CN111397598A - 人机共融环境中移动型机器人路径规划采样方法及系统 - Google Patents

人机共融环境中移动型机器人路径规划采样方法及系统 Download PDF

Info

Publication number
CN111397598A
CN111397598A CN202010301450.XA CN202010301450A CN111397598A CN 111397598 A CN111397598 A CN 111397598A CN 202010301450 A CN202010301450 A CN 202010301450A CN 111397598 A CN111397598 A CN 111397598A
Authority
CN
China
Prior art keywords
node
point
candidate
environment
search tree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010301450.XA
Other languages
English (en)
Other versions
CN111397598B (zh
Inventor
迟文政
丁智宇
陈国栋
孙立宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202010301450.XA priority Critical patent/CN111397598B/zh
Priority to US17/427,646 priority patent/US11846511B2/en
Priority to PCT/CN2020/087367 priority patent/WO2021208143A1/zh
Publication of CN111397598A publication Critical patent/CN111397598A/zh
Application granted granted Critical
Publication of CN111397598B publication Critical patent/CN111397598B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

本发明涉及一种人机共融环境中的移动型机器人路径规划采样方法及系统,包括:计算地图中的点到最近障碍物的距离,同时,对环境中的行人进行检测,并标记环境中行人的位置;选择起点位置作为根节点,初始化搜索树;在可行区域随机选取候选节点,计算搜索树上节点到所述候选节点的累计成本,选取成本最小的点作为生长点;对所述生长点和所述候选节点之间的连线作碰撞检测,判断碰撞检测是否通过;将所述候选节点连接到所述生长点上,判断所述候选节点是否为终点;从所述搜索树上获取从根节点到终点之间的节点连线集合,形成最终路径。本发明有利于形成更为安全可靠的路径。

Description

人机共融环境中移动型机器人路径规划采样方法及系统
技术领域
本发明涉及服务型机器人的技术领域,尤其是指一种人机共融环境中的移动型机器人路径规划采样方法及系统。
背景技术
人工智能技术的突破给移动型服务机器人研究带来了巨大的机遇,目前,引导机器人、扫地机器人、导购机器人、货物搬运机器人等移动型服务机器人已经成功应用到了机场、超市、博物馆、家庭等多种环境。移动机器人路径规划技术是指机器人在无人干预的条件下,自动根据环境地图的信息及起始点位置规划出一条可行路径的过程,路径通常由一系列的点组成。相对于工业机器人来说,服务型移动机器人所在的人机共融环境复杂度更高,不确定性更大,对路径规划的实时性要求更高。
现有的经典路径规划算法可大致分为四类:基于栅格的路径规划算法,基于人工势场的路径规划算法,基于奖赏的路径规划算法和基于随机采样的路径规划算法。其中,基于随机采样的路径规划算法由于避免了对状态空间的建模,极大地减少了规划时间和内存成本,更适用于解决动态人机共融环境的路径规划问题,但是当前采样策略仅仅考虑了树的内部节点之间的关系,忽略了环境的不确定性对树的生长的影响。对于服务型移动机器人所处的人机共融环境中来说,环境中的不确定性主要包含环境建模的误差、机器人的定位误差、动态行人影响等。由于当前采样策略仅仅考虑了树的内部节点之间的关系,因此忽略了环境的不确定性对树的生长的影响,从而导致形成的路径不够安全和可靠。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中忽略了环境的不确定性对树的生长的影响,从而导致形成的路径不够安全和可靠的问题,从而提供一种引入环境不确定性因素,且能形成更为安全可靠的路径的人机共融环境中的移动型机器人路径规划采样方法及系统。
为解决上述技术问题,本发明的一种人机共融环境中的移动型机器人路径规划采样方法,包括如下步骤:计算地图中的点到最近障碍物的距离,同时,对环境中的行人进行检测,并标记环境中行人的位置;选择起点位置作为根节点,初始化搜索树;在可行区域随机选取候选节点,计算搜索树上节点到所述候选节点的累计成本,选取成本最小的点作为生长点;对所述生长点和所述候选节点之间的连线作碰撞检测,判断碰撞检测是否通过,若通过,则进入步骤S5,否则,返回步骤S3;将所述候选节点连接到所述生长点上,判断所述候选节点是否为终点,若是,则进入步骤S6,否则返回步骤S3;从所述搜索树上获取从根节点到终点之间的节点连线集合,形成最终路径。
在本发明的一个实施例中,所述步骤S1中地图中的点到最近障碍物的距离可通过线下计算完成,对于同一幅地图,计算结果可在不同的路径规划中多次复用。
在本发明的一个实施例中,对环境中的行人进行检测的方法为:步骤S11:通过环境中的分布式摄像机网络拍摄环境图片;步骤S12:应用行人检测算法对行人进行检测,输出行人在像素坐标系下的位置;步骤S13:根据摄像机标定结果,通过坐标变换,输出行人在全局坐标系下的位置。
在本发明的一个实施例中,所述步骤S2中搜索树的节点包含:节点位置、节点连接和节点成本,在搜索树初始化过程中,根节点位置设置为起点,节点连接为空,节点成本为零。
在本发明的一个实施例中,所述步骤S3中可行区域是指在最近障碍物距离地图上取值大于零的区域。计算搜索树上节点到所述候选节点的累计成本的方法为:采用公式
Figure BDA0002454143540000021
其中,nnew为候选节点;ni为搜索树上T的节点,ni∈T;cost(ni)表示从根节点到ni的累计成本;dist(.)表示两个点之间的欧氏距离;angle(.)表示两条连线之间的夹角,一条是nnew与ni之间的连线,另一条是与ni与ni父节点之间的连线;dmin表示ni到最近障碍物的距离;Sp表示nnew与ni之间的连线上行人所占据的可行区域的面积;
Figure BDA0002454143540000031
和ε是常数,
Figure BDA0002454143540000032
取最大线速度的倒数,ε取最大角速度的倒数。
在本发明的一个实施例中,所述生长点通过如下公式计算:
Figure BDA0002454143540000033
在本发明的一个实施例中,对所述生长点和所述候选节点之间的连线作碰撞检测的方法为:步骤S41:取生长点和候选节点之间的连线上的点的集合C;步骤S42:判断是否所有集合C中的点对应的最近障碍物距离地图上的值都大于零,如果是,则无碰撞发生,碰撞检测通过;否则,发生碰撞,碰撞检测不通过。
在本发明的一个实施例中,所述步骤S5中将所述候选节点连接到所述生长点的方法为:步骤S51:记录候选节点nnew的位置,计算候选节点的成本cost(nnew,ngrowth);步骤S52:将nnew的父节点设为ngrowth,将nnew包含进ngrowth的子节点列表中,建立起候选节点与随机树之间的联系。
在本发明的一个实施例中,所述步骤S6中从搜索树上获取从根节点到终点之间的节点连线集合的方法为:步骤S61:确定终点所在的节点ngoal,设为当前节点ncurrent;步骤S62:在所述搜索树上,获取ncurrent的父节点nparent,将nparent添加到路径上;步骤S63:判断nparent是否为根节点,如果不是,则令ncurrent=nparent,返回步骤S62;如果是,则输出路径,结束搜索。
本发明还提供了一种人机共融环境中的移动型机器人路径规划采样系统,包括:障碍物确定模块,用于计算地图中的点到最近障碍物的距离,同时,对环境中的行人进行检测,并标记环境中行人的位置;初始化模块,用于选择起点位置作为根节点,初始化搜索树;选取模块,用于在可行区域随机选取候选节点,计算搜索树上节点到所述候选节点的累计成本,选取成本最小的点作为生长点;碰撞检测模块,用于对所述生长点和所述候选节点之间的连线作碰撞检测,判断碰撞检测是否通过;判断模块,用于将所述候选节点连接到所述生长点上,判断所述候选节点是否为终点;集合模块,用于从所述搜索树上获取从根节点到终点之间的节点连线集合,形成最终路径。
本发明的上述技术方案相比现有技术具有以下优点:
本发明所述的人机共融环境中的移动型机器人路径规划采样方法及系统,由于引入了环境不确定性因素,包括节点周围可行区域的大小、行人所占据的可行区域面积,综合衡量节点内部关系和环境不确定性的对于生长点选取的影响,引导随机树向行人数量少的宽阔区域生长,因此减少了由于环境不确定性引起的机器人迷失、碰撞等问题,形成更为安全可靠的路径。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明人机共融环境中的移动型机器人路径规划采样方法流程图;
图2a是本发明环境地图的示意图;
图2b是本发明环境地图与其对应的到最近障碍物距离示意图;
图3是本发明生长节点的选择过程示意图;
图4是本发明基于最近障碍物距离的碰撞检测示意图;
图5是本发明搜索树和生成路径示意图。
具体实施方式
实施例一
如图1所示,本实施例提供一种人机共融环境中的移动型机器人路径规划采样方法,包括如下步骤:步骤S1:计算地图中的点到最近障碍物的距离,同时,对环境中的行人进行检测,并标记环境中行人的位置;步骤S2:选择起点位置作为根节点,初始化搜索树;步骤S3:在可行区域随机选取候选节点,计算所述搜索树上节点到所述候选节点的累计成本,选取成本最小的点作为生长点;步骤S4:对所述生长点和所述候选节点之间的连线作碰撞检测,判断碰撞检测是否通过,若通过,则进入步骤S5,否则,返回步骤S3;步骤S5:将所述候选节点连接到所述生长点上,判断所述候选节点是否为终点,若是,则进入步骤S6,否则返回步骤S3;步骤S6:从所述搜索树上获取从根节点到终点之间的节点连线集合,形成最终路径。
本实施例所述人机共融环境中的移动型机器人路径规划采样方法,所述步骤S1中,计算地图中的点到最近障碍物的距离,有利于判断出静态障碍物,同时,对环境中的行人进行检测,并标记环境中行人的位置,有利于判断出动态障碍物;所述步骤S2中,选择起点位置作为根节点,初始化搜索树,从而有利于把起点加入到所述搜索树上;所述步骤S3中,在可行区域随机选取候选节点,计算所述搜索树上节点到所述候选节点的累计成本,选取成本最小的点作为生长点,有利于保证从所述根节点到当前点的成本最低;所述步骤S4中,对所述生长点和所述候选节点之间的连线作碰撞检测,判断碰撞检测是否通过,若通过,则进入步骤S5,否则,返回步骤S3,从而有利于保证所述生长点和所述候选节点之间没有障碍物;所述步骤S5中,将所述候选节点连接到所述生长点上,判断所述候选节点是否为终点,若是,则进入步骤S6,否则返回步骤S3,从而有利于确认终点;所述步骤S6中,从树上获取从根节点到终点之间的节点连线集合,形成最终路径,由于本发明引入了环境不确定性因素,包括节点周围可行区域的大小、行人所占据的可行区域面积,综合衡量节点内部关系和环境不确定性的对于生长点选取的影响,引导搜索树向行人数量少的宽阔区域生长,减少了由于环境不确定性引起的机器人迷失、碰撞等问题,因此可以形成更为安全可靠的路径。
如图2a和图2b所示,所述步骤S1中,所述地图采用二维栅格地图,在图2b中,距离的单位为栅格数,到最近障碍物距离大于零的区域即为可行区域。所述地图中的点到最近障碍物的距离可通过线下计算完成,对于同一幅地图,计算结果可在不同的路径规划中多次复用,从而有利于提高计算速率。
另外,对环境中的行人进行检测的方法为:
步骤S11:通过环境中的分布式摄像机网络拍摄环境图片;
步骤S12:应用行人检测算法对行人进行检测,输出行人在像素坐标系下的位置;
步骤S13:根据摄像机标定结果,通过坐标变换,输出行人在全局坐标系下的位置。
作为一种变形,行人检测也可以通过激光等其它传感器获得。
所述步骤S2中搜索树的节点包含:节点位置、节点连接和节点成本,在搜索树初始化过程中,根节点位置设置为起点,节点连接为空,节点成本为零,从而可以实现把起点加入到所述搜索树上。因此所述搜索树初始化之后仅包含根节点一个节点。
所述步骤S3中可行区域是指在最近障碍物距离地图上取值大于零的区域。
在可行区域随机选取候选节点的方法为:为所述可行区域内的点分配唯一索引序号,随机选取一个索引序号,其对应的点即为候选节点。
计算搜索树上节点到所述候选节点的累计成本的方法为:采用公式
Figure BDA0002454143540000061
其中,nnew为候选节点;ni为搜索树T上的节点,ni∈T;cost(ni)表示从根节点到ni的累计成本;dist(.)表示两个点之间的欧氏距离;angle(.)表示两条连线之间的夹角,一条是nnew与ni之间的连线,另一条是与ni与ni父节点之间的连线;dmin表示mi到最近障碍物的距离;Sp表示nnew与ni之间的连线上行人所占据的可行区域的面积;
Figure BDA0002454143540000063
和ε是常数,用于权衡距离和角度差异对于成本的影响,对于机器人来说,
Figure BDA0002454143540000064
取最大线速度的倒数,ε取最大角速度的倒数。dmin越大,表示ni周围的可行区域越大;行人数量越少,∑Sp占据的可行区域越小,机器人运行更安全。
所述生长点通过如下公式计算:
Figure BDA0002454143540000062
遍历搜索树上的节点,选择到候选节点累计成本最小的节点,作为候选节点的生长点,从而有利于保证从所述根节点到当前点的成本最低。
如图3所示,圆形表示根节点,三角形表示所述搜索树上的其它节点,星形表示候选节点,灰色圆圈表示行人,实线表示节点n0到候选节点的连接,点划线表示节点n1到候选节点的连接。由于n0到候选节点的连接线上有多个行人,即ΣSp值较大,n0到候选节点的累计成本大于n1到候选节点的累计成本,因此选择n1作为生长点。
所述步骤S4中对所述生长点和所述候选节点之间的连线作碰撞检测的方法为:
步骤S41:取生长点和候选节点之间的连线上的点的集合C;
步骤S42:判断是否所有集合C中的点对应的最近障碍物距离地图上的值都大于零,如果是,则无碰撞发生,碰撞检测通过;否则,发生碰撞,碰撞检测不通过。
上述作碰撞检测时,优先选择仅仅针对静态障碍物作检测,由于对于人流量大的环境来说,连线与行人发生碰撞的概率极高,同时对动态行人做碰撞检测容易引起规划效率下降,甚至规划失败。因此,对于搜索树的生长过程可以不对动态障碍物进行碰撞检测。
如图4所示,为A点到B点的碰撞检测示意图,首先将A、B两点映射到最近障碍物距离地图上,选取AB连线所经过的栅格,如图中灰色方格所示,遍历灰色方格的值,如果所有值都大于零,则没有发生碰撞,碰撞检测通过;否则发生碰撞,碰撞检测不通过。
所述步骤S5中将所述候选节点连接到所述生长点的方法为:
步骤S51:记录候选节点nnew的位置,计算候选节点的成本cost(nnew,ngrowth);
步骤S52:将nnew的父节点设为ngrowth,将nnew包含进ngrowth的子节点列表中,建立起候选节点与随机树之间的联系。
所述步骤S6中从搜索树上获取从根节点到终点之间的节点连线集合的方法为:
步骤S61:确定终点所在的节点ngoal,设为当前节点ncurrent
步骤S62:在所述搜索树上,获取ncurrent的父节点nparent,将nparent添加到路径上;
步骤S63:判断nparent是否为根节点,如果不是,则令ncurrent=nparent,返回步骤S62;如果是,则输出路径,结束搜索。
如图5所示,圆形节点实线表示最终生成的路径,三角形表示搜索树上的节点,虚线表示搜索树上节点之间的连接关系,灰色圆圈表示行人,路径规划策略能够避开行人较多的区域,生成较为安全可靠的路径。
实施例二
基于同一发明构思,本实施例提供一种人机共融环境中的移动型机器人路径规划采样系统,其解决问题的原理与所述人机共融环境中的移动型机器人路径规划采样方法相同,重复之处不再赘述。
本实施例所述人机共融环境中的移动型机器人路径规划采样系统,包括:
障碍物确定模块,用于计算地图中的点到最近障碍物的距离,同时,对环境中的行人进行检测,并标记环境中行人的位置;
初始化模块,用于选择起点位置作为根节点,初始化搜索树;
选取模块,用于在可行区域随机选取候选节点,计算搜索树上节点到所述候选节点的累计成本,选取成本最小的点作为生长点;
碰撞检测模块,用于对所述生长点和所述候选节点之间的连线作碰撞检测,判断碰撞检测是否通过;
判断模块,用于将所述候选节点连接到所述生长点上,判断所述候选节点是否为终点;
集合模块,用于从所述搜索树上获取从根节点到终点之间的节点连线集合,形成最终路径。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种人机共融环境中的移动型机器人路径规划采样方法,其特征在于,包括如下步骤:
步骤S1:计算地图中的点到最近障碍物的距离,同时,对环境中的行人进行检测,并标记环境中行人的位置;
步骤S2:选择起点位置作为根节点,初始化搜索树;
步骤S3:在可行区域随机选取候选节点,计算搜索树上节点到所述候选节点的累计成本,选取成本最小的点作为生长点;
步骤S4:对所述生长点和所述候选节点之间的连线作碰撞检测,判断碰撞检测是否通过,若通过,则进入步骤S5,否则,返回步骤S3;
步骤S5:将所述候选节点连接到所述生长点上,判断所述候选节点是否为终点,若是,则进入步骤S6,否则返回步骤S3;
步骤S6:从所述搜索树上获取从根节点到终点之间的节点连线集合,形成最终路径。
2.根据权利要求1所述的人机共融环境中的移动型机器人路径规划采样方法,其特征在于:所述步骤S1中地图中的点到最近障碍物的距离可通过线下计算完成,对于同一幅地图,计算结果可在不同的路径规划中多次复用。
3.根据权利要求1所述的人机共融环境中的移动型机器人路径规划采样方法,其特征在于:对环境中的行人进行检测的方法为:
步骤S11:通过环境中的分布式摄像机网络拍摄环境图片;
步骤S12:应用行人检测算法对行人进行检测,输出行人在像素坐标系下的位置;
步骤S13:根据摄像机标定结果,通过坐标变换,输出行人在全局坐标系下的位置。
4.根据权利要求1所述的人机共融环境中的移动型机器人路径规划采样方法,其特征在于:所述步骤S2中搜索树的节点包含:节点位置、节点连接和节点成本,在搜索树初始化过程中,根节点位置设置为起点,节点连接为空,节点成本为零。
5.根据权利要求1所述的人机共融环境中的移动型机器人路径规划采样方法,其特征在于:所述步骤S3中可行区域是指在最近障碍物距离地图上取值大于零的区域。计算搜索树上节点到所述候选节点的累计成本的方法为:采用公式
Figure FDA0002454143530000021
其中,nnew为候选节点;ni为搜索树上T的节点,ni∈T;cost(ni)表示从根节点到ni的累计成本;dist(.)表示两个点之间的欧氏距离;angle(.)表示两条连线之间的夹角,一条是nnew与ni之间的连线,另一条是与ni与ni父节点之间的连线;dmin表示ni到最近障碍物的距离;Sp表示nnew与ni之间的连线上行人所占据的可行区域的面积;
Figure FDA0002454143530000022
和ε是常数,
Figure FDA0002454143530000023
取最大线速度的倒数,ε取最大角速度的倒数。
6.根据权利要求5所述的人机共融环境中的移动型机器人路径规划采样方法,其特征在于:所述生长点通过如下公式计算:
Figure FDA0002454143530000024
7.根据权利要求1所述的人机共融环境中的移动型机器人路径规划采样方法,其特征在于:对所述生长点和所述候选节点之间的连线作碰撞检测的方法为:
步骤S41:取生长点和候选节点之间的连线上的点的集合C;
步骤S42:判断是否所有集合C中的点对应的最近障碍物距离地图上的值都大于零,如果是,则无碰撞发生,碰撞检测通过;否则,发生碰撞,碰撞检测不通过。
8.根据权利要求1所述的人机共融环境中的移动型机器人路径规划采样方法,其特征在于:所述步骤S5中将所述候选节点连接到所述生长点的方法为:
步骤S51:记录候选节点nnew的位置,计算候选节点的成本cost(nnew,ngrowth);
步骤S52:将nnew的父节点设为ngrowth,将nnew包含进ngrowth的子节点列表中,建立起候选节点与随机树之间的联系。
9.根据权利要求1所述的人机共融环境中的移动型机器人路径规划采样方法,其特征在于:所述步骤S6中从搜索树上获取从根节点到终点之间的节点连线集合的方法为:
步骤S61:确定终点所在的节点ngoal,设为当前节点ncurrent
步骤S62:在所述搜索树上,获取ncurrent的父节点nparent,将nparent添加到路径上;
步骤S63:判断nparent是否为根节点,如果不是,则令ncurrent=nparent,返回步骤S62;如果是,则输出路径,结束搜索。
10.一种人机共融环境中的移动型机器人路径规划采样系统,其特征在于,包括:
障碍物确定模块,用于计算地图中的点到最近障碍物的距离,同时,对环境中的行人进行检测,并标记环境中行人的位置;
初始化模块,用于选择起点位置作为根节点,初始化搜索树;
选取模块,用于在可行区域随机选取候选节点,计算搜索树上节点到所述候选节点的累计成本,选取成本最小的点作为生长点;
碰撞检测模块,用于对所述生长点和所述候选节点之间的连线作碰撞检测,判断碰撞检测是否通过;
判断模块,用于将所述候选节点连接到所述生长点上,判断所述候选节点是否为终点;
集合模块,用于从所述搜索树上获取从根节点到终点之间的节点连线集合,形成最终路径。
CN202010301450.XA 2020-04-16 2020-04-16 人机共融环境中移动型机器人路径规划采样方法及系统 Active CN111397598B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010301450.XA CN111397598B (zh) 2020-04-16 2020-04-16 人机共融环境中移动型机器人路径规划采样方法及系统
US17/427,646 US11846511B2 (en) 2020-04-16 2020-04-28 Sampling method and system for path planning of mobile robot in man-machine environment
PCT/CN2020/087367 WO2021208143A1 (zh) 2020-04-16 2020-04-28 人机共融环境中移动型机器人路径规划采样方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010301450.XA CN111397598B (zh) 2020-04-16 2020-04-16 人机共融环境中移动型机器人路径规划采样方法及系统

Publications (2)

Publication Number Publication Date
CN111397598A true CN111397598A (zh) 2020-07-10
CN111397598B CN111397598B (zh) 2022-02-01

Family

ID=71435183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010301450.XA Active CN111397598B (zh) 2020-04-16 2020-04-16 人机共融环境中移动型机器人路径规划采样方法及系统

Country Status (3)

Country Link
US (1) US11846511B2 (zh)
CN (1) CN111397598B (zh)
WO (1) WO2021208143A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596668A (zh) * 2020-06-17 2020-08-28 苏州大学 基于逆向强化学习的移动机器人拟人化路径规划方法
CN111829526A (zh) * 2020-07-23 2020-10-27 中国人民解放军国防科技大学 一种基于防撞半径的距离地图重构与跳点路径规划方法
CN112446113A (zh) * 2020-11-12 2021-03-05 山东鲁能软件技术有限公司 电力系统环网图最优路径自动生成方法及系统
CN112578385A (zh) * 2020-11-24 2021-03-30 广州极飞科技有限公司 雷达数据的处理方法及装置、作业设备
CN113485373A (zh) * 2021-08-12 2021-10-08 苏州大学 一种基于高斯混合模型的机器人实时运动规划方法
CN115309164A (zh) * 2022-08-26 2022-11-08 苏州大学 基于生成对抗网络的人机共融移动机器人路径规划方法
CN117387631A (zh) * 2023-12-12 2024-01-12 青岛科技大学 一种机器人的路径规划方法、设备及介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230050958A (ko) * 2021-10-08 2023-04-17 현대자동차주식회사 로봇의 경로 계획 장치 및 그 방법
WO2023193424A1 (zh) * 2022-04-07 2023-10-12 哈尔滨工业大学(深圳) 人机共存环境中遵循行人规范的移动机器人全局导航方法
CN115857515B (zh) * 2023-02-22 2023-05-16 成都瑞华康源科技有限公司 一种agv机器人路线规划方法、系统及存储介质
CN117308945B (zh) * 2023-08-17 2024-04-09 成川科技(苏州)有限公司 基于准确交通管控的无人天车动态路径规划方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100174435A1 (en) * 2009-01-07 2010-07-08 Samsung Electronics Co., Ltd. Path planning apparatus of robot and method thereof
CN106444769A (zh) * 2016-10-31 2017-02-22 湖南大学 一种室内移动机器人增量式环境信息采样的最优路径规划方法
CN108983780A (zh) * 2018-07-24 2018-12-11 武汉理工大学 一种基于改进rrt*算法的移动机器人路径规划方法
CN109341707A (zh) * 2018-12-03 2019-02-15 南开大学 未知环境下移动机器人三维地图构建方法
CN109668573A (zh) * 2019-01-04 2019-04-23 广东工业大学 一种改进rrt算法的车辆路径规划方法
CN109990796A (zh) * 2019-04-23 2019-07-09 成都信息工程大学 基于双向扩展随机树的智能车路径规划方法
CN110703768A (zh) * 2019-11-08 2020-01-17 福州大学 一种改进型动态rrt*的移动机器人运动规划方法
CN111008750A (zh) * 2019-12-24 2020-04-14 常州信息职业技术学院 一种基于全程旋转约束rrt算法的装配路径规划方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239844A (ja) * 2005-03-04 2006-09-14 Sony Corp 障害物回避装置、障害物回避方法及び障害物回避プログラム並びに移動型ロボット装置
US20100145552A1 (en) * 2008-12-04 2010-06-10 Lockheed Martin Corporation Route planning using ground threat prediction
US9020637B2 (en) * 2012-11-02 2015-04-28 Irobot Corporation Simultaneous localization and mapping for a mobile robot
US9233472B2 (en) * 2013-01-18 2016-01-12 Irobot Corporation Mobile robot providing environmental mapping for household environmental control
US9758305B2 (en) * 2015-07-31 2017-09-12 Locus Robotics Corp. Robotic navigation utilizing semantic mapping
CN106774347A (zh) * 2017-02-24 2017-05-31 安科智慧城市技术(中国)有限公司 室内动态环境下的机器人路径规划方法、装置和机器人
CN106970648B (zh) 2017-04-19 2019-05-14 北京航空航天大学 城市低空环境下无人机多目标路径规划联合搜索方法
US10331135B2 (en) * 2017-11-22 2019-06-25 GM Global Technology Operations LLC Systems and methods for maneuvering around obstacles in autonomous vehicles
CN108241375B (zh) 2018-02-05 2020-10-30 景德镇陶瓷大学 一种自适应蚁群算法在移动机器人路径规划中的应用方法
CN109571466B (zh) * 2018-11-22 2021-01-26 浙江大学 一种基于快速随机搜索树的七自由度冗余机械臂动态避障路径规划方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100174435A1 (en) * 2009-01-07 2010-07-08 Samsung Electronics Co., Ltd. Path planning apparatus of robot and method thereof
CN106444769A (zh) * 2016-10-31 2017-02-22 湖南大学 一种室内移动机器人增量式环境信息采样的最优路径规划方法
CN108983780A (zh) * 2018-07-24 2018-12-11 武汉理工大学 一种基于改进rrt*算法的移动机器人路径规划方法
CN109341707A (zh) * 2018-12-03 2019-02-15 南开大学 未知环境下移动机器人三维地图构建方法
CN109668573A (zh) * 2019-01-04 2019-04-23 广东工业大学 一种改进rrt算法的车辆路径规划方法
CN109990796A (zh) * 2019-04-23 2019-07-09 成都信息工程大学 基于双向扩展随机树的智能车路径规划方法
CN110703768A (zh) * 2019-11-08 2020-01-17 福州大学 一种改进型动态rrt*的移动机器人运动规划方法
CN111008750A (zh) * 2019-12-24 2020-04-14 常州信息职业技术学院 一种基于全程旋转约束rrt算法的装配路径规划方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHI, WENZHENG等: "Risk-DTRRT-Based Optimal Motion Planning Algorithm for Mobile Robots", 《IEEE TRANSACTIONS ON AUTOMATION SCIENCE & ENGINEERING》 *
沈方方: "ITS车辆导航系统中最优路径算法的研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅱ辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596668A (zh) * 2020-06-17 2020-08-28 苏州大学 基于逆向强化学习的移动机器人拟人化路径规划方法
CN111829526A (zh) * 2020-07-23 2020-10-27 中国人民解放军国防科技大学 一种基于防撞半径的距离地图重构与跳点路径规划方法
CN111829526B (zh) * 2020-07-23 2022-05-10 中国人民解放军国防科技大学 一种基于防撞半径的距离地图重构与跳点路径规划方法
CN112446113A (zh) * 2020-11-12 2021-03-05 山东鲁能软件技术有限公司 电力系统环网图最优路径自动生成方法及系统
CN112578385A (zh) * 2020-11-24 2021-03-30 广州极飞科技有限公司 雷达数据的处理方法及装置、作业设备
CN112578385B (zh) * 2020-11-24 2023-07-18 广州极飞科技股份有限公司 雷达数据的处理方法及装置、作业设备
CN113485373A (zh) * 2021-08-12 2021-10-08 苏州大学 一种基于高斯混合模型的机器人实时运动规划方法
CN113485373B (zh) * 2021-08-12 2022-12-06 苏州大学 一种基于高斯混合模型的机器人实时运动规划方法
CN115309164A (zh) * 2022-08-26 2022-11-08 苏州大学 基于生成对抗网络的人机共融移动机器人路径规划方法
CN117387631A (zh) * 2023-12-12 2024-01-12 青岛科技大学 一种机器人的路径规划方法、设备及介质
CN117387631B (zh) * 2023-12-12 2024-03-22 青岛科技大学 一种机器人的路径规划方法、设备及介质

Also Published As

Publication number Publication date
US11846511B2 (en) 2023-12-19
US20220316885A1 (en) 2022-10-06
CN111397598B (zh) 2022-02-01
WO2021208143A1 (zh) 2021-10-21

Similar Documents

Publication Publication Date Title
CN111397598B (zh) 人机共融环境中移动型机器人路径规划采样方法及系统
CN107677279A (zh) 一种定位建图的方法及系统
EP3624055B1 (en) Ground detection method, apparatus, electronic device, vehicle and storage medium
CN107272680A (zh) 一种基于ros机器人操作系统的机器人自动跟随方法
CN106643721B (zh) 一种环境拓扑地图的构建方法
KR102303432B1 (ko) 장애물의 특성을 고려한 dqn 및 slam 기반의 맵리스 내비게이션 시스템 및 그 처리 방법
US11373412B2 (en) Obstacle map generating method and apparatus
JP6997057B2 (ja) 不動物体情報から端末位置を推定する装置、プログラム及び方法
CN113624221B (zh) 一种融合视觉与激光的2.5d地图构建方法
JP2017526083A (ja) 位置特定およびマッピングの装置ならびに方法
CN110705385B (zh) 一种障碍物角度的检测方法、装置、设备及介质
Xu et al. An efficient algorithm for environmental coverage with multiple robots
CN113485373B (zh) 一种基于高斯混合模型的机器人实时运动规划方法
CN113988196A (zh) 一种机器人移动方法、装置、设备及存储介质
CN112428271B (zh) 基于多模态信息特征树的机器人实时运动规划方法
Cho et al. Sloped terrain segmentation for autonomous drive using sparse 3D point cloud
CN114200920A (zh) 路径规划方法、装置及控制系统
Spampinato et al. An embedded stereo vision module for 6D pose estimation and mapping
CN112363498B (zh) 一种基于激光雷达的水下机器人智能运动控制方法
CN112393719B (zh) 一种栅格语义地图生成方法、装置以及存储设备
Ramasubramanian et al. On the enhancement of firefighting robots using path-planning algorithms
CN114812539A (zh) 地图探索、地图使用方法、装置、机器人和存储介质
Kononov et al. Virtual experiments on mobile robot localization with external smart RGB-D camera using ROS
CN113741480A (zh) 一种基于动态障碍物提取与代价地图相结合的避障方法
CN115309164B (zh) 基于生成对抗网络的人机共融移动机器人路径规划方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant