations for identifying adulteration of the same species or tissue.
The lamb mutton has delicate and delicious meat, so the lamb mutton has higher price than adult mutton. In recent years, the use of inexpensive adult mutton to serve as premium lamb has become an increasing challenge to disrupt market order. Because the mutton belongs to the same species and the traditional biological detection technologies such as DNA, nucleic acid and the like fail, the development of an identification method for accurately identifying the mutton adulteration is urgently needed so as to maintain the market fairness and protect the rights of consumers.
Disclosure of Invention
The invention aims to solve the existing problems and provides a method for identifying lamb mutton and adult mutton by screening feature markers for identifying lamb mutton and adult mutton.
In order to achieve the purpose, the invention adopts the following technical scheme:
the invention comprises the following steps:
A. extracting a sample to be detected to obtain polar and nonpolar metabolite extracts, and carrying out metabonomics data acquisition on the extracts;
B. carrying out chemometric analysis on the metabonomics, establishing an analysis model and screening difference markers, wherein the chemometric analysis comprises principal component analysis and orthogonal partial least square analysis, judging whether two groups of samples have difference or not through the principal component analysis, and determining potential characteristic markers of the samples to be detected through the orthogonal partial least square analysis;
C. identifying the sample to be detected by using the screened characteristic marker;
further, the detection data includes relative peak areas and retention times of all metabolites.
Specifically, preprocessing the detection data, wherein the preprocessing comprises baseline correction, peak extraction, peak correction, standardization and normalization, obtaining relative peak areas and retention time of all metabolites, and eliminating compounds with variation coefficients exceeding 30%; the feature values with missing values over 50% were rejected, and the remaining missing values were filled in with half the minimum of the feature values in all samples.
Further, metabolites with variable importance greater than 1 while having a t-test significance level value less than 0.05 were identified as differential biomarkers based on an analytical model of principal component analysis.
Specifically, an analysis model based on orthogonal partial least squares analysis obtains potential feature markers by using Variable Importance (VIP) >1, significance level (P) <0.05 and difference multiple (FC) >2 as threshold values.
Further, potential signature acquisition was performed in chemometric analysis by positive and negative ion mode lamb and adult lamb.
Specifically, the spray voltages of the positive and negative ion modes were 5500V and-4500V, respectively, and the declustering voltage was 80V and-80V, respectively. The ion source temperature was 500 ℃. Atomizer pressure (GS1)50psi, heating assist gas pressure (GS2)50psi, collision energy 35 + -15V. The data acquisition range is 50-1500Da.
Compared with the prior art, the invention has the beneficial effects that:
the invention provides a reliable and rapid identification method for distinguishing lamb mutton and adult mutton, the method is convenient, sensitive and accurate, and rapid identification of mutton can be realized by screening difference markers through an analysis model.
Drawings
FIG. 1 is a flow chart of the operation process of the method for discriminating lamb mutton from adult mutton in the invention;
FIG. 2 is a PCA score chart of a method for discriminating lamb and adult mutton according to the present invention;
FIG. 3 is a diagram of an OPLS-DA model of the method for discriminating lamb mutton from adult mutton according to the present invention;
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments.
The invention provides a method for identifying the same variety of lamb mutton and adult mutton. Carrying out chemometric analysis on the detection data, extracting characteristic information, establishing an analysis model, determining the differential metabolites of the lamb mutton and the adult mutton, and identifying the lamb mutton and the adult mutton by using the screened characteristic markers.
Materials and methods
Methanol, acetonitrile, butanol, and dichloromethane were purchased from Fisher corporation; formic acid and sodium acetate were purchased from Dikma corporation; ultrapure water (18.2 M.OMEGA.) was used for the experiments prepared by Milli-Q system (Millipore Billerica, MA).
Preparation and extraction of samples
Samples of alpine merino fine-wool sheep were collected from the southern section of the province of Gansu. 4 adult mutton samples (3 years old, 50.05 + -6.96 kg) and 4 lamb mutton samples (8 months old, 24.48 + -2.23 kg). All samples were collected from the same pasture and were freely fed during grazing. Taking the longissimus dorsi of the same part of each sheep, mincing, and placing in a refrigerator at-80 deg.C for use.
The sample preparation process comprises the following steps: weighing 100mg of sample, placing the sample in a 10mL centrifuge tube, adding 3mL of dichloromethane/methanol (2/1, v/v) mixed solution, then adding 2.5mL of ultrapure water, carrying out ultrasonic treatment for 20min, centrifuging at 10000 rpm for 15min, removing the lower layer clear solution, transferring the lower layer clear solution into a glass centrifuge tube, blowing nitrogen to be nearly dry, redissolving with 1mL of methanol, filtering with a 0.22 mu m filter membrane, and bottling to be tested. Quality control samples (QC) were prepared by mixing all samples to be tested in the same volume of liquid. The role of the QC samples was to monitor the instrument status and stability of the data during the instrument analysis.
The instrument used for the experiment was an ExionLC ultra high performance liquid chromatography tandem high resolution quadrupole time-of-flight mass spectrometry (Sciex, Redwood City, Calif., USA) equipped with a C18 column (2.1X 150mm,2.7 μm, Agilent, USA). Liquid phase conditions: mobile phases a and B were water/acetonitrile (15/85, v/v) and butanol, respectively, both containing 0.1% formic acid and 5mM ammonium acetate. Mobile phase B elution gradient: 0min, 2%; 3min, 90%; 5min, 50%; 6min, 55%; 9min 60%; 11min 70%; 13min, 2%; 13-15min, 2%, sample amount of 5 μ L, flow rate of 0.3mL/min, and column temperature of 40 deg.C. Mass spectrum conditions: the ion source is an electrospray ion source (ESI), the acquisition mode is a data-dependent acquisition mode (IDA), and dynamic background subtraction is performed. The spray voltage of the positive and negative ion modes is 5500V and-4500V respectively, and the declustering voltage is 80V and-80V respectively. The ion source temperature was 500 ℃. Atomizer pressure (GS1)50psi, heating assist gas pressure (GS2)50psi, collision energy 35 + -15V. The data acquisition range is 50-1500Da.
Raw data were pre-processed using Peakview 2.2 software (AB Sciex, USA) including baseline correction, peak extraction, peak correction, normalization and normalization to obtain relative peak areas and retention times for all metabolites. Introducing the processed data into Excel, calculating the coefficient of variation (CV%) of the QC sample, and removing more than 30% of compounds; the feature values with missing values over 50% were rejected, and the remaining missing values were filled in with half the minimum of the feature values in all samples. Fold difference (FC) of metabolites between lamb and adult lamb mutton groups was calculated and the one-way anova t-test was performed on the pre-processed data with the help of SPSS22.0 software. At the same time, the data was exported to SIMCA14.1 software for visual analysis. Principal Component Analysis (PCA) and orthogonal partial least squares analysis (OPLS-DA) were used for the identification of potentially differential biomarkers in lamb and adult lamb. Those metabolites whose variable importance (VIP variable importance) is greater than 1 while the one-way anova test (t-test) significance level P-value is less than 0.05 are considered differential biomarkers.
And (4) carrying out principal component analysis on the metabolite data, and judging whether the two groups of samples have difference. From the PCA score chart, as shown in FIG. 1, the principal component score chart, a in a positive ion mode and b in a negative ion mode, can find that the QC sample has high aggregation, indicating that the pretreatment and the instrument state are good. The two sets of samples had better separation, with all samples falling within the 95% confidence interval. The cumulative contribution rates of the first four components of the positive and negative ion modes to the difference are 61.5% and 60.1%, respectively. This demonstrates that the PCA model has good discriminatory power on the two groups of samples, i.e., lamb and adult mutton can be distinguished by PCA, and further demonstrates that there is a clear difference between the two groups of samples. Orthogonal partial least squares analysis was then performed to establish an OPLS-DA model (shown in fig. 2, orthogonal partial least squares analysis score plot, a is positive ion mode and b is negative ion mode) and to screen for metabolites with significant differences in lamb and adult lamb. In model R2X (cum) and R2Y(cum) Respectively representing the interpretability of the model on the X and Y matrices, Q2Y (cum) represents the predictive power of the model when R2The smaller X, the smaller R2Y and Q2The larger Y is and the closer to 1, the more stable and reliable the model is. In the established OPLS-DA model, R is in a positive ion mode2X(cum)、 R2Y (cum) and Q2Y (cum) is 43.3%, 97.7% and 88.9%, respectively, R in negative ion mode2X(cum)、R2Y (cum) and Q2Y (cum) is 41.7%, 97.4% and 81.4 respectively, which shows that the model is relatively stable and has good prediction capability. Based on the OPLS-DA model with VIP>1,P<0.05, FC>2 as threshold, 2 potential signatures were obtained in positive ion mode: ranunculin (Flavoxanthin) and Phosphatidic Acid (PA); 1 potential signature marker was obtained in negative ion mode: phosphatidylinositol (PI), detailed information is shown in table 1. The characteristic difference object is screened and identified from a large amount of data, has objectivity and accuracy, and can be used for identifying lamb mutton and adult mutton of alpine merino fine hair sheep.
TABLE 1 potential signature markers in lamb and adult mutton
Figure 2
The above description is only for the preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art should be considered to be within the technical scope of the present invention, and the technical solutions and the inventive concepts thereof according to the present invention should be equivalent or changed within the scope of the present invention.

Claims (6)

1.一种鉴别羔羊肉和成年羊肉的方法,其特征在于,包括以下步骤:1. a method for identifying lamb and adult mutton, is characterized in that, comprises the following steps: A.提取待测样品获取极性与非极性代谢物提取物,对所述提取物进行代谢组学数据采集;A. Extract the sample to be tested to obtain polar and non-polar metabolite extracts, and perform metabolomics data collection on the extracts; B.通过所述代谢组学数据进行化学计量学分析,并建立分析模型筛选差异标志物,所述化学计量学分析包括主成分分析和正交偏最小二乘分析,通过所述主成分分析判断两组样品是否存在差异,通过正交偏最小二乘分析确定所述待测样品的潜在的特征标志物基于主成分分析的分析模型,将变量重要性VIP大于1同时单因素方差分析检验(t检验)显著性水平P小于0.05的代谢物确定为差异性生物标志物;B. Chemometric analysis is performed through the metabolomic data, and an analysis model is established to screen differential markers. The chemometric analysis includes principal component analysis and orthogonal partial least squares analysis, and judged by the principal component analysis Whether there is a difference between the two groups of samples, the potential characteristic markers of the samples to be tested are determined by orthogonal partial least squares analysis based on the analysis model of principal component analysis, and the variable importance VIP is greater than 1 and the one-way ANOVA test (t Test) metabolites with a significance level P less than 0.05 are determined as differential biomarkers; C.利用筛选出的所述特征标志物对所述待测样品进行鉴别,色谱为超高效液相色谱;所述超高效液相色谱以流动A和流动相B进行梯度洗脱;所述流动相A为按照体积比为15/85混合的水/乙腈,流动相B为丁醇,两相均含0.1%甲酸和5mM乙酸铵,所述梯度洗脱条件包括:0min,2%B;3min,90%B;5min,50%B;6min,55%B;9min 60%B;11min 70%B;13min,2%B;13-15min,保持2%B;进样量5μL,流速0.3mL/min,柱温40℃。C. Utilize the selected characteristic markers to identify the sample to be tested, and the chromatography is an ultra-high performance liquid chromatography; the ultra-high performance liquid chromatography carries out gradient elution with flow A and mobile phase B; Phase A is water/acetonitrile mixed in a volume ratio of 15/85, mobile phase B is butanol, both phases contain 0.1% formic acid and 5mM ammonium acetate, and the gradient elution conditions include: 0min, 2%B; 3min , 90%B; 5min, 50%B; 6min, 55%B; 9min 60%B; 11min 70%B; 13min, 2%B; 13-15min, keep 2%B; injection volume 5μL, flow rate 0.3mL /min, the column temperature is 40°C. 2.根据权利要求1所述的一种鉴别羔羊肉和成年羊肉的方法,其特征在于,检测数据包括所有代谢物的相对峰面积与保留时间。2 . The method for identifying lamb and adult mutton according to claim 1 , wherein the detection data includes relative peak areas and retention times of all metabolites. 3 . 3. 根据权利要求1所述的一种鉴别羔羊肉和成年羊肉的方法, 其特征在于,对检测数据进行预处理,所述预处理包括基线校正,峰提取,峰校正,标准化和归一化,获取所有代谢物的相对峰面积与保留时间,变异系数将超过30%化合物剔除;缺失值超过50%的特征值剔除,其余的缺失值采用该特征值在所有样品中的最小值的一半进行填充。3. A method for identifying lamb and adult mutton according to claim 1, wherein the detection data is preprocessed, and the preprocessing comprises baseline correction, peak extraction, peak correction, standardization and normalization , obtain the relative peak area and retention time of all metabolites, and the coefficient of variation will exclude more than 30% of the compounds; the eigenvalues with missing values exceeding 50% will be rejected, and the remaining missing values will be determined by using half of the minimum value of the eigenvalue in all samples. filling. 4.根据权利要求1所述的一种鉴别羔羊肉和成年羊肉的方法,其特征在于,基于正交偏最小二乘分析的分析模型,以VIP>1,P<0.05,差异倍数(FC)>2作为门槛值获取潜在特征标志物。4. a kind of method for identifying lamb and adult mutton according to claim 1, is characterized in that, based on the analytical model of orthogonal partial least squares analysis, with VIP>1, P<0.05, difference multiple (FC) >2 was used as a threshold to obtain potential feature markers. 5.根据权利要求1所述的一种鉴别羔羊肉和成年羊肉的方法,其特征在于,根据代谢物提取物的极性或者非极性选择正、负离子模式获取羔羊肉和成年羊肉进行潜在的特征标志物。5. a kind of method for identifying lamb and adult mutton according to claim 1, is characterized in that, selects positive and negative ion mode according to the polarity or non-polarity of metabolite extract to obtain lamb and adult mutton to carry out potential. characteristic markers. 6.根据权利要求1所述的一种鉴别羔羊肉和成年羊肉的方法,其特征在于,质谱为四极杆飞行时间高分辨率质谱;正、负离子模式的喷雾电压分别为5500V和-4500V,去簇电压分别为80V和-80V,离子源温度500℃,雾化器压力50psi,加热辅助气压力50psi,碰撞能35±15V,数据采集范围为50-1500Da。6. a kind of method for identifying lamb and adult mutton according to claim 1, is characterized in that, mass spectrometry is quadrupole time-of-flight high-resolution mass spectrometry; The declustering voltages were 80V and -80V, respectively, the ion source temperature was 500°C, the atomizer pressure was 50psi, the heating auxiliary gas pressure was 50psi, the collision energy was 35±15V, and the data acquisition range was 50-1500Da.
CN202010326945.8A 2020-04-23 2020-04-23 Method for identifying lamb mutton and adult mutton Active CN111413436B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010326945.8A CN111413436B (en) 2020-04-23 2020-04-23 Method for identifying lamb mutton and adult mutton

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010326945.8A CN111413436B (en) 2020-04-23 2020-04-23 Method for identifying lamb mutton and adult mutton

Publications (2)

Publication Number Publication Date
CN111413436A CN111413436A (en) 2020-07-14
CN111413436B true CN111413436B (en) 2021-03-30

Family

ID=71492041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010326945.8A Active CN111413436B (en) 2020-04-23 2020-04-23 Method for identifying lamb mutton and adult mutton

Country Status (1)

Country Link
CN (1) CN111413436B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112215277B (en) * 2020-10-09 2023-04-07 内蒙古农业大学 Method and system for distinguishing beef and mutton species and feeding mode authenticity
CN112858558A (en) * 2021-01-22 2021-05-28 陕西科技大学 Triglycerides-based method for identifying adulteration of cow milk and sheep milk
CN112881563B (en) * 2021-02-08 2023-02-17 中国检验检疫科学研究院 Method for detecting an overheated meat product
CN114942286A (en) * 2022-05-17 2022-08-26 复旦大学 A kind of detection method of hydrophilic polypeptide
CN114965796A (en) * 2022-06-21 2022-08-30 陕西科技大学 An ultra-high performance liquid chromatography-tandem mass spectrometry method for metabolomics analysis of irradiated mutton
CN116933160B (en) * 2023-09-19 2024-01-09 中国农业科学院农产品加工研究所 Meat varieties and parts identification method based on lipid characteristics-machine learning

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588909B (en) * 2015-12-15 2020-08-25 中国肉类食品综合研究中心 Method for determining various animal-derived meats based on liquid chromatography tandem mass spectrometry technology
CN110730615A (en) * 2017-04-09 2020-01-24 超级肉类肉本质有限公司 Mixed Foods Containing Cultured Meat
CN109298088B (en) * 2018-10-10 2020-07-10 中国农业科学院农业质量标准与检测技术研究所 Marker screening method for beef producing area and application thereof
CN109504786A (en) * 2018-12-29 2019-03-22 博奥生物集团有限公司 Primer combines the application in Species estimation and/or the meat of a sheep identification of sheep

Also Published As

Publication number Publication date
CN111413436A (en) 2020-07-14

Similar Documents

Publication Publication Date Title
CN111413436B (en) Method for identifying lamb mutton and adult mutton
CN110057955B (en) Method for screening specific serum marker of hepatitis B
CN112986430B (en) Method for screening difference markers of Juansan milk powder and Holstein milk powder and application thereof
JP4758933B2 (en) Method of analyzing metabolite discrimination between two biological sample groups using a gas chromatography mass spectrometer
CN105574474A (en) Mass spectrometry information-based biological characteristic image identification method
CN110470781B (en) Method for identifying reconstituted milk and UHT milk
CN104991019B (en) Gelsemine and the liquid chromatography-tandem mass of koumine in biological material
CN110057954B (en) Application of plasma metabolic markers in diagnosis or monitoring of HBV
KR102166979B1 (en) Biomarker for the discrimination of geographical origins of the soybeans and method for discriminating of geographical origin using the same
CN111239267B (en) Method for detecting short-chain fatty acids in serum and lymph tissue based on GC-MS
Malá et al. Recent progress in analytical capillary isotachophoresis (2018-March 2022)
Cajka et al. Advances in mass spectrometry for food authenticity testing: an omics perspective
CN111398499A (en) Application of 3-amino-2-naphthoic acid in the identification of Chinese bee honey and Italian bee honey
Hung et al. Classification and differentiation of agarwoods by using non-targeted HS-SPME-GC/MS and multivariate analysis
CN108152386B (en) Identification method and application of tea origin in micro-region based on fingerprint technology
CN111426776B (en) Application of HQR as a characteristic marker of Duck&#39;s foot honey
CN113820420A (en) Method for measuring chemical components in intelligence-developing wine by using UPLC-Q-TOF-MS
CN105842328B (en) The detection method of urocanic acid and its ethyl ester in cosmetics based on ion mobility spectrometry
CN105588910B (en) The methods of risk assessment that plastic products migration thing influences on wine product
CN114924003B (en) Method for detecting fluorouracil content in fluorouracil oral milk
CN112684064B (en) Serum metabolic markers for screening mutton sheep against stress and their application
CN114778653B (en) Metabolism marker combination and screening method for tracing mutton producing area and application
Ding et al. Age identification of Chinese rice wine using electronic nose
CN115980228A (en) Method for simultaneously determining content of purine in soup based on liquid chromatography-tandem mass spectrometry
CN108181402A (en) The detection method of content of zearalenone in a kind of cereal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant