CN111403603A - 一种含有bcp插入层的8-羟基喹啉铝/金属异质结热电子光电探测器及其制作方法 - Google Patents

一种含有bcp插入层的8-羟基喹啉铝/金属异质结热电子光电探测器及其制作方法 Download PDF

Info

Publication number
CN111403603A
CN111403603A CN202010145549.5A CN202010145549A CN111403603A CN 111403603 A CN111403603 A CN 111403603A CN 202010145549 A CN202010145549 A CN 202010145549A CN 111403603 A CN111403603 A CN 111403603A
Authority
CN
China
Prior art keywords
layer
bcp
photoelectric detector
metal
insertion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010145549.5A
Other languages
English (en)
Other versions
CN111403603B (zh
Inventor
翟爱平
赵成杰
崔艳霞
王文艳
李国辉
郝玉英
吴玉程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202010145549.5A priority Critical patent/CN111403603B/zh
Publication of CN111403603A publication Critical patent/CN111403603A/zh
Application granted granted Critical
Publication of CN111403603B publication Critical patent/CN111403603B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及光电探测器制作领域,一种含有BCP插入层的8‑羟基喹啉铝/金属异质结的热电子光电探测器,由阳极层、有机半导体层、插入层、银纳米颗粒层、阴极层组成,阳极层为铟锡氧化物ITO,银纳米颗粒层和阴极层构成金属复合电极层,有机半导体层与金属复合电极层构成肖特基结,同时在肖特基结的界面插入很薄的BCP作为界面插入层。本发明还涉及该含有BCP插入层的8‑羟基喹啉铝/金属异质结的热电子光电探测器的制备方法。本发明中设计的光电探测器,在正向偏压的条件下,暗电流保持在几十皮安级别,而亮电流呈现开启状态。

Description

一种含有BCP插入层的8-羟基喹啉铝/金属异质结热电子光电 探测器及其制作方法
技术领域
本发明涉及光电探测器制作领域,具体是一种含有BCP插入层的8-羟基喹啉铝/金属异质结热电子光电探测器及其制作方法。
背景技术
图像传感器与通讯行业的发展对柔性、低成本、高响应速度的光电探测器的需求日益增长。与无机半导体相比,有机半导体具有柔性、种类丰富、带隙可调、价格低廉等诸多优点。然而传统有机半导体能带较宽,不利于器件在近红外/红外波段的光电探测。近年来,表面等离激元(SPPs)因实现对光与物质相互作用、光子吸收、热发射、波长及能量转换的操控而引起了极大的关注。其中,金属纳米结构局域表面等离激元共振衰减产生的热电子,可以在半导体与金属形成的肖特基势垒形成一个可测量的光电流。从而拓宽有机光电探测器的吸收光谱,满足人类在生产、生活中对新一代光电探测器的需求。但是金属/半导体接触时金属会向半导体层扩散,容易造成不良肖特基结的形成,影响器件的重复性。在金属/半导体接触界面插入薄的界面层可解决这一问题。
发明内容
本发明所要解决的技术问题是:如何在保证有机热电子器件低成本、宽带响应优势的前提下,提高器件的重复性。
本发明所采用的技术方案是:一种含有BCP插入层的8-羟基喹啉铝/金属异质结的热电子光电探测器,由阳极层、有机半导体层、插入层、银纳米颗粒层、阴极层组成,阳极层为铟锡氧化物ITO,银纳米颗粒层和阴极层构成金属复合电极层,有机半导体层与金属复合电极层构成肖特基结,同时在肖特基结的界面插入很薄的BCP作为界面插入层。
有机半导体层为厚度50纳米 ±0.5纳米的8-羟基喹啉铝,银纳米颗粒层为5±0.03纳米的银纳米颗粒,阴极层为10±0.05纳米的半透明Al层,插入层为2±0.01纳米的BCP。
一种制作含有BCP插入层的8-羟基喹啉铝/金属异质结热电子光电探测器的方法,按照如下的步骤进行:
步骤一、ITO玻璃预处理,用洗洁精与去污粉将ITO玻璃搓洗干净,分别用无水乙醇、丙酮、异丙醇各超声清洗15分钟,于异丙醇中待用。
步骤二、热蒸镀工艺,用紫外光照射处理洁净的氧化铟锡导电玻璃后作为阳极层,以 0.2 纳米/秒的速率蒸镀 50±0.5纳米厚的有机半导体Alq3层,然后以 0.1 纳米/秒的速率蒸镀 2±0.01纳米的BCP插入层,接着以 0.02 纳米/秒的低速率蒸镀 5±0.03纳米的Ag纳米颗粒,最后以0.4 纳米/秒的速率蒸镀10±0.05纳米厚的Al阴极。
作为一种优选方式:步骤二中,在有机半导体层成膜后需沉积一层超薄的BCP插入层,用0.02纳米/秒的低速率以利于Ag形成纳米颗粒,并以0.4 纳米/秒的高速率保型蒸镀Al电极。
本发明的有益效果是:本发明利用金属Ag纳米颗粒的表面等离激元效应,通过在肖特基结界面引入超薄BCP界面层,在保证有机半导体器件低成本、宽谱响应优势的前提下,增强器件的可重复性。进而获得高性能、重复性优良的光电探测器,相对于未加入Ag纳米颗粒的器件,器件的性能大大提高。
本发明中设计的光电探测器,在正向偏压的条件下,暗电流保持在几十皮安级别,而亮电流呈现开启状态。
附图说明
图1:本发明的紫外-可见-红外吸收光谱;
图2:本发明ITO/Alq3/Ag NPs/BCP/Al在850纳米光照下的电流-电压曲线;
图3:本发明ITO/Alq3/Ag NPs/BCP/Al在375纳米光照下的电流-电压曲线。
具体实施方式
本发明所使用的材料有:高纯铝丝(Al),高纯银粒(Ag),8-羟基喹啉铝(Alq3),2,9-二甲基-4,7-联苯-1,10-菲罗啉(BCP),雕牌洗洁精(成分为软化水、表面活性剂、维生素E酯、柠檬精华),去离子水(H2O),丙酮(CH3COCH3),异丙醇(C3H8OH)。其组合用量如下:
Al:2000毫克
Ag:1000 毫克
Alq3:200 毫克
BCP:50毫克
丙酮:250 毫升
去离子水:2000 毫升
异丙醇:300 毫升
洗洁精:2±0.5 毫升
导电玻璃(氧化铟锡ITO):25 毫摩尔/升×25 毫摩尔/升×1 毫摩尔/升
本发明有机光电探测器件为五层结构,分别为阳极层、有机半导体层、插入层、银纳米颗粒层、阴极层,阳极层为ITO透明电极,该电极制备在玻璃衬底上,作为基底层,阳极层上方为有机半导体Alq3层;有机半导体层上方为BCP插入层;插入层上方为Ag纳米颗粒;其上为Al阴极层。
具体制备方法如下:
(1)精选化学物质
对制备所需的化学物质材料要进行精选,并进行质量、纯度、浓度、细度、精度控制:(毫克)
Al:固态丝状,丝状直径2毫米,纯度 99.99%
Ag:固态颗粒,φ2*5 毫米,纯度 99.99%
Alq3:固态粉体,粉体粒径≤28 微米,纯度 98%
BCP:固态粉体,粉体粒径≤50 微米,纯度 98%
丙酮:液态液体,纯度 99.5%
去离子水:液态液体,纯度 99.99%
异丙醇:液态液体,纯度 99.5%
导电玻璃(氧化铟锡ITO):氧化铟锡 ITO,固态固体,透射率86%,方阻 10 Ω/□,表面粗糙度 Ra 0.16 - 0.32 纳米
(2)导电玻璃预处理
•氧化铟锡导电玻璃置于有SDS(十二烷基硫酸钠)粉和洗洁精的混合溶液中超声1小时;
•带一次性手套反复搓洗氧化铟锡导电玻璃正反面,直到用去离子水冲洗正反面形成水膜为止;
•将导电玻璃置于超声波清洗器中,加入去离子水,超声清洗15 分钟;
•将导电玻璃置于超声波清洗器中,加入丙酮,超声清洗15 分钟;
•将导电玻璃置于超声波清洗器中,加入异丙醇,超声清洗15 分钟;
(3)真空蒸镀、形态转换、气相沉积、薄膜生长、制备有机光电探测器件
1) 制备在真空蒸镀炉中进行;
2) 放置导电玻璃
打开真空蒸镀炉,将导电玻璃固定于炉腔顶部的转盘上,导电玻璃氧化铟锡面朝下;
3) 将 2000 毫克的铝丝缠于钨丝上,1000 毫克的高纯银颗粒置于钽舟中,200 毫克的喹啉铝置于石英坩埚中,80 毫克的 BCP 置于另一石英坩埚中;
4) 调整炉壁上的石英测厚探头、石英监测探头,使石英测厚探头对准转盘上的导电玻璃,使石英监测探头分别对准 Al,Ag,Alq3和 BCP;
5) 关闭真空蒸镀炉舱门,并密封;
6) 开启机械真空泵、分子真空泵,抽取炉腔内空气,使炉内真空度≤0.0005 帕,并保持恒定;
7) 开启转盘,导电玻璃随之转动,转盘转速 8 转/分钟;
8) 开启石英测厚探头;
9) 蒸镀喹啉铝有机半导体层:
开启盛有 Alq3 的石英坩埚加热电源,升温至 120 ℃后,开始一次升10℃缓慢升温至160 ℃左右,此时,Alq3 粉末开始由固态升华为气态,调节石英坩埚加热电源控制按键,增加温度,使薄膜生长速率维持在 0.2 纳米/秒,气态分子在薄银层上沉积生长,成平面膜层,膜层厚度为 50±0.5 纳米;
10) 蒸镀 BCP 插入层:
开启盛有 BCP的石英坩埚加热电源,升温至 50 ℃后,开始一次升5℃缓慢升温至 70℃左右,此时,BCP粉末开始由固态升华为气态,调节石英坩埚加热电源控制按键,缓慢增加温度,使薄膜生长速率维持在 0.1 纳米/秒,气态分子在薄银层上沉积生长,成平面膜层,膜层厚度为 2±0.01 纳米;
11) 蒸镀银纳米颗粒:
首先转动炉腔顶部的掩膜变换转盘,调整为电极掩膜;开启盛有银的钽舟电源,使银由固态升华至气态,调节钽舟电源控制旋钮,增大电流,使颗粒生长速率维持在 0.02 纳米/秒的低速率,气态分子在Alq3 层上沉积生长成 Ag 纳米颗粒,厚度为 5±0.03 纳米;
12) 蒸镀铝透明电极:
开启缠有 Al 的钨丝电源,使 Al 由固态升华至气态,调节钽舟电源控制旋钮,增大电流,使薄膜生长速率维持在 0.4 纳米/秒,气态分子在 Ag 纳米颗粒上沉积生长,成覆盖膜层,膜层厚度为 10±0.05 纳米;
在 9-12 制备过程中,石英测厚探头测量蒸镀厚度,并由显示屏显示其厚度值;
在 9-12 制备过程中,中间观察窗观察蒸镀过程和状况;
在 9-12 制备过程中,蒸镀材料通过加热升华,形态转换,在导电玻璃氧化铟锡面上气相沉积,Alq3 ,BCP 和 Al 生成平面膜层,Ag 形成纳米颗粒;
13) 真空状态下随炉静置冷却
膜层蒸镀完成后,有机光电探测器在真空炉中静置冷却 30 分钟;
14) 收集产品:含有 BCP 插入层的有机/金属肖特基结的热电子光电探测器
关闭分子真空泵、机械真空泵;
开启进气阀;
打开蒸镀舱舱门;
取出制备了 OPD 器件的导电玻璃,即:含有 BCP 插入层的 8-羟基喹啉铝/金属异质结的热电子光电探测器。
(4)检测、分析、表征
对制备的有机光电探测器性能进行检测、分析、表征;
透反射积分球用于表征器件在300 ~ 1100纳米波段的光吸收性能;Thorlabs M375L4、M850L4 LED光源和半导体参数分析仪B1500A用于测试器件的暗态和恒光照电流-电压曲线。
结论:从吸收谱(图1)可以看出,相对于ITO/Alq3/Al的器件,加入 Ag 纳米颗粒后,器件ITO/Alq3/Ag NPs/Al在300 ~ 1100纳米波段的吸收明显提高。加入超薄 BCP 插入层后,对ITO/Alq3/Ag NPs/Al的吸收几乎不产生影响。而从 Alq3 薄膜的吸收光谱得知其在波长 450纳米以后几乎不吸光,这表明我们所制备的含有 BCP 插入层的 8-羟基喹啉铝/金属异质结热电子光电探测器在波长 450 纳米以后基本靠金属进行吸光,产生光电流。从亮态和暗态电流-电压对比图(图2,3)可看出,施加正偏压后,无论是在 14.8 毫瓦/平方厘米的 375 纳米有机层吸收波段,还是 45 毫瓦/平方厘米的 850 纳米有机层不吸收波段的光照射下,所得含有 BCP 插入层的 8-羟基喹啉铝/金属异质结热电子光电探测器均有良好的响应,850 纳米下光电流源于金属纳米颗粒表面等离激元共振产生的热电子发射效应。由于金属 Al 的功函数为 4.3 电子伏,Alq3 的 HOMO 与 LUMO 能级分别为 3.0 电子伏和 5.7 电子伏,金属与半导体费米能级的不同,接触后会形成肖特基结,而我们制备的含有 BCP 插入层的 8-羟基喹啉铝/金属异质结热电子光电探测器中加入了 Ag 纳米颗粒,经入射光照射后会激发 Ag 纳米颗粒局域表面等离激元共振效应,产生的热电子会隧穿肖特基结后到达两端电极形成的光电流。综合以上分析,通过加入 Ag 纳米颗粒,光电探测器的光吸收效率提高,从而使得亮电流提高,并且我们在肖特基结界面插入 BCP 界面层,有效地提高了ITO/Alq3/Ag NPs/Al的可重复性,最终得到了一种含 BCP 插入层的 8-羟基喹啉铝/金属异质结热电子光电探测器。
本发明与背景技术相比具有明显的先进性。我们用真空热蒸镀技术在 ITO 玻璃衬底上制备了有机半导体 Alq3 层,BCP 插入层,Ag纳米颗粒层,Al 电极层,最终获得了一种含 BCP 插入层的 8-羟基喹啉铝/金属异质结热电子光电探测器。通过对比发现加入 Ag纳米颗粒后,光电探测器的吸收提高,并在有机层不吸收的波段产生亮电流。用有机半导体与金属形成肖特基比无机半导体成本更加低廉,具有柔性特点,该方法制备的器件可重复性高,并且能够得到性能比较优良的光电探测器,具有潜在的应用价值。

Claims (4)

1.一种含有BCP插入层的8-羟基喹啉铝/金属异质结热电子光电探测器,由阳极层、有机半导体层、插入层、银纳米颗粒层、阴极层组成,其特征在于:阳极层为铟锡氧化物ITO,银纳米颗粒层和铝阴极层构成金属复合电极层,有机半导体层与金属复合电极层构成肖特基结,其中在肖特基结的界面插入很薄的BCP作为界面插入层。
2.根据权利要求1所述的一种含有BCP插入层的8-羟基喹啉铝/金属异质结热电子光电探测器,其特征在于:有机半导体层为厚度50纳米 ±0.5纳米的8-羟基喹啉铝Alq3,银纳米颗粒层为5±0.03纳米的银Ag纳米颗粒,阴极层为10±0.05纳米的半透明Al金属薄膜,插入层为2±0.01纳米的BCP。
3.制作含有BCP插入层的8-羟基喹啉铝/金属异质结热电子光电探测器的方法,其特征在于按照如下的步骤进行:
步骤一、将氧化铟锡导电玻璃进行搓洗,并用去离子水、无水乙醇、丙酮、异丙醇分别在超声条件下清洗,然后装入蒸镀炉,当压强降到0.0005帕以下时开始蒸镀;
步骤二、氧化铟锡导电玻璃在旋转条件下,以 0.2 纳米/秒的速率蒸镀 50±0.5纳米厚的有机半导体Alq3层,然后以 0.1 纳米/秒的速率蒸镀 2±0.01纳米的BCP插入层,接着以 0.02 纳米/秒的低速率蒸镀 5±0.03纳米的银纳米颗粒,最后以0.4纳米/秒的速率蒸镀10±0.05纳米厚的Al阴极。
4.根据权利要求3所述的制作一种含有BCP插入层的8-羟基喹啉铝/金属异质结热电子光电探测器的方法,其特征在于:步骤二中,在有机半导体层成膜后需沉积一层超薄的BCP插入层,然后再用低速率蒸镀Ag以形成纳米颗粒,随后,需保形蒸镀Al电极。
CN202010145549.5A 2020-03-05 2020-03-05 一种含有bcp插入层的8-羟基喹啉铝/金属异质结热电子光电探测器及其制作方法 Active CN111403603B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010145549.5A CN111403603B (zh) 2020-03-05 2020-03-05 一种含有bcp插入层的8-羟基喹啉铝/金属异质结热电子光电探测器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010145549.5A CN111403603B (zh) 2020-03-05 2020-03-05 一种含有bcp插入层的8-羟基喹啉铝/金属异质结热电子光电探测器及其制作方法

Publications (2)

Publication Number Publication Date
CN111403603A true CN111403603A (zh) 2020-07-10
CN111403603B CN111403603B (zh) 2023-07-04

Family

ID=71428545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010145549.5A Active CN111403603B (zh) 2020-03-05 2020-03-05 一种含有bcp插入层的8-羟基喹啉铝/金属异质结热电子光电探测器及其制作方法

Country Status (1)

Country Link
CN (1) CN111403603B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2764107C1 (ru) * 2020-12-27 2022-01-13 Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева» (РХТУ им. Д.И. Менделеева) Способ получения высокочистых комплексов 8-гидроксихинолина с металлами

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253632A (ja) * 2005-02-10 2006-09-21 Brother Ind Ltd 有機フォトダイオード及びその製造方法
WO2008008477A2 (en) * 2006-07-14 2008-01-17 The Trustees Of Princeton University Architectures and criteria for the design of high efficiency organic photovoltaic cells
CN103606627A (zh) * 2013-12-06 2014-02-26 电子科技大学 金属网嵌套异质结的有机太阳能电池及其制备方法
JP2014179374A (ja) * 2013-03-13 2014-09-25 Mitsubishi Chemicals Corp 太陽電池
CN104137287A (zh) * 2010-10-15 2014-11-05 密歇根大学董事会 用于控制光伏器件中光活性层的外延生长的材料
US20170350839A1 (en) * 2015-03-10 2017-12-07 Fujitsu Limited Gas sensor and sensor apparatus
CN110783465A (zh) * 2019-11-06 2020-02-11 太原理工大学 基于8-羟基喹啉铝/金属异质结的热电子光电探测器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253632A (ja) * 2005-02-10 2006-09-21 Brother Ind Ltd 有機フォトダイオード及びその製造方法
WO2008008477A2 (en) * 2006-07-14 2008-01-17 The Trustees Of Princeton University Architectures and criteria for the design of high efficiency organic photovoltaic cells
CN101512789A (zh) * 2006-07-14 2009-08-19 普林斯顿大学理事会 高效率有机光伏电池设计的体系结构和准则
CN104137287A (zh) * 2010-10-15 2014-11-05 密歇根大学董事会 用于控制光伏器件中光活性层的外延生长的材料
JP2014179374A (ja) * 2013-03-13 2014-09-25 Mitsubishi Chemicals Corp 太陽電池
CN103606627A (zh) * 2013-12-06 2014-02-26 电子科技大学 金属网嵌套异质结的有机太阳能电池及其制备方法
US20170350839A1 (en) * 2015-03-10 2017-12-07 Fujitsu Limited Gas sensor and sensor apparatus
CN110783465A (zh) * 2019-11-06 2020-02-11 太原理工大学 基于8-羟基喹啉铝/金属异质结的热电子光电探测器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUANLIANG CHEN ET AL: "Effect of BCP buffer layer on eliminating charge accumulation for high performance of", 《RSC ADVANCES》 *
NAOYUKI SHIBAYAMA ET AL: "Design of BCP buffer layer for inverted perovskite solar cells using ideal factor", 《APL MATERIALS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2764107C1 (ru) * 2020-12-27 2022-01-13 Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева» (РХТУ им. Д.И. Менделеева) Способ получения высокочистых комплексов 8-гидроксихинолина с металлами

Also Published As

Publication number Publication date
CN111403603B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
Guijarro et al. Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells
Ren et al. Enhanced H2 sensitivity at room temperature of ZnO nanowires functionalized by Pd nanoparticles
Khan et al. Enhanced photocurrent performance of partially decorated Au nanoparticles on ZnO nanorods based UV photodetector
CN109065726B (zh) 一种基于表面等离激元共振的二维层状钙钛矿光电探测器及其制作方法
CN109841703B (zh) 一种全无机钙钛矿光电探测器及其制备方法
Jiang et al. Semiconductor properties of Ag2O film formed on the silver electrode in 1 M NaOH solution
Kaawash et al. Highly stable and sensitive photon detection performance of ZnO thin film for ultraviolet light
Yao et al. WS2 coating and Au nanoparticle decoration of ZnO nanorods for improving light-activated NO2 sensing
CN111403603B (zh) 一种含有bcp插入层的8-羟基喹啉铝/金属异质结热电子光电探测器及其制作方法
CN110783465B (zh) 基于8-羟基喹啉铝/金属异质结的热电子光电探测器
Gkini et al. Energy band tuning induced by g-C3N4 interface engineering for efficient and stable perovskite solar cells
KR20120098361A (ko) 금속산화물 나노구조체를 구비한 자외선 센서 및 이를 응용한 화재경보장치
Zhao et al. Influence of CsPbBr3/TiO2 interfaces deposited with magnetron sputtering and spin-coating methods on the open voltage deficit and efficiency of all-inorganic CsPbBr3 planar solar cells
Mukametkali et al. Effect of the TiO2 electron transport layer thickness on charge transfer processes in perovskite solar cells
Jin et al. Localized surface plasmon-enhanced ultraviolet and visible photoresponse based on ZnO films with Au nanoparticles
Chen et al. High-performance polymer LED using NiO x as a hole-transport layer
Wang et al. Novel ethanol vapor annealing treatment of SnO2 quantum dots film for highly efficient planar heterojunction perovskite solar cells
Wu et al. Simultaneous red–green–blue electroluminescent enhancement directed by surface plasmonic “far-field” of facile gold nanospheres
CN110767768B (zh) 有机/金属肖特基结堆栈热电子光电探测器及制作方法
CN113054111B (zh) 基于双电子陷阱辅助的有机光电倍增探测器及其制备方法
Chen et al. Highly-luminous performance of polymer light-emitting devices utilizing platinum/nickelous oxide as the anode material
CN114686806A (zh) 一种高吸收、宽光谱黑硅复合材料及其制备方法
Soonmin et al. A short review of recent advances in copper oxide nanostructured thin films
CN112310242B (zh) PbS薄膜的敏化方法、红外光电探测器及其制备方法
Madani-Mashaei et al. Optimization of sol–gel based ZnO metal–semiconductor–metal UV detectors by Zr doping through sputtering method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant