CN111411398A - 一种二维NdOCl单晶材料的制备方法、产品及应用 - Google Patents

一种二维NdOCl单晶材料的制备方法、产品及应用 Download PDF

Info

Publication number
CN111411398A
CN111411398A CN202010051976.7A CN202010051976A CN111411398A CN 111411398 A CN111411398 A CN 111411398A CN 202010051976 A CN202010051976 A CN 202010051976A CN 111411398 A CN111411398 A CN 111411398A
Authority
CN
China
Prior art keywords
ndocl
dimensional
crystal material
single crystal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010051976.7A
Other languages
English (en)
Other versions
CN111411398B (zh
Inventor
甘霖
李敏
马颖
翟天佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202010051976.7A priority Critical patent/CN111411398B/zh
Publication of CN111411398A publication Critical patent/CN111411398A/zh
Application granted granted Critical
Publication of CN111411398B publication Critical patent/CN111411398B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明属于半导体材料与器件领域,并具体公开了一种二维NdOCl单晶材料的制备方法、产品及应用。所述方法包括:将NdOCl粉末和助熔剂按预设比例混合得到前驱体;将所述前驱体在温度为700~1000℃、惰性气体氛围的条件下保温,然后自然冷却至室温,得到二维NdOCl单晶材料。所述产品采用上述方法制得,且该产品应用于X射线探测器中。本发明所制备的二维NdOCl单晶材料具有稳定性高、无毒无害、制备简单的特点,同时,基于本发明NdOCl单晶材料的X射线吸收系数大和耐击穿电压高,因而其尤其适用于X射线探测的应用场合,且所得的X射线探测器具有环境稳定高、无毒无害、分辨率高、灵敏度高的优势。

Description

一种二维NdOCl单晶材料的制备方法、产品及应用
技术领域
本发明属于半导体材料与器件领域,更具体地,涉及一种二维NdOCl单晶材料的制备方法、产品及应用。
背景技术
X射线已经成功应用于医学成像、公共安全检测、抢险探生等诸多与我们生活密切相关的领域。不仅如此,X射线在核能安全、放射性物质防护和国防等方面也发挥着至关重要的作用。X射线探测器是X射线探测系统的核心部件,其有两种工作模式,一种是间接模式,通过闪烁体将X射线转换成可见光再经过光电探测器转换成电信号,另一种是直接模式,直接通过半导体将X射线转换成电信号。后者相对于前者具有系统简单、空间分辨率高、便于集成的优势。
目前商用的直接式平板探测器仅有非晶硒探测器,这种探测器具有成像质量优异、空间分辨率高、系统结构简单等优势。然而,该探测器寿命较短、对环境要求苛刻、灵敏度低、稳定性差阻碍了其广泛的应用。要实现直接式探测器的大规模应用,需要开发新的光电导材料。目前研究报道的材料主要有MAPbI3(Nature,2017,550,87-91)、MAPbBr3(NaturePhotonics,2017,11,315-321)、CsPbBr3(Advanced Materials,2019,31,1904405)、PbI2(IEEE Electron Device Lett.,2019,40,578)、Cs2AgBiBr6(Nature Photonics,2017,11,726-732),这些材料的灵敏度都要高于目前商用的非晶硒,但是环境不友好和稳定性差的问题并没有解决。因此,如何开发一种新材料兼具高灵敏度、高稳定性和无毒无害成为了必须解决的问题。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种二维NdOCl单晶材料的制备方法、产品及应用,其通过将NdOCl粉末和助熔剂按预设比例混合得到前驱体,并对所述前驱体的加热温度、时间和氛围进行精确控制,使得所制备的二维NdOCl单晶材料具有稳定性高、无毒无害、制备简单的特点,同时,基于本发明NdOCl单晶材料的X射线吸收系数大和耐击穿电压高,因而其尤其适用于X射线探测的应用场合,且所得的X射线探测器具有环境稳定高、无毒无害、分辨率高、灵敏度高的优势。
为实现上述目的,按照本发明的一个方面,提出了一种二维NdOCl单晶材料的制备方法,包括以下步骤:将质量比为1:1~5:1的NdOCl粉末和助熔剂混合得到前驱体;将所述前驱体在温度为700~1000℃、惰性气体氛围的条件下保温10~30min,然后自然冷却至室温,得到二维NdOCl单晶材料。
具体而言,首先,将NdCl3·6H2O研磨成粉末,置于马弗炉中加热升温至500℃~900℃,并在该温度范围内保温12~24h,以此方式,煅烧得到NdOCl粉末;然后将得到的NdOCl粉末与助熔剂按预设比例混合作为前驱体放置于瓷舟中,将载有前驱体的瓷舟置于水平管式炉的中心温区,将衬底置于中心温区或者下游温区,所述助熔剂为氯化盐,所述衬底为带氧化层的掺杂硅片、云母片、蓝宝石中的任意一种;接着在管式炉中通入氩气,并保持通入氩气的气流量为50~200sccm,将前驱体加热至700~1000℃,保温10~30min,自然冷却至室温得到二维NdOCl单晶材料,所述二维NdOCl单晶材料,形状为矩形,厚度为5~100nm,矩形的边长为5~30μm。
作为进一步优选的,所述助熔剂为氯化盐,用于降低NdOCl粉末的熔点。
作为进一步优选的,所述惰性气体的流量为50~200sccm,所述惰性气体为氩气。
作为进一步优选的,将NdCl3·6H2O研磨成粉末,在温度为500~900℃的条件下保温12~24h,从而煅烧得到NdOCl粉末。
作为进一步优选的,所述二维NdOCl单晶材料为厚度为5~100nm的矩形结构,且该矩形结构的边长为5~30μm。
按照本发明的另一个方面,还提供了一种上述制备方法制备得到的二维NdOCl单晶材料。
按照本发明的另一个方面,还提供了一种二维NdOCl单晶材料在X射线探测器中的应用。
按照本发明的另一个方面,还提供了一种X射线探测器,包括衬底、布置于所述衬底上的所述的二维NdOCl单晶材料以及沉积于所述二维NdOCl单晶材料上的两个彼此分离的电极。
作为进一步优选的,所述衬底为带氧化层的掺杂硅片、云母片、蓝宝石中的任意一种;所述电极为氧化铟锡电极、银电极、金电极、铜电极、铝电极中的任意一种或几种;优选的,所述电极的厚度为50~100nm。
按照本发明的另一个方面,还提供了一种X射线探测器的制备方法,其特征在于,包括以下步骤:首先,将二维NdOCl单晶材料通过生长或转移置于衬底上表面;然后,在所述二维NdOCl单晶材料表面刻画电极图案;最后,根据刻画的电极图案,在所述二维NdOCl单晶材料表面制备两个彼此分离的电极;
优选的,在制备两个彼此分离的电极之前,需先蒸镀一层粘附层,该粘附层为厚度为5~10nm的铬金属。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1.本发明通过对的制备NdOCl单晶材料条件参数进行特性性设计,特别是NdOCl粉末和助熔剂的质量配比,使得本发明方法实施简单、成功率高、样品质量高,而且与现有的PVD工艺兼容,适用于大尺寸样品的生长和大规模应用。
2.本发明所制备的NdOCl单晶材料作为X射线探测器的光电导材料,具有环境稳定高、无毒无害的优势,解决了目前商用的非晶硒探测器寿命短、稳定性差的问题。
3.本发明NdOCl单晶材料本身的X射线吸收能力比较强,可以提高灵敏度。同时,二维形状的材料有利于将器件尺寸减小,提高分辨率;同时,器件尺寸的减小有利于提高工作电场,而材料本身可以耐受很高的电场,所以可以进一步提高分辨率。
4.本发明利用二维NdOCl单晶材料制备的X射线探测器在10V偏压下其灵敏度可以达到1.2×108μC Gyair -1cm-2,比目前商用非晶硒探测器的灵敏度增加了6个数量级。
5.本发明所制备的NdOCl单晶材料的耐击穿电压高,其制备的探测器可在6×107Vm-1的电场下工作,高的电场有利于提高探测器的分辨率。
6.本发明利用二维微纳器件作为X射线探测器具有效率高、能耗低、易集成、工艺兼容等优势。
附图说明
图1是本发明实施例1制备的NdOCl晶体的结构示意图;
图2是本发明实施例1制备的二维NdOCl材料的光学显微镜俯视图;
图3是本发明实施例1制备的二维NdOCl材料的X射线衍射图;
图4和图5均为本发明实施例1制备的二维NdOCl材料的透射电镜表征图;
图6是本发明实施例2制备的X射线探测器的结构示意图;
图7是本发明实施例2制备的X射线探测器加光前后的电流-电压曲线;
图8是本发明实施例2制备的X射线探测器在周期性X射线照射下的电流-时间曲线;
图9是本发明实施例3制备的X射线探测器的结构示意图;
图10是本发明实施例3制备的X射线探测器加光前后的电流-电压曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供了一种专门用于X射线探测用,并且灵敏度高、稳定性高、无毒无害、制备简单的二维NdOCl单晶材料。同时,本发明一方面提供了一种二维NdOCl单晶材料及其制备方法,另一方面还提供了一种二维NdOCl单晶材料作为光电导材料的X射线探测器及其制备方法。
在一个方面,本发明提供了一种二维NdOCl单晶材料及其制备方法,具体实施步骤如下:
步骤一:将NdCl3·6H2O研磨成粉末,置于马弗炉中加热升温至500~900℃,保温12~24小时,煅烧得到NdOCl粉末;
步骤二:将步骤一得到的NdOCl粉末与助熔剂按质量比为1:1至5:1的比例混合作为前驱体放置于瓷舟中,将载有前驱体的瓷舟置于水平管式炉的中心温区,将衬底置于中心温区或者下游温区,所述助熔剂为氯化盐,所述衬底为带氧化层的掺杂硅片、云母片、蓝宝石中的任意一种;
步骤三:在管式炉中通入氩气,并保持50~200sccm的气流量,将中心温区加热至700~1000℃,保温10~30min,自然冷却得到二维NdOCl单晶。
所述二维NdOCl单晶材料,形状为矩形,厚度为5~100nm,矩形的边长为5~30μm。
在另一个方面,本发明提供了一种二维NdOCl单晶材料作为光电导材料的X射线探测器,包括以下步骤:
步骤一:取衬底,将二维NdOCl单晶材料通过生长或转移置于衬底上表面,所述衬底可以为带氧化层的掺杂硅片、云母片、蓝宝石中任意一种;
步骤二:设计电极图案,可用紫外曝光和电子束曝光,电极可以是任意图案;
步骤三:制备金属电极,可用电子束沉积和热蒸镀,金属电极的厚度为50~100nm,可用金、银、铝、铂、钛等金属材料作为电极材料,优选金作为电极材料,制备金电极时先蒸镀5~10nm铬金属作为粘附层。
X射线照射在上述探测器表面,所述二维NdOCl单晶材料吸收X射线产生电子空穴,所述电极用以连接直流电源,施加偏压,使电子空穴定向移动产生光电流,从而实现X射线探测功能。
实施例1
按照本发明提供的制备二维NdOCl单晶材料的方法实施,采用水平管式炉,NdOCl粉末100mg,氯化盐(如NaCl)50mg,衬底为蓝宝石,中心温区750℃,保温时间30min。在反应前先进行预抽真空,然后充入Ar气至一个大气压,保持500sccm的气流量洗气5min,反应过程中通入100sccm流量的Ar气并且保持压强为一个大气压。反应结束后载气保持不变,产物随炉冷却至室温,蓝宝石衬底收集产物,得到二维NdOCl单晶材料,该晶体材料为纳米片状结构。
图1是实施例1制备的二维NdOCl单晶材料的结构示意图,二维NdOCl单晶材料的晶体层之间通过范德华力连接。
图2是实施例1制备的二维NdOCl单晶材料的光学显微镜俯视图,二维NdOCl单晶材料均为矩形,形貌规则,表面干净。
图3是实施例1制备的二维NdOCl单晶材料的X射线衍射图,出现三个明显的特征峰分别对应二维NdOCl单晶材料的(001)、(002)和(003)晶面。
用透射电镜对实施例1制备的二维NdOCl单晶材料进行结构表征,图4是原子级高分辨晶格图像,晶面间距0.203nm和0.288nm对应NdOCl晶体的(020)和(010)晶面。图5是图4对应区域的电子衍射图案,说明制备的二维NdOCl单晶材料是一个单晶。
实施例2
按照本发明提供的一种二维材料X射线探测器的制备方法实施,二维NdOCl单晶材料是实施例1制备并转移到衬底上,衬底采用带氧化层的掺杂硅片,采用热蒸镀沉积10nm铬和90nm金作为电极。X射线垂直照射在二维材料表面,在电极两端施加偏压,测试光电流和暗电流。
图6是实施例2制备的X射线探测器的结构示意图,二维NdOCl单晶材料置于带氧化层的掺杂硅片表面,一对Au/Cr对电极沉积在二维NdOCl单晶材料的上表面。
图7是实施例2测试的加X射线前后的电流-电压曲线图,插图是实际器件的光学显微镜图。X射线照射后器件的电流明显上升,在10V的偏压下,计算得到其灵敏度为1.2×108μC Gyair -1cm-2,这说明二维NdOCl单晶材料是一个非常有应用潜力的X射线探测材料。
图8是实施例2测试的周期性X射线照射下的电流-时间曲线,施加的偏压为10V。曲线表明,所制备的探测器的信噪比为11,而且对于X射线的响应快,重复性好。
实施例3
按照本发明提供的一种二维材料X射线探测器的制备方法实施,衬底采用带氧化层的掺杂硅片,通过机械剥离将石墨烯转移到衬底上,将实施例1制备的二维NdOCl单晶材料转移到石墨烯表面,设计电极图案,两个电极分别置于二维NdOCl单晶材料表面和石墨烯表面。采用热蒸镀沉积10nm铬和90nm金作为电极。X射线垂直照射在二维材料表面,在电极两端施加偏压,测试光电流和暗电流。
图9是实施例3制备的X射线探测器的结构示意图,这是一个在纳米片上下表面构筑电极的器件,石墨烯作为底电极与二维NdOCl单晶材料下表面接触,Au/Cr作为顶电极连接二维NdOCl单晶材料的上表面。
图10是实施例3制备的X射线探测器加光前后的电流-电压曲线,插图为实际器件的光学显微镜图。在10V的偏压下的灵敏度为9.6×107μC Gyair -1cm-2,实施例3证明上下电极结构的光电探测器同样具有优异的X射线探测性能。
实施例4
按照本发明提供的制备二维NdOCl单晶材料的方法实施,采用水平管式炉,NdOCl粉末100mg,氯化盐(如NaCl)100mg,衬底为蓝宝石,中心温区700℃,保温时间30min。在反应前先进行预抽真空,然后充入Ar气至一个大气压,保持200sccm的气流量洗气5min,反应过程中通入100sccm流量的Ar气并且保持压强为一个大气压。反应结束后载气保持不变,产物随炉冷却至室温,蓝宝石衬底收集产物,得到二维NdOCl单晶材料,该晶体材料为纳米片状结构。
实施例5
按照本发明提供的制备二维NdOCl单晶材料的方法实施,采用水平管式炉,NdOCl粉末100mg,氯化盐20mg,衬底为蓝宝石,中心温区1000℃,保温时间10min。在反应前先进行预抽真空,然后充入Ar气至一个大气压,保持50sccm的气流量洗气20min,反应过程中通入200sccm流量的Ar气并且保持压强为一个大气压。反应结束后载气保持不变,产物随炉冷却至室温,蓝宝石衬底收集产物,得到二维NdOCl单晶材料,该晶体材料为纳米片状结构。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种二维NdOCl单晶材料的制备方法,其特征在于,包括以下步骤:将质量比为1:1~5:1的NdOCl粉末和助熔剂混合得到前驱体;将所述前驱体在惰性气体氛围中加热至预设温度,并在预设温度下保温,然后自然冷却,得到二维NdOCl单晶材料。
2.根据权利要求1所述的一种二维NdOCl单晶材料的制备方法,其特征在于,所述预设温度为700~1000℃,所述保温的时间为10~30min;所述助熔剂为氯化盐,用于降低NdOCl粉末的熔点。
3.根据权利要求1所述的一种二维NdOCl单晶材料的制备方法,其特征在于,所述惰性气体的流量为50~200sccm,所述惰性气体为氩气。
4.根据权利要求1所述的一种二维NdOCl单晶材料的制备方法,其特征在于,将NdCl3·6H2O研磨成粉末,在温度为500~900℃的条件下保温12~24h,从而煅烧得到NdOCl粉末。
5.根据权利要求1-4任一项所述的一种二维NdOCl单晶材料的制备方法,其特征在于,所述二维NdOCl单晶材料为厚度为5~100nm的矩形结构,且该矩形结构的边长为5~30μm。
6.一种采用权利要求1-5任一项制备方法制备得到的二维NdOCl单晶材料。
7.一种如权利要求6所述的二维NdOCl单晶材料在X射线探测器中的应用。
8.一种X射线探测器,其特征在于,包括衬底、布置于所述衬底上的如权利要求6所述的二维NdOCl单晶材料以及沉积于所述二维NdOCl单晶材料上的两个彼此分离的电极。
9.根据权利要求7所述的一种X射线探测器,其特征在于,所述衬底为带氧化层的掺杂硅片、云母片、蓝宝石中的任意一种;所述电极为氧化铟锡电极、银电极、金电极、铜电极、铝电极中的任意一种或几种;优选的,所述电极的厚度为50~100nm。
10.一种如权利要求8或9任一项所述X射线探测器的制备方法,其特征在于,包括以下步骤:首先,将二维NdOCl单晶材料通过生长或转移置于衬底上表面;然后,在所述二维NdOCl单晶材料表面刻画两个彼此分离的电极图案;最后,根据刻画的电极图案,在所述二维NdOCl单晶材料表面制备两个彼此分离的电极;
优选的,在制备两个彼此分离的电极之前,需先蒸镀一层粘附层,该粘附层为厚度为5~10nm的铬金属。
CN202010051976.7A 2020-01-17 2020-01-17 一种二维NdOCl单晶材料的制备方法、产品及应用 Active CN111411398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010051976.7A CN111411398B (zh) 2020-01-17 2020-01-17 一种二维NdOCl单晶材料的制备方法、产品及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010051976.7A CN111411398B (zh) 2020-01-17 2020-01-17 一种二维NdOCl单晶材料的制备方法、产品及应用

Publications (2)

Publication Number Publication Date
CN111411398A true CN111411398A (zh) 2020-07-14
CN111411398B CN111411398B (zh) 2021-07-02

Family

ID=71490872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010051976.7A Active CN111411398B (zh) 2020-01-17 2020-01-17 一种二维NdOCl单晶材料的制备方法、产品及应用

Country Status (1)

Country Link
CN (1) CN111411398B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287743A (zh) * 2022-08-16 2022-11-04 北京航空航天大学 一种二维材料的合成方法、二维材料及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402739A (zh) * 2018-12-19 2019-03-01 清华-伯克利深圳学院筹备办公室 一种二维铋氧硒原子晶体材料、及其制备方法和用途
CN109449244A (zh) * 2018-10-22 2019-03-08 中国科学院上海技术物理研究所 一种二维半导体和铁电材料功能互补型超宽光谱探测器
CN110127745A (zh) * 2019-06-05 2019-08-16 郑州大学 一种制备NdOCl的方法
CN110316752A (zh) * 2019-05-28 2019-10-11 国家纳米科学中心 一种氯氧化镱纳米片及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449244A (zh) * 2018-10-22 2019-03-08 中国科学院上海技术物理研究所 一种二维半导体和铁电材料功能互补型超宽光谱探测器
CN109402739A (zh) * 2018-12-19 2019-03-01 清华-伯克利深圳学院筹备办公室 一种二维铋氧硒原子晶体材料、及其制备方法和用途
CN110316752A (zh) * 2019-05-28 2019-10-11 国家纳米科学中心 一种氯氧化镱纳米片及其制备方法和应用
CN110127745A (zh) * 2019-06-05 2019-08-16 郑州大学 一种制备NdOCl的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JILALI ET AL.: "FLUX GROWTH OF NdOCI SINGLE CRYSTALS", 《JOURNAL OF CRYSTAL GROWTH》 *
YUYU YAO ET AL.: "Growth and Raman Scattering Investigation of a New 2D MOX Material: YbOCl", 《ADCANCED FUNCTIONAL MATERIALS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287743A (zh) * 2022-08-16 2022-11-04 北京航空航天大学 一种二维材料的合成方法、二维材料及其应用
CN115287743B (zh) * 2022-08-16 2023-12-22 北京航空航天大学 一种二维材料的合成方法、二维材料及其应用

Also Published As

Publication number Publication date
CN111411398B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
Young et al. growth of Al-, Ga-, and In-doped ZnO nanostructures via a low-temperature process and their application to field emission devices and ultraviolet photosensors
TWI669781B (zh) 包括石墨烯基底層之電子裝置及其製造方法(一)
Chu et al. Fabrication and characterization of Ni-Doped ZnO nanorod arrays for UV photodetector application
Xu et al. A metal–semiconductor–metal detector based on ZnO nanowires grown on a graphene layer
KR101698228B1 (ko) 그래핀의 대면적 증착 및 도핑과 이를 포함하는 제품
KR101724773B1 (ko) 이형-에피택셜하게 성장한 그래핀의 결합 제거 및 이전 기법과 이를 포함하는 제품
Tsai et al. A visible-blind TiO2 nanowire photodetector
EP2584072A2 (en) Large area deposition of graphene hetero-epitaxial growth, and products including the same
Wang et al. Ultra-long high quality catalyst-free WO3 nanowires for fabricating high-performance visible photodetectors
Akgul et al. Fabrication and characterization of copper oxide-silicon nanowire heterojunction photodiodes
CN103413594A (zh) 拓扑绝缘体柔性透明导电材料及其制备方法与应用
CN109755342B (zh) 一种直接型x射线探测器及其制备方法
Young et al. Self-powered ZnO nanorod ultraviolet photodetector integrated with dye-sensitised solar cell
Vivek et al. Fabrication of illumination-dependent Cu/p-Si schottky barrier diodes by sandwiching MoO3 nanoplates as an interfacial layer via JNSP technique
CN111411398B (zh) 一种二维NdOCl单晶材料的制备方法、产品及应用
Shet et al. Effects of substrate temperature and RF power on the formation of aligned nanorods in ZnO thin films
Kumar et al. Ultra-high responsivity (> 12.34 kA W− 1) of Ga–In bimetallic oxide nanowires based deep-UV photodetector
Lin et al. The preparation and high photon-sensing properties of fluorinated tin dioxide nanowires
Jawad et al. An alternative method to grow Ge thin films on Si by electrochemical deposition for photonic applications
Li et al. Synthesis and photocatalytic properties of SnSe2/Se heterojunction films
Zhu et al. Middle-ultraviolet-enhanced photodetectors based on Mg0. 4Zn0. 6O/ZnO homojunction with a high selectivity for 300 nm around light
Musaoğlu et al. Investigation of the structural, surface, optical and electrical properties of the Indium doped CuxO thin films deposited by a thermionic vacuum arc
Berg et al. Structure and morphology of chemical‐sprayed CdS films
Carvajal et al. Photochemical decoration of metal and metal-oxide nanoparticles on highly oriented SnO2 nanorod films for improved hybrid gas sensors and photo-detectors
Obradovic et al. Charging gold nanoparticles in ZnO by electric fields

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant