CN111401747A - 序列型地震作用下砌体结构的易损性分析方法 - Google Patents
序列型地震作用下砌体结构的易损性分析方法 Download PDFInfo
- Publication number
- CN111401747A CN111401747A CN202010186488.7A CN202010186488A CN111401747A CN 111401747 A CN111401747 A CN 111401747A CN 202010186488 A CN202010186488 A CN 202010186488A CN 111401747 A CN111401747 A CN 111401747A
- Authority
- CN
- China
- Prior art keywords
- earthquake
- seismic
- probability
- masonry
- wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000009471 action Effects 0.000 title claims abstract description 27
- 238000004364 calculation method Methods 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 230000010355 oscillation Effects 0.000 claims abstract description 3
- 238000006073 displacement reaction Methods 0.000 claims description 25
- 239000010410 layer Substances 0.000 claims description 17
- 230000033001 locomotion Effects 0.000 claims description 15
- 230000009467 reduction Effects 0.000 claims description 15
- 230000001133 acceleration Effects 0.000 claims description 12
- 238000013016 damping Methods 0.000 claims description 9
- 230000005484 gravity Effects 0.000 claims description 9
- 238000001228 spectrum Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000000342 Monte Carlo simulation Methods 0.000 claims description 4
- 238000005315 distribution function Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 3
- 239000004570 mortar (masonry) Substances 0.000 claims description 3
- 238000005192 partition Methods 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims description 3
- 108010074864 Factor XI Proteins 0.000 claims description 2
- 238000010008 shearing Methods 0.000 claims description 2
- 238000011160 research Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 238000012038 vulnerability analysis Methods 0.000 description 2
- 108090000056 Complement factor B Proteins 0.000 description 1
- 102000003712 Complement factor B Human genes 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Strategic Management (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Physics (AREA)
- Operations Research (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Educational Administration (AREA)
- Computational Mathematics (AREA)
- Quality & Reliability (AREA)
- Game Theory and Decision Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Business, Economics & Management (AREA)
- Evolutionary Biology (AREA)
- Tourism & Hospitality (AREA)
- Bioinformatics & Computational Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Algebra (AREA)
- Marketing (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
本发明提供一种序列型地震作用下砌体结构的易损性分析方法,包括步骤:S1:根据结构特性随机参数模型和序列型地震动随机参数模型建立地震结构样本库;S2:分析结构概率抗震能力,根据抗震措施类别确定结构性能水平及相应性能指标的概率分布模型;S3:分析结构概率地震需求,确定序列型地震作用下结构性能指标需求及其概率分布模型;S4、通过所述结构概率抗震能力和所述结构概率地震需求计算序列型地震作用下结构反应需求的超越概率,确定砌体结构的易损性曲线。本发明的一种序列型地震作用下砌体结构的易损性分析方法,避免采用耗时耗力的非线性时程方法,计算效率高,同时能保证计算精度,可作为评定砌体结构抗震能力的一种手段。
Description
技术领域
本发明涉及抗震性能评估技术领域,尤其涉及一种序列型地震作用下砌体结构的易损性分析方法。
背景技术
一次剧烈地震发生后往往伴随有大量强余震,由于主震和余震时间间隔比较短,主震后受损的结构来不及修复便遭遇余震,强余震导致结构的损伤进一步加深,严重时会导致结构的局部倒塌甚至整体倒塌,如1999年集集地震、2008年汶川地震、2011年基督城地震,2015年尼泊尔地震,2016年意大利中部地震。而现有世界上大多抗震设计规范主要考虑单次地震作用,未考虑余震对结构破坏的影响,因此急需科学的理论指导来提高工程结构的抗震性能。
目前考虑余震影响的单体建筑的分析已经有很多研究成果,如主余震对钢筋混凝土框架、木结构、钢框架、钢筋混凝土剪力墙结构等的影响,但是仍缺乏余震作用对砌体结构影响的研究。砌体结构在我国应用广泛,尤其是新中国成立以来,我国大多数的民用与工业建构筑物采用该结构体系。进入新世纪后,中国的经济和技术不断的发展,城市建筑中砌体结构占比有所减少,但砌体结构绝对数量仍然很大。预测余震对砌体结构的影响对震后应急救援决策有着重要意义,因此,需要提出一套预测砌体结构主余震震害的方法。
易损性是地震动强度与建筑结构破坏程度之间的关系,反映了结构在不同地震下的抗震能力,也为结构抗震加固、风险评估等研究提供必要的依据。建立砌体结构地震易损性曲线的方法有很多,常用的步骤是:采用概率性分析方法(Monte Carlo法、拉丁超立方等)和非线性时程分析法对结构在地震下的反应(位移、延性、损伤指数等)进行分析,并与采用损伤指标(位移、延性、损伤指数等)划分结构的损伤状态水平进行对比和统计分析,进而得到结构的易损性曲线。但是该方法需进行大量非弹性时程分析,同时序列型地震动相对于单次地震动时程更长,计算效率低,且由于地震动数量限制无法完整反映各参数的随机性。
发明内容
针对上述现有技术中的不足,本发明提供一种序列型地震作用下砌体结构的易损性分析方法,该方法计算效率高,同时保持了计算的准确度。
为了实现上述目的,本发明提供一种序列型地震作用下砌体结构的易损性分析方法,包括步骤:
S1:根据结构特性随机参数模型和序列型地震动随机参数模型建立地震结构样本库;
S2:分析结构概率抗震能力,根据抗震措施类别确定结构性能水平及相应性能指标的概率分布模型;
S3:分析结构概率地震需求,确定序列型地震作用下结构性能指标需求及其概率分布模型;
S4、通过所述结构概率抗震能力和所述结构概率地震需求计算序列型地震作用下结构反应需求的超越概率,确定砌体结构的易损性曲线。
优选地,所述S1步骤进一步包括步骤:
S11:确定所述砌体结构和序列型地震动的随机变量,所述随机变量包括材料强度、几何尺寸、重力荷载、主震地震动强度、余震相对强度和场地卓越周期,并确定各所述随机变量的概率分布模型;
S12:利用蒙特卡罗法或拉丁超立方方法,结合各所述随机变量的概率分布模型生成随机的所述地震结构样本库。
优选地,根据抗震措施类别将所述砌体结构分为五类,所述砌体结构的种类包括:
A类措施,所述A类措施按现行标准要求设置圈梁,但未设置构造柱;
B类措施,所述B类措施按现行标准要求设置圈梁,并在外墙四角及对应转角处、错层部位横墙与外纵墙交接处、大房间内外墙交接处,较大洞口两侧、楼和电梯间四角和楼梯斜梯段上下端对应墙体处设置所述构造柱;
C类措施,所述C类措施满足所述B类措施的要求,还在楼梯间对应的内横墙与外纵墙交接处、每隔12~15m处和单元横墙与外纵墙交接处设置所述构造柱;
D类措施,所述D类措施满足所述B类措施的要求,还在隔开间横墙轴线与外墙交接处和山墙与内纵墙交接处设置所述构造柱;和
E类措施,所述E类措施满足所述B类措施的要求,还在内墙轴线与外墙交接处、内纵墙与横墙轴线交接处和内墙的局部较小墙垛处设置所述构造柱。
优选地,所述S3进一步包括步骤:
S31:根据多层所述砌体结构剪切性薄弱层破坏机制计算各楼层屈服强度系数ξi,计算结构薄弱层的抗力折减系数R=1/ξimin;
S32:确定结构基本周期T0,e;
S33:确定余震相对强度γ,计算结构有效延性系数μ;
S35:根据所述有效弹性周期Teff,计算结构位移的阻尼折减系数B;
S36:根据所述阻尼折减系数B,计算等效单自由度体系的屈服谱位移Sdy和弹塑性谱位移Sdp;
S37:根据第一阵型确定结构阵型高度系数,计算结构概率地震需求θmax。
优选地,根据公式(1)计算所述屈服强度系数ξi:
其中,ξi为所述砌体结构第i层的楼层屈服强度系数,n为所述砌体结构的总层数,α为罕遇或设防烈度地震的水平地震影响系数,ρi为第i层计算方向的抗震墙面积率,楼层高度1/2处所述计算方向墙体面积与单层建筑面积之比,与所述计算方向直交方向的抗震墙面积率为ρ’i,λg为单位面积重力荷载代表值的换算系数,λg以0.012N/mm2为基准,λg=gE/0.012,f2,i为第i层砌筑砂浆强度。
优选地,根据公式(2)计算所述结构基本周期T0,e:
T0,e=0.02(H+1.2) (2);
其中,H为房屋高度。
优选地,根据公式(3)计算所述结构有效延性系数μ:
其中,γ为余震相对强度,所述余震相对强度是余震地震动峰值加速度与主震地震动峰值加速度的比值,R为抗力折减系数,a0、a1、a2、a3、a4和a5为拟合参数;
当场地类别为I类场地时,a0=9.68、a1=0.57、a2=0.86、a3=-0.79、a4=10.83、a5=0.02;
当场地类别为II类场地时,a0=9.97、a1=0.98、a2=0.71、a3=-0.84、a4=13.21、a5=0.01;
当场地类别为III类场地时,a0=11.49、a1=0.77、a2=1.03、a3=-0.95、a4=10.93、a5=0.04;
当场地类别为IV类场地时,a0=9.95、a1=0.55、a2=0.66、a3=-0.81、a4=13.25、a5=0.01。
优选地,根据公式(4)计算所述阻尼折减系数B:
其中,Tg为场地卓越周期。
优选地,根据公式(5)计算所述屈服谱位移Sdy:
根据公式(6)计算所述弹塑性谱位移Sdp:
其中,g为重力加速度;
根据公式(7)、公式(8)和公式(9)计算所述结构概率地震需求θmax:
其中,δy为屈服位移,δp为弹塑性位移,h为薄弱层层高,Γh为振型高度系数。
优选地,所述S4步骤中,所述结构概率抗震能力θc和所述结构概率地震需求θmax均服从对数正太分布,
根据公式(10)计算所述超越概率P(θmax|PGA>LS):
其中,PGA表示地震动峰值加速度,LS表示对应于结构性能水平的量化指标限值,Φ表示正态标准分布函数,βc表示地震需求的对数标准差,βd表示抗震能力的对数标准差。
本发明由于采用了以上技术方案,使其具有以下有益效果:
本发明考虑了余震地震动对结构破坏的影响,根据砌体结构薄弱层破坏的特点,在基于最大位移点等效周期的非迭代等效线性化方法的基础上,建立了序列型地震作用下砌体结构的易损性分析方法,与现在技术相比,本发明的易损性分析方法计算量小、计算效率高,可快速评估砌体结构的抗震性能。
附图说明
图1为本发明实施例的序列型地震作用下砌体结构的易损性分析方法的流程图;
图2为本发明实施例的序列型地震作用下砌体结构的易损性分析方法的原理图。
具体实施方式
下面根据附图1,给出本发明的较佳实施例,并予以详细描述,使能更好地理解本发明的功能、特点。
请参阅图1,本发明实施例的一种序列型地震作用下砌体结构的易损性分析方法,包括步骤:
S1:根据结构特性随机参数模型和序列型地震动随机参数模型建立地震结构样本库。
S1步骤进一步包括步骤:
S11:确定砌体结构和序列型地震动的随机变量,随机变量包括材料强度、几何尺寸、重力荷载、主震地震动强度、余震相对强度和场地卓越周期,并确定各随机变量的概率分布模型;
S12:利用蒙特卡罗法或拉丁超立方方法,结合各随机变量的概率分布模型生成随机的地震结构样本库。
S2:分析结构概率抗震能力,根据抗震措施类别确定结构性能水平及相应性能指标的概率分布模型;
结构层间位移角可表征结构不同的性能水准,而不同抗震措施类别对砌体结构抗震性能影响较大。因此,根据抗震措施类别将砌体结构分为五类,砌体结构的种类包括:
A类措施,A类措施按现行标准要求设置圈梁,但未设置构造柱;
B类措施,B类措施按现行标准要求设置圈梁,并在外墙四角及对应转角处、错层部位横墙与外纵墙交接处、大房间内外墙交接处,较大洞口两侧、楼和电梯间四角和楼梯斜梯段上下端对应墙体处设置构造柱;
C类措施,C类措施满足B类措施的要求,还在楼梯间对应的内横墙与外纵墙交接处、每隔12~15m处和单元横墙与外纵墙交接处设置构造柱;
D类措施,D类措施满足B类措施的要求,还在隔开间横墙轴线与外墙交接处和山墙与内纵墙交接处设置构造柱;和
E类措施,E类措施满足B类措施的要求,还在内墙轴线与外墙交接处、内纵墙与横墙轴线交接处和内墙的局部较小墙垛处设置构造柱。
不同的性能水准对应的砌体结构的最大层间位移延性系数可参见表1。
表1砌体结构性能水平表
S3:分析结构概率地震需求,确定序列型地震作用下结构性能指标需求及其概率分布模型。
S3进一步包括步骤:
S31:根据多层砌体结构剪切性薄弱层破坏机制计算各楼层屈服强度系数ξi,计算结构薄弱层的抗力折减系数R=1/ξimin。
根据公式(1)计算屈服强度系数ξi:
其中,ξi为砌体结构第i层的楼层屈服强度系数,n为砌体结构的总层数,α为罕遇或设防烈度地震的水平地震影响系数,ρi为第i层计算方向的抗震墙面积率,楼层高度1/2处计算方向墙体面积与单层建筑面积之比,与计算方向直交方向的抗震墙面积率为ρ’i,λg为单位面积重力荷载代表值的换算系数,λg以0.012N/mm2为基准,λg=gE/0.012,f2,i为第i层砌筑砂浆强度。
S32:确定结构基本周期T0,e。
根据公式(2)计算结构基本周期T0,e:
T0,e=0.02(H+1.2) (2);
其中,H为房屋高度(m)。
S33:确定余震相对强度γ,计算结构有效延性系数μ。
根据公式(3)计算结构有效延性系数μ:
其中,γ为余震相对强度,余震相对强度是余震地震动峰值加速度与主震地震动峰值加速度的比值,R为抗力折减系数,a0、a1、a2、a3、a4和a5为拟合参数;具体取值请参阅图2。
表2参数a0~a5取值表
参数 | a<sub>0</sub> | a<sub>1</sub> | a<sub>2</sub> | a<sub>3</sub> | a<sub>4</sub> | a<sub>5</sub> |
I类场地 | 9.68 | 0.57 | 0.86 | -0.79 | 10.83 | 0.02 |
II类场地 | 9.97 | 0.98 | 0.71 | -0.84 | 13.21 | 0.01 |
III类场地 | 11.49 | 0.77 | 1.03 | -0.95 | 10.93 | 0.04 |
IV类场地 | 9.95 | 0.55 | 0.66 | -0.81 | 13.25 | 0.01 |
S35:根据有效弹性周期Teff,计算结构位移的阻尼折减系数B。
根据公式(4)计算阻尼折减系数B:
其中,Tg为场地卓越周期。
S36:根据阻尼折减系数B,计算等效单自由度体系的屈服谱位移Sdy和弹塑性谱位移Sdp。
根据公式(5)计算屈服谱位移Sdy:
根据公式(6)计算弹塑性谱位移Sdp:
其中,g为重力加速度;
S37:根据第一阵型确定结构阵型高度系数,计算结构概率地震需求θmax。
根据公式(7)、公式(8)和公式(9)计算结构概率地震需求θmax:
其中,δy为屈服位移,δp为弹塑性位移,h为薄弱层层高,Γh为振型高度系数。
竖向不规则包括侧向刚度不规则、竖向抗侧力构件不连续和楼层承载力突变。
S4、通过结构概率抗震能力和结构概率地震需求计算序列型地震作用下结构反应需求的超越概率,确定砌体结构的易损性曲线。
S4步骤中,结构概率抗震能力θc和结构概率地震需求θmax均服从对数正太分布,
根据公式(10)计算超越概率P(θmax|PGA>LS):
其中,PGA表示地震动峰值加速度,LS表示对应于结构性能水平的量化指标限值,Φ表示正态标准分布函数,βc表示地震需求的对数标准差,βd表示抗震能力的对数标准差。
以上结合附图实施例对本发明进行了详细说明,本领域中普通技术人员可根据上述说明对本发明做出种种变化例。因而,实施例中的某些细节不应构成对本发明的限定,本发明将以所附权利要求书界定的范围作为本发明的保护范围。
Claims (10)
1.一种序列型地震作用下砌体结构的易损性分析方法,包括步骤:
S1:根据结构特性随机参数模型和序列型地震动随机参数模型建立地震结构样本库;
S2:分析结构概率抗震能力,根据抗震措施类别确定结构性能水平及相应性能指标的概率分布模型;
S3:分析结构概率地震需求,确定序列型地震作用下结构性能指标需求及其概率分布模型;
S4、通过所述结构概率抗震能力和所述结构概率地震需求计算序列型地震作用下结构反应需求的超越概率,确定砌体结构的易损性曲线。
2.根据权利要求1所述的序列型地震作用下砌体结构的易损性分析方法,其特征在于,所述S1步骤进一步包括步骤:
S11:确定所述砌体结构和序列型地震动的随机变量,所述随机变量包括材料强度、几何尺寸、重力荷载、主震地震动强度、余震相对强度和场地卓越周期,并确定各所述随机变量的概率分布模型;
S12:利用蒙特卡罗法或拉丁超立方方法,结合各所述随机变量的概率分布模型生成随机的所述地震结构样本库。
3.根据权利要求2所述的序列型地震作用下砌体结构的易损性分析方法,其特征在于,根据抗震措施类别将所述砌体结构分为五类,所述砌体结构的种类包括:
A类措施,所述A类措施按现行标准要求设置圈梁,但未设置构造柱;
B类措施,所述B类措施按现行标准要求设置圈梁,并在外墙四角及对应转角处、错层部位横墙与外纵墙交接处、大房间内外墙交接处,较大洞口两侧、楼和电梯间四角和楼梯斜梯段上下端对应墙体处设置所述构造柱;
C类措施,所述C类措施满足所述B类措施的要求,还在楼梯间对应的内横墙与外纵墙交接处、每隔12~15m处和单元横墙与外纵墙交接处设置所述构造柱;
D类措施,所述D类措施满足所述B类措施的要求,还在隔开间横墙轴线与外墙交接处和山墙与内纵墙交接处设置所述构造柱;和
E类措施,所述E类措施满足所述B类措施的要求,还在内墙轴线与外墙交接处、内纵墙与横墙轴线交接处和内墙的局部较小墙垛处设置所述构造柱。
4.根据权利要求2所述的序列型地震作用下砌体结构的易损性分析方法,其特征在于,所述S3进一步包括步骤:
S31:根据多层所述砌体结构剪切性薄弱层破坏机制计算各楼层屈服强度系数ξi,计算结构薄弱层的抗力折减系数R=1/ξimin;
S32:确定结构基本周期T0,e;
S33:确定余震相对强度γ,计算结构有效延性系数μ;
S35:根据所述有效弹性周期Teff,计算结构位移的阻尼折减系数B;
S36:根据所述阻尼折减系数B,计算等效单自由度体系的屈服谱位移Sdy和弹塑性谱位移Sdp;
S37:根据第一阵型确定结构阵型高度系数,计算结构概率地震需求θmax。
6.根据权利要求4所述的序列型地震作用下砌体结构的易损性分析方法,其特征在于,根据公式(2)计算所述结构基本周期T0,e:
T0,e=0.02(H+1.2) (2);
其中,H为房屋高度。
7.根据权利要求4所述的序列型地震作用下砌体结构的易损性分析方法,其特征在于,根据公式(3)计算所述结构有效延性系数μ:
其中,γ为余震相对强度,所述余震相对强度是余震地震动峰值加速度与主震地震动峰值加速度的比值,R为抗力折减系数,a0、a1、a2、a3、a4和a5为拟合参数;
当场地类别为I类场地时,a0=9.68、a1=0.57、a2=0.86、a3=-0.79、a4=10.83、a5=0.02;
当场地类别为II类场地时,a0=9.97、a1=0.98、a2=0.71、a3=-0.84、a4=13.21、a5=0.01;
当场地类别为III类场地时,a0=11.49、a1=0.77、a2=1.03、a3=-0.95、a4=10.93、a5=0.04;
当场地类别为IV类场地时,a0=9.95、a1=0.55、a2=0.66、a3=-0.81、a4=13.25、a5=0.01。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010186488.7A CN111401747B (zh) | 2020-03-17 | 2020-03-17 | 序列型地震作用下砌体结构的易损性分析方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010186488.7A CN111401747B (zh) | 2020-03-17 | 2020-03-17 | 序列型地震作用下砌体结构的易损性分析方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111401747A true CN111401747A (zh) | 2020-07-10 |
CN111401747B CN111401747B (zh) | 2023-05-19 |
Family
ID=71428903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010186488.7A Active CN111401747B (zh) | 2020-03-17 | 2020-03-17 | 序列型地震作用下砌体结构的易损性分析方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111401747B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112049455A (zh) * | 2020-09-08 | 2020-12-08 | 中国航空规划设计研究总院有限公司 | 提高框架式砖石质历史建筑防震性能的结构及方法 |
CN112163293A (zh) * | 2020-09-25 | 2021-01-01 | 中南大学 | 考虑摩擦影响的减隔震装置研发分析系统 |
CN112329376A (zh) * | 2020-11-02 | 2021-02-05 | 同济大学 | 一种基于蒙特卡洛模拟的变电站系统抗震韧性量化评估算法 |
CN113158302A (zh) * | 2021-04-01 | 2021-07-23 | 安徽建工集团股份有限公司 | 基于组件可靠指标的基础隔震体系地震易损性评估方法 |
CN114611186A (zh) * | 2022-03-03 | 2022-06-10 | 中信建筑设计研究总院有限公司 | 一种基于能力谱法的y型铸钢节点抗震性能设计方法 |
CN115749341A (zh) * | 2022-09-27 | 2023-03-07 | 西南交通大学 | 一种直接基于位移的古建筑木结构的抗震加固方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011118510A (ja) * | 2009-12-01 | 2011-06-16 | Asahi Kasei Homes Co | 建物耐力評価方法 |
US20150278284A1 (en) * | 2014-03-31 | 2015-10-01 | Emc Corporation | Heteroscedastic Data Compression Using Arima-Garch Model Estimation |
CN106649954A (zh) * | 2016-10-08 | 2017-05-10 | 中冶华天工程技术有限公司 | 一种基于扩展pbee2理论框架的地震易损性分析方法 |
CN108256141A (zh) * | 2017-12-11 | 2018-07-06 | 哈尔滨工业大学 | 一种基于Copula理论的主余震联合易损性分析方法 |
CN108595845A (zh) * | 2018-04-26 | 2018-09-28 | 中冶华天工程技术有限公司 | 一种基于性能设计的桥梁地震风险概率分析方法 |
CN110321653A (zh) * | 2019-07-11 | 2019-10-11 | 东北林业大学 | 一种考虑初始损伤状态的地震序列下结构易损性分析方法 |
CN110674595A (zh) * | 2019-10-17 | 2020-01-10 | 上海市建筑科学研究院 | 一种基于位移的砌体结构抗震性能评估方法 |
-
2020
- 2020-03-17 CN CN202010186488.7A patent/CN111401747B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011118510A (ja) * | 2009-12-01 | 2011-06-16 | Asahi Kasei Homes Co | 建物耐力評価方法 |
US20150278284A1 (en) * | 2014-03-31 | 2015-10-01 | Emc Corporation | Heteroscedastic Data Compression Using Arima-Garch Model Estimation |
CN106649954A (zh) * | 2016-10-08 | 2017-05-10 | 中冶华天工程技术有限公司 | 一种基于扩展pbee2理论框架的地震易损性分析方法 |
CN108256141A (zh) * | 2017-12-11 | 2018-07-06 | 哈尔滨工业大学 | 一种基于Copula理论的主余震联合易损性分析方法 |
CN108595845A (zh) * | 2018-04-26 | 2018-09-28 | 中冶华天工程技术有限公司 | 一种基于性能设计的桥梁地震风险概率分析方法 |
CN110321653A (zh) * | 2019-07-11 | 2019-10-11 | 东北林业大学 | 一种考虑初始损伤状态的地震序列下结构易损性分析方法 |
CN110674595A (zh) * | 2019-10-17 | 2020-01-10 | 上海市建筑科学研究院 | 一种基于位移的砌体结构抗震性能评估方法 |
Non-Patent Citations (1)
Title |
---|
郑山锁;刘小锐;杨威;关永莹;: "节点变形对在役混凝土框架地震易损性影响分析" * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112049455A (zh) * | 2020-09-08 | 2020-12-08 | 中国航空规划设计研究总院有限公司 | 提高框架式砖石质历史建筑防震性能的结构及方法 |
CN112163293A (zh) * | 2020-09-25 | 2021-01-01 | 中南大学 | 考虑摩擦影响的减隔震装置研发分析系统 |
CN112163293B (zh) * | 2020-09-25 | 2023-03-21 | 中南大学 | 考虑摩擦影响的减隔震装置研发分析系统 |
CN112329376A (zh) * | 2020-11-02 | 2021-02-05 | 同济大学 | 一种基于蒙特卡洛模拟的变电站系统抗震韧性量化评估算法 |
CN113158302A (zh) * | 2021-04-01 | 2021-07-23 | 安徽建工集团股份有限公司 | 基于组件可靠指标的基础隔震体系地震易损性评估方法 |
CN113158302B (zh) * | 2021-04-01 | 2023-08-01 | 安徽建工集团股份有限公司 | 基于组件可靠指标的基础隔震体系地震易损性评估方法 |
CN114611186A (zh) * | 2022-03-03 | 2022-06-10 | 中信建筑设计研究总院有限公司 | 一种基于能力谱法的y型铸钢节点抗震性能设计方法 |
CN114611186B (zh) * | 2022-03-03 | 2024-05-03 | 中信建筑设计研究总院有限公司 | 一种基于能力谱法的y型铸钢节点抗震性能设计方法 |
CN115749341A (zh) * | 2022-09-27 | 2023-03-07 | 西南交通大学 | 一种直接基于位移的古建筑木结构的抗震加固方法 |
CN115749341B (zh) * | 2022-09-27 | 2024-07-26 | 西南交通大学 | 一种直接基于位移的古建筑木结构的抗震加固方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111401747B (zh) | 2023-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111401747A (zh) | 序列型地震作用下砌体结构的易损性分析方法 | |
CN111143931B (zh) | 一种基于增量静力方法的非迭代砌体结构易损性分析方法 | |
Kazemi et al. | Development of fragility curves by incorporating new spectral shape indicators and a weighted damage index: case study of steel braced frames in the city of Mashhad, Iran | |
Varadharajan et al. | Seismic behavior of multistory RC building frames with vertical setback irregularity | |
Katkhoda | Optimization in the selection of structural systems for the design of reinforced concrete high-rise buildings in resisting seismic forces | |
Morandi et al. | Application of seismic design procedures on three modern URM buildings struck by the 2012 Emilia earthquakes: inconsistencies and improvement proposals in the European codes | |
Ussher et al. | Effect of lateral resisting systems on the wind-induced serviceability response of tall timber buildings | |
Ahmadi et al. | Numerical investigation of energy dissipation device to improve seismic response of existing steel buildings with soft-first-story | |
Pang et al. | Direct displacement procedure for performance-based seismic design of multistory woodframe structures | |
CN111622378B (zh) | 序列型地震作用下基于延性的砌体结构抗震性能评估方法 | |
Repapis et al. | Seismic assessment of non-conforming infilled RC buildings using IDA procedures | |
CN110990935A (zh) | 一种基于延性的砌体结构抗震性能评估方法 | |
Tarque et al. | Vulnerability assessment of earthen structures | |
Amin et al. | Design Of Earthquake-Resistant Reinforced Concrete Structure of An Eight-Storey Flats in Pontianak City | |
Kravchenko et al. | The comparison of methods for modeling seismic impact on buildings and structures | |
Abbasi et al. | Parametric study on seismic response modification factor of strap-braced cold-formed steel systems | |
Inan et al. | An investigation on plan geometries of RC buildings: with or without projections in plan | |
CN111340377A (zh) | 一种底层不规则砌体结构抗倒塌能力评估方法 | |
Zhang et al. | Simplified displacement-based earthquake loss assessment method for masonry structures | |
Korkmaz | Overhangs in structural systems and earthquake behaviour from torsional irregularity point of view | |
CN111400913B (zh) | 序列型地震作用下砌体结构位移响应评估方法 | |
Salawdeh | Direct Displacement Based Seismic Design of Irregular CBFs | |
CN113673094A (zh) | 一种基于可靠指标的建筑自重荷载的评定方法 | |
Vasileiadi et al. | An approximate method to assess the seismic capacity of existing RC buildings | |
Saputro et al. | Fragility of Existing Building Structure Due to Floor Addition (Case: Grand Heaven Pluit Bulding Renovation, North Jakarta) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |