WO2023193424A1 - 人机共存环境中遵循行人规范的移动机器人全局导航方法 - Google Patents

人机共存环境中遵循行人规范的移动机器人全局导航方法 Download PDF

Info

Publication number
WO2023193424A1
WO2023193424A1 PCT/CN2022/128602 CN2022128602W WO2023193424A1 WO 2023193424 A1 WO2023193424 A1 WO 2023193424A1 CN 2022128602 W CN2022128602 W CN 2022128602W WO 2023193424 A1 WO2023193424 A1 WO 2023193424A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedestrian
robot
grid
waypoint
information
Prior art date
Application number
PCT/CN2022/128602
Other languages
English (en)
French (fr)
Inventor
楼云江
陈雨景
孟雨皞
Original Assignee
哈尔滨工业大学(深圳)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210360087.8A external-priority patent/CN115145261B/zh
Priority claimed from CN202210359160.XA external-priority patent/CN114740849B/zh
Application filed by 哈尔滨工业大学(深圳) filed Critical 哈尔滨工业大学(深圳)
Publication of WO2023193424A1 publication Critical patent/WO2023193424A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the invention relates to a global path planning method, a navigation method and a device for a mobile robot, and specifically to a global path planning method, a navigation method and a device for a mobile robot that follow pedestrian walking norms in an environment where humans and machines coexist.
  • Robot autonomous navigation technology is the focus that needs attention.
  • Service robots have many important application scenarios, such as express delivery and takeout collection, building cleaning, document delivery, welcome reception, etc., and these applications require Robots can navigate autonomously in a human-machine coexistence environment.
  • the present invention provides a mobile robot global path planning method and device, aiming to solve at least one of the technical problems existing in the prior art.
  • the technical solution of the present invention relates to a global path planning method for a mobile robot, which method includes the following steps:
  • the pedestrian information includes pedestrian location, pedestrian speed and pedestrian footprint radius;
  • S20 Classify pedestrians through a static map according to the pedestrian's position, and obtain a classification result.
  • the static map includes multiple grids;
  • the technical solution of the present invention also relates to a mobile robot autonomous navigation method, which method includes the steps of the above-mentioned path planning method, and also includes the following steps:
  • S400 Provide the robot's metabolic energy objective function and closed-loop control model, input the robot's linear velocity and angular velocity into the metabolic energy objective function to output the robot's metabolic energy value, and then input the metabolic energy value into the closed-loop control model. , so that the trajectory data reaching the next waypoint is transmitted to the robot's motion controller, and then the robot is controlled to move to the next waypoint.
  • the technical solution of the present invention also relates to a computer-readable storage medium for implementing the above method.
  • the technical solution of the present invention also relates to a computer device, which includes: an image acquisition device and the computer-readable storage medium.
  • the mobile robot can independently generate a global path that conforms to the walking specifications of pedestrians in the scene according to the walking direction preferences of pedestrians in the scene. While guiding the movement of the mobile robot, it can reduce the impact on surrounding pedestrians and public traffic order. ;
  • the robot can autonomously generate human-like navigation behaviors, which facilitates the understanding of surrounding pedestrians, improves the navigation safety and efficiency of the robot, and improves pedestrian safety. Acceptance of robots.
  • Figure 1 is a schematic diagram of the pedestrian walking preference map and the final planned global path according to the embodiment of the present invention.
  • Figure 2 is a statistical and clustering diagram of pedestrian movement directions in one of the grids according to the embodiment of the present invention.
  • Figure 3 is a calculation diagram of the optimal number of clusters for one of the grids in the embodiment of the present invention.
  • Figures 4a and 4b are respectively schematic diagrams of the hybrid Von-Mises distribution and pedestrian movement direction preference of one of the grids according to the embodiment of the present invention.
  • Figure 5 is a schematic diagram of the cost calculation of the traditional graph search algorithm.
  • Figure 6 is a schematic diagram of cost calculation of the graph search algorithm according to the embodiment of the present invention.
  • Figure 7 is a schematic diagram of the robot's optimal path selection according to the navigation method of the present invention.
  • Figure 8 is a schematic diagram of a series of waypoint divisions according to an embodiment of the present invention.
  • Figure 9 is a relationship diagram between the distance between the robot and pedestrians and the density of pedestrians according to an embodiment of the present invention.
  • Figure 10 is a schematic diagram of the robot trajectory optimization process according to an embodiment of the present invention.
  • a mobile robot global path planning method (or a path planning method in a mobile robot motion control method) that follows pedestrian walking specifications in a human-machine coexistence environment according to the present invention part), including the following steps:
  • the pedestrian information includes pedestrian location, pedestrian speed and pedestrian footprint radius.
  • S20 Classify pedestrians through a static map according to their positions, and obtain classification results.
  • the static map includes multiple grids.
  • S40 Determine the mixed Von-Mises distribution of each grid based on the clustering results, and determine the pedestrian movement direction preference of the grid based on the mixed Von-Mises distribution.
  • step S10 Further implementation of step S10
  • Pedestrian information in the target area within a preset time is collected through image acquisition or near-field acquisition.
  • Pedestrian information can be obtained through a camera device or sensor installed on the robot, or through a camera device or sensor installed in the target area.
  • To obtain pedestrian information after obtaining new person information, it is necessary to determine the pedestrian's position, speed and area radius through spatial positioning, and then obtain all pedestrian information in the target area at the preset time;
  • the surveillance camera or mobile robot collects pedestrian information in the area for a period of time, and obtains the information of each pedestrian in the entire area for a period of time through the pedestrian detection module.
  • the pedestrian information includes position, speed and radius of the occupied area, that is, the pedestrian information is expressed as (p x , p y , p v , p ⁇ , p b ) T .
  • the data is allocated to the corresponding grid.
  • the grid size is 1 square meter.
  • a pedestrian information is (2.2, 3.3, 1.0, 0.3, 0.4) T , then it is allocated in the grid whose lower left corner coordinate (star graphic) is (2.0, 3.0).
  • EA* and EAH* respectively represent the possible movement directions of pedestrians.
  • step S20 Further implementation of step S20
  • Step S20 includes: matching the pedestrian position of each pedestrian with the two-dimensional grid coordinates of the static map, and allocating the pedestrian information to the corresponding grid.
  • the pedestrian's spatial position is mapped to the two-dimensional occupancy grid map of the static environment, the pedestrian's position on the grid map is determined, and the pedestrian's location allocation is completed.
  • step S30 Further implementation of step S30
  • step S30 includes: performing clustering processing on the moving directions of multiple pedestrians in each grid through a clustering metric, where the clustering metric includes at least one of elbow, interval statistics, silhouette coefficient and Canopy. .
  • the pedestrian information in each grid it is necessary to determine the preference of the pedestrian's movement direction in the grid. Since pedestrians can have multiple walking directions at a certain location, such as at a crossroads, pedestrians can go to four intersections, so the pedestrian information in each grid needs to be clustered using the K-means clustering method. However, the number of clusters in the grid is not a fixed value, so the number of clusters needs to be determined.
  • centroid of the moving directions of a total of K pedestrians in the grid Utilize clustering metrics to select the most suitable clusters.
  • Common metrics include elbow, interval statistics, silhouette coefficient or Canopy, etc.
  • Each line in Figure 2 represents a pedestrian movement direction.
  • This grid contains a total of K pedestrian movement directions.
  • the elbow metric is used as an example to determine the optimal number of clusters. This measure minimizes the squared error between the sample and the center point, and finds a distortion critical point based on the error to determine the number of clusters.
  • the critical point of distortion is when the number of clusters is 2. Therefore, the pedestrian movement direction in Figure 2 is divided into two clusters, and two clusters C1 and C2 can be obtained by clustering the data based on the K-means clustering method.
  • step S40 Further implementation of step S40
  • the mixed Von-Mises distribution in each grid is obtained, and a pedestrian walking preference direction map is generated;
  • a mixed Von-Mises distribution can be expressed as
  • each Von-Mises distribution is independent of each other and can be expressed as
  • J 0 ( ⁇ ) is the 0th order Bessel correction function, which can be expressed as
  • each cluster can be established as an independent Von-Mises distribution, and multiple clusters form a mixed Von-Mises distribution.
  • the statistical model parameters ⁇ and ⁇ can be obtained by calculating the maximum likelihood estimate.
  • the weight parameter ⁇ m of each independent distribution needs to be calculated. Because each distribution is independent, the weight parameter can be obtained by the ratio of the number of data in the cluster to the number of all data in the grid.
  • Figure 4 shows a schematic diagram of the mixed Von-Mises distribution obtained after processing the data in Figure 2, where Figure 4a is the mixed Von-Mises distribution, and Figure 4b is the direction preference of pedestrian movement in each grid. Therefore, the direction preference of pedestrian movement in each grid can be obtained.
  • step S50 Further implementation of step S50
  • Step S50 specifically includes: improving the movement cost function in the graph search algorithm according to the mixed Von-Mises distribution in each grid;
  • F(s) is the overall estimated path cost of selecting a certain grid
  • G(s) is the cost from the starting point to the selected grid
  • H(s) is the cost from the selected grid to the end point.
  • l(s, ⁇ ) is the change in movement cost caused by the pedestrian’s preferred direction, which can be expressed as
  • Equation 1.9 when moving in the preferred direction of pedestrians in the grid, the cost will be smaller. As shown in Figure 6, the cost is smaller when moving along the pedestrian's preferred direction in the grid, so the graph search algorithm can select the optimal path based on the pedestrian's preferred direction.
  • the least expensive global path is calculated based on the movement cost function in the modified improved graph search algorithm.
  • the present invention also relates to an autonomous navigation method of the mobile robot based on pedestrian walking decision rules, which includes the following steps:
  • the detection module of the robot may include photography equipment, radar and other equipment, used to collect the above-mentioned pedestrian position data, pedestrian speed data and pedestrian footprint radius data.
  • S400 Provide the robot's metabolic energy objective function and closed-loop control model, input the robot's linear velocity and angular velocity into the metabolic energy objective function to output the robot's metabolic energy value, and then input the metabolic energy value into the closed-loop control model. , so that the trajectory data reaching the next waypoint is transmitted to the robot's motion controller, and then the robot is controlled to move to the next waypoint.
  • step S100 Specific implementation of step S100
  • step S100 also includes: setting the maximum speed of the robot, and the distance between the waypoints is calculated by the following formula:
  • v max is the upper limit of the robot's maximum moving speed
  • ⁇ d is the waypoint distance.
  • step S100 may include: using the current waypoint as an intermediate target point, and when the robot is less than 3m away from the current waypoint, setting the next waypoint as the next intermediate target point until the robot moves to the given destination location. .
  • the robot uses the first waypoint as the robot's intermediate target point.
  • the next waypoint can be set as the robot's intermediate target point until the robot reaches the last waypoint. point and finally reach the destination location.
  • step S200 Specific implementation of step S200
  • step S200 includes: constructing the linear speed model formula, calculating predicted pedestrian trajectory information,
  • p x and py are the coordinate values of the current pedestrian position data
  • p v is the speed value of the current pedestrian speed data
  • p ⁇ is the area value of the current pedestrian footprint radius data
  • the robot predicts the predicted pedestrian trajectory position information at least two seconds after the pedestrian is moved from the current position.
  • the robot predicts the predicted pedestrian trajectory position information at least two seconds after the pedestrian is moved from the current position.
  • the position of pedestrian #1 is (p x , py ), and then predict that he will move in the direction of the arrow after a certain time (for example, 2 seconds).
  • the prediction of pedestrian #1 is calculated through the above linear velocity model formula.
  • the coordinate position is
  • step S300 Specific implementation of step S300
  • the robot obtains the coordinate values of the pedestrian position data of the current waypoints of pedestrian #1 and pedestrian #2, the speed value of the pedestrian speed data, and the area value of the pedestrian footprint radius data, inputs the linear velocity model formula, and obtains the pedestrian The predicted coordinate positions of #1 and pedestrian #2 two seconds later.
  • the robot finds the next waypoint without pedestrian obstacles.
  • the robot maintains an interpersonal distance from the real-time positions of Pedestrian #1 and Pedestrian #2 while moving forward.
  • step S300 the collision-free distance between the robot and the pedestrian is constructed in the following manner:
  • p b is the radius of the pedestrian
  • r b is the radius of the robot
  • d b is the distance between the robot and the pedestrian
  • the interpersonal distance includes social space distance and private space distance, the social space distance does not exceed 1.2m, and the private space distance does not exceed 0.5m,
  • Figure 9 when the robot moves among multiple waypoints with gradually increasing pedestrian density, as the pedestrian density increases (from 0.2 to 0.8), the distance maintained between the robot and the pedestrians decreases linearly, not exceeding the distance between the robot and the pedestrians. personal space distance.
  • Figure 9 shows that when the density of pedestrians is small, the robot and pedestrians follow a distance from the private space, which does not exceed 1.2m; when the density of pedestrians is large, the robot and the pedestrian follow a distance from the private space, which does not exceed 0.5m.
  • step S400 Specific implementation of step S400
  • p v is the pedestrian speed
  • ⁇ 0 and ⁇ 1 are weight parameters
  • the two weight parameters are estimated from the pedestrian behavior statistical data set.
  • the robot's metabolic energy objective function is constructed in the following way and the robot's metabolic energy value is calculated:
  • a 0 , a 1 , a 2 are the weight parameters of the robot's metabolic energy objective function, v is the robot's linear speed, ⁇ is the robot's angular velocity, and f is the robot's metabolic energy value.
  • step S400 a closed-loop control model is constructed in the following manner, and the trajectory data from the current waypoint to the next waypoint is calculated: Referring to the two waypoints for the robot to move as shown in Figure 7, the coordinates of the current waypoint for The coordinates of the next waypoint are
  • the last big black dot is the current target waypoint of the robot, and the dotted black circle is the closest collision-free position of the robot to the target waypoint. Therefore, in the example of Figure 7, ⁇ g is selected as the current optimal direction.
  • step S400 the robot moves between multiple waypoints.
  • the trajectory data and the metabolic energy value moving between multiple waypoints are iterated in sequence until the robot's metabolic energy value is minimum. Referring to Figure 10, through the above steps, the optimal trajectory with multiple discrete points in the figure and the corresponding values of K ⁇ and K ⁇ are optimized and calculated.
  • the above-mentioned mobile robot global path planning and navigation method enables the mobile robot to independently generate a global path that conforms to the walking specifications of pedestrians in the scene according to the walking direction preferences of pedestrians in the scene. While guiding the movement of the mobile robot, it reduces the impact on the surroundings. Impact on pedestrian and public transportation order. In addition, it can also enable mobile robots to autonomously generate human-like navigation behaviors based on the surrounding static/dynamic scene characteristics, making it easier for surrounding pedestrians to understand and accept the mobile robot. While achieving navigation tasks, it can reduce the impact on traffic efficiency and surrounding pedestrians. .
  • the method steps in embodiments of the present invention may be implemented or implemented by computer hardware, a combination of hardware and software, or by computer instructions stored in a non-transitory computer-readable memory.
  • the methods may use standard programming techniques.
  • Each program may be implemented in a high-level procedural or object-oriented programming language to communicate with the computer system.
  • the program can be implemented in assembly or machine language.
  • the language may be a compiled or interpreted language.
  • the program can be run on programmed application specific integrated circuits for this purpose.
  • the processes (or variations and/or combinations thereof) described herein may be performed under the control of one or more computer systems configured with executable instructions, and may be executed as code collectively executed on one or more processors (e.g., , executable instructions, one or more computer programs or one or more applications), implemented by hardware or a combination thereof.
  • the computer program includes a plurality of instructions executable by one or more processors.
  • the methods may be implemented in any type of computing platform operably connected to a suitable computer, including but not limited to a personal computer, minicomputer, main frame, workstation, network or distributed computing environment, stand-alone or integrated computer platform, or communicate with charged particle tools or other imaging devices, etc.
  • Aspects of the invention may be implemented in machine-readable code stored on a non-transitory storage medium or device, whether removable or integrated into a computing platform, such as a hard disk, optical read and/or write storage medium, RAM, ROM, etc., such that they are readable by a programmable computer, the storage media or devices when read by the computer can be used to configure and operate the computer to perform the processes described herein.
  • machine-readable code may be transmitted over wired or wireless networks.
  • the invention described herein includes these and other different types of non-transitory computer-readable storage media when such media includes instructions or programs that perform the steps described above in conjunction with a microprocessor or other data processor.
  • the invention may also include the computer itself when programmed according to the methods and techniques described herein.
  • a computer program can be applied to input data to perform the functions described herein, thereby converting the input data to generate output data that is stored in non-volatile memory.
  • Output information can also be applied to one or more output devices such as displays.
  • the converted data represents physical and tangible objects, including specific visual depictions of physical and tangible objects produced on a display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种移动机器人路径规划方法、自主导航方法,计算机可读存储介质,计算机装置。路径规划方法包括:响应于路径规划请求,获取目标区域内的行人信息;根据行人位置,通过静态地图对行人进行分类,得到分类结果;获取每个网格中行人的行人信息,对行人的移动方向执行聚类处理,得到多个聚类结果;根据聚类结果,确定每个网格的混合冯米塞斯分布;根据混合冯米塞斯分布,确定网格的行人移动方向偏好;根据每个网格的混合冯米塞斯分布和行人移动方向偏好,确定移动机器人最优的全局移动路径。自主导航方法,还包括:基于给定的目的地位置和机器人初始位置,获取无障碍物的全局路径,将全局路径分隔成多个路点,其中相邻的路点之间具有多个路点间距;对于每个路点通过检测模块获取多个行人信息,通过线性速度模型输入行人信息,得到预测行人轨迹位置信息,其中,行人信息包括行人位置数据、行人速度数据及行人占地面积半径数据;计算当前时间点的路点周围的每个行人轨迹位置信息,根据预测的行人轨迹位置信息,寻找与预测的行人位置信息直线距离最短的下一个无碰撞行人的路点,同时根据人际距离模型,在机器人移动过程中与行人保持人际距离;提供机器人的代谢能量目标函数及闭环控制模型,将机器人的线速度及角速度输入代谢能量目标函数,以输出机器人的代谢能量值,再将代谢能量值输入闭环控制模型,使达到下一个路点的轨迹数据输送到机器人的运动控制器,然后控制机器人移动到下一个路点。计算机可读存储介质上储存有程序指令,程序指令被处理器执行时实施路径规划或自主导航方法。计算机装置包括图像采集设备和计算机可读存储介质。

Description

人机共存环境中遵循行人规范的移动机器人全局导航方法 技术领域
本发明涉及移动机器人全局路径规划方法、导航方法及装置,具体涉及了一种在人机共存的环境中遵循行人步行规范的移动机器人全局路径规划方法、导航方法及装置。
背景技术
在服务机器人自主智能技术中,机器人自主导航技术是需要关注的重点。近年来,随着我国城镇化的发展,城市的数量与人口显著增加,服务机器人存在许多重要的应用场景,如快件与外卖收取、楼宇清洁、文件配送、迎宾接待等,而这些应用都需要机器人能够在人机共存环境中自主导航。
为了实现移动机器人在人机共存环境中实现自主导航,首先需要进行全局路径规划,即规划一条从机器人的起始点到目标点的无碰撞的全局路径。在传统的移动机器人全局路径规划算法中,只针对静态环境的避障,并未考虑机器人的行为对周围行人的影响,并造成公共交通的堵塞,故不适用于人机共存场景中移动机器人的导航。移动机器人在人机共存的环境中移动时,必须要求机器人在导航过程中能够遵循行人的步行规范,以免造成逆行的行为,导致交通堵塞,影响行人的正常行走。最常见的行人步行规范,比如在许多国家,行人默认为靠右行走。
发明内容
本发明提供了一种移动机器人全局路径规划方法及装置,旨在至少解决现有技术中存在的技术问题之一。
本发明的技术方案涉及一种移动机器人全局路径规划方法,所述方法包括以下步骤:
S10,响应于路径规划请求,获取目标区域内的行人信息,所述行人信息包括行人位置、行人速度及行人占地面积半径;
S20,根据所述行人位置,通过静态地图对行人进行分类,得到分类结果,所述静态地图包括多个网格;
S30,获取每个网格中行人的所述行人信息,对行人的移动方向执行聚类处理,得到多个聚类结果;
S40,根据所述聚类结果,确定每个所述网格的混合Von-Mises分布,以及,根据所述混合Von-Mises分布,确定所述网格的行人移动方向偏好;
S50,根据每个所述网格的混合Von-Mises分布和所述行人移动方向偏好,确定移动机器 人最优的全局移动路径。
本发明的技术方案还涉及一种移动机器人自主导航方法,所述方法包括上述的路径规划方法的步骤,且还包括以下步骤:
S100、基于给定的目的地位置和机器人初始位置,获取无障碍物的全局路径,将全局路径分隔成多个路点,其中相邻的路点之间具有多个路点间距;
S200、对于每个路点通过检测模块获取多个行人信息,通过线性速度模型输入所述行人信息,得到预测行人轨迹位置信息,其中,所述行人信息包括行人位置数据、行人速度数据及行人占地面积半径数据;
S300、计算当前时间点的路点周围的每个行人轨迹位置信息,根据预测的行人轨迹位置信息,寻找与预测的行人位置信息直线距离最短的下一个无碰撞行人的路点,同时根据人际距离模型,在机器人移动过程中与行人保持人际距离;
S400、提供机器人的代谢能量目标函数及闭环控制模型,将机器人的线速度及角速度输入所述代谢能量目标函数,以输出机器人的代谢能量值,再将所述代谢能量值输入所述闭环控制模型,使达到下一个路点的轨迹数据输送到机器人的运动控制器,然后控制机器人移动到下一个路点。
本发明的技术方案还涉及一种计算机可读存储介质,用于实施上述的方法。
本发明的技术方案还涉及一种计算机装置,其包括:图像采集设备以及所述的计算机可读存储介质。
本发明的有益效果为:移动机器人能够根据场景中行人的步行方向的偏好,自主生成符合场景中行人步行规范的全局路径,在指引移动机器人运动的同时,减少对周围行人和公共交通秩序的影响;当机器人在稠密行人环境中导航的过程中,基于本发明提供的自主导航方法,机器人能够自主生成类人的导航行为,便于周围行人的理解,提高了机器人的导航安全性和效率,提高行人对机器人的接受度。
附图说明
图1是本发明实施例的行人步行偏好地图及最终规划的全局路径示意图。
图2是本发明实施例的其中一个网格的行人移动方向统计及聚类图。
图3是本发明实施例的其中一个网格的最优聚类数量计算图。
图4a和图4b分别是本发明实施例的其中一个网格的混合Von-Mises分布及行人移动方向偏好示意图。
图5是传统的图搜索算法的成本计算示意图。
图6是本发明实施例的图搜索算法的成本计算示意图。
图7是根据本发明的导航方法的机器人最优选择路径的示意图。
图8是根据本发明实施例中的系列路点划分的示意图。
图9是根据本发明实施例中的机器人与行人的距离-行人密度关系图。
图10是根据本发明实施例中的机器人轨迹优化过程示意图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、方案和效果。
参照图1至图6,在一些实施例中,根据本发明的一种在人机共存的环境中遵循行人步行规范的移动机器人全局路径规划方法(或者是移动机器人运动控制方法中的路径规划方法部分),包括以下步骤:
S10,响应于路径规划请求,获取目标区域内的行人信息,行人信息包括行人位置、行人速度及行人占地面积半径。
S20,根据行人位置,通过静态地图对行人进行分类,得到分类结果,静态地图包括多个网格。
S30,获取每个网格中行人的行人信息,对行人的移动方向执行聚类处理,得到多个聚类结果。
S40,根据聚类结果,确定每个网格的混合的冯米塞斯(Von-Mises)分布,以及,根据混合Von-Mises分布,确定网格的行人移动方向偏好。
S50,根据每个网格的混合Von-Mises分布和行人移动方向偏好,确定移动机器人最优的全局移动路径。
对于步骤S10的进一步的实施方式
通过图像采集或近场采集方式对目标区域在预设时间内的行人信息进行采集,可以通过设置于机器人的摄像装置或者传感器等设备获取行人信息,也可以通过设置于目标区域的摄像装置或者传感器获取行人信息,在获取新人信息后,需要通过空间定位,确定行人所处的位置、速度和占地面积的半径,进而得到目标区域在预设时间的所有行人信息;
参照图1,为了统计一个区域内的行人流向偏好,首先需要收集区域内行人的移动信息。由监控摄像头或者由移动机器人进行该区域内的一段时间的行人信息收集,通过行人检测模块得到一段时间内整个区域的每个行人信息。该行人信息包括位置、速度和占地面积的半径,即行人信息表示为(p x,p y,p v,p θ,p b) T。根据行人位置信息,将数据分配到对应的网格中。该图中,网格大小为1平方米。例如,一个行人信息为(2.2,3.3,1.0,0.3,0.4) T,则其被分配在左下 角坐标(星号图形)为(2.0,3.0)的网格中。图1中“EA*”和“EAH*”分别表示行人可能的移动方向。
对于步骤S20的进一步的实施方式
其中,步骤S20包括:将每个行人的所述行人位置与所述静态地图的二维网格坐标进行匹配,将行人信息分配至对应的所述网格中。
参照图1的实施方式,将行人的空间位置其映射于静态环境的二维占用网格地图,确定行人在网格地图的位置,完成行人的位置分配。
对于步骤S30的进一步的实施方式
其中,步骤S30包括:通过聚类度量对每个所述网格的多个行人的移方向进行聚类处理,所述聚类度量包括elbow、间隔统计量、轮廓系数和Canopy中的至少一种。
在一些实施例中,基于每个网格中的行人信息,需要判断在该网格中行人的移动方向的偏好。由于行人在某个位置可以有多个行走方向,如在十字路口,行人可以往四个路口走去,因此需要对每个网格内的行人信息使用K-means聚类方法进行聚类。但是,在网格中的聚类数量并不是一个固定值,因此需要确定聚类的数量。
具体为,对于网格内共K个行人的移动方向
Figure PCTCN2022128602-appb-000001
利用聚类度量来选择最合适的聚类。常见的度量包括elbow,间隔统计量,轮廓系数或者Canopy等。以附图1中画圈的网格为例,附图2中每条线代表一个行人移动方向
Figure PCTCN2022128602-appb-000002
该网格内共包含K个行人的移动方向。如附图3所示,以elbow度量为例确定最优聚类数量。该度量通过最小化样本与中心点平方误差,基于该误差寻找一个畸变临界点,用以判断聚类数量。在附图3中,基于不同聚类数量下的elbow度量值,可以看到畸变临界点在聚类数量为2时。因此,附图2中的行人移动方向被分为两个聚类,基于K-means聚类方法对该数据进行聚类可以得到两个聚类C1和C2。
对于步骤S40的进一步的实施方式
对每个网格中的多个聚类,得到每个网格中的混合Von-Mises分布,生成行人步行偏好方向地图;
由网格中的多个聚类,可以得到在该网格中行人移动方向的混合Von-Mises分布。一个混合Von-Mises分布可以表示为
Figure PCTCN2022128602-appb-000003
式中,p θ、α、μ、κ分别是混合Von-Mises分布的计算参数,M是聚类的数量,α m是每个聚类的权重参数且
Figure PCTCN2022128602-appb-000004
μ m和κ m是每个分布的统计模型参数。在混合Von-Mises分布 中,每个Von-Mises分布是相互独立的,可以表示为
Figure PCTCN2022128602-appb-000005
式中J 0(κ)是0阶贝塞尔修正函数,可以表示为
Figure PCTCN2022128602-appb-000006
因此,基于S30步骤中对于数据的聚类,可以将每一个聚类建立为一个独立的Von-Mises分布,多个聚类形成一个混合Von-Mises分布。
具体为,对于一个Von-Mises分布,其统计模型参数μ和κ可以通过极大似然估计得到。首先式1.2的对数似然函数为
Figure PCTCN2022128602-appb-000007
则通过计算极大似然估计可以得到统计模型参数μ和κ
Figure PCTCN2022128602-appb-000008
然后,多个独立的Von-Mises分布组合为一个混合Von-Mises分布时,需要计算每个独立分布的权重参数α m。因为每个分布之间是独立的,因此权重参数可以通过聚类中数据的数量与网格中所有数据的数量的比值得到
Figure PCTCN2022128602-appb-000009
式中P m是聚类中数据的数量,P是所有聚类的数据数量总和。附图4所示为附图2中的数据经处理后得到的混合Von-Mises分布的示意图,其中图4a为混合Von-Mises分布,4b为每个网格内行人移动的方向偏好。因此可以得到每个网格内行人移动的方向偏好。
对于步骤S50的进一步的实施方式
步骤S50具体包括:根据每个网格中的混合Von-Mises分布,改进图搜索算法中的移动成本函数;
传统的图搜索算法如Astar,混合Astar等,规划一条朝向从起点到终点的最短无碰撞路径,但该路径没有考虑机器人行为对行人交通带来的影响。传统的混合Astar算法搜索最短路径的具体方法为
F(s)=G(s)+H(s)             (1.7)
式中F(s)为选择某一网格的整体预估路径成本,G(s)为起点到被选中网格的成本, H(s)为被选中网格到终点的成本。
如附图5所示,传统图搜索算法中,规划一条从圆形到菱形的路径,只能选择上下左右四个方向移动,则G(s)为圆形到三角形的成本,H(s)为三角形到菱形的成本,每移动一格成本耗费为g(s)=1,最终需要找到一条F(s)最小的路径,即为最优全局路径。
如附图6所示,以起点处的网格的具有偏好方向为例,将每格移动的成本从1改写为
g′(s)=g(s)+l(s,θ)          (1.8)
式中l(s,θ)为受到行人偏好方向影响而导致的移动成本变化,可以表示为
Figure PCTCN2022128602-appb-000010
基于式1.9,顺着网格中行人偏好方向移动时,耗费成本将会更小。如附图6所示,顺着网格中行人偏好方向移动时成本耗费更小,因此可以使得图搜索算法基于行人偏好方向选择最优路径。
此外,根据改进的改进图搜索算法中的移动成本函数,计算耗费最低的全局路径。
由每个网格中的行人偏好方向,依次迭代计算,最终得到一条符合行人移动偏好方向的全局路径。如附图1所示,以混合Astar算法为例,传统混合Astar算法(HA*)搜索得到的全局路径虽然更短,但其在多处地方逆着人流移动,容易影响交通秩序,不符合人类通常的移动习惯。基于人流偏好地图的改进的混合Astar算法则能够规划一条顺着人流移动的全局路径。这种方式下能够引导机器人融入人流,不会影响行人的正常行走。
参照图7至图10,在融合了上述实施例中的移动机器人全局路径规划方法的基础上,本发明还涉及一种基于行人步行决策规则的移动机器人自主导航方法,包括以下步骤:
S100、基于给定的目的地位置和机器人初始位置,获取无障碍物的全局路径,将全局路径分隔成多个路点,其中相邻的路点之间具有多个路点间距。参照图7所示,机器人在x、y坐标轴的初始位置,机器人通过自身的拍摄设备采集,采用A-Star算法获取全局路径。具体地,将图7中的静态环境表示为二维占用网格地图,其中有行人或其他障碍物的网格为1,没有障碍物的网格为0。
S200、对于每个路点通过检测模块获取多个行人信息,通过线性速度模型输入所述行人信息,得到预测行人轨迹位置信息,其中,所述行人信息包括行人位置数据、行人速度数据及行人占地面积半径数据。该处机器人的检测模块可以包括拍摄设备、雷达等设备,用于收集上述的行人位置数据、行人速度数据及行人占地面积半径数据。
S300、计算当前时间点的路点周围的每个行人轨迹位置信息,根据预测的行人轨迹位置 信息,寻找与预测的行人位置信息直线距离最短的下一个无碰撞行人的路点,同时根据人际距离模型,在机器人移动过程中与行人保持人际距离。
S400、提供机器人的代谢能量目标函数及闭环控制模型,将机器人的线速度及角速度输入所述代谢能量目标函数,以输出机器人的代谢能量值,再将所述代谢能量值输入所述闭环控制模型,使达到下一个路点的轨迹数据输送到机器人的运动控制器,然后控制机器人移动到下一个路点。
对于步骤S100的具体实施方式
基于将全局路径离散为一些列路点,步骤S100还包括:设置所述机器人的最大速度,所述路点间距通过以下公式计算:
Δd=3×v max
其中,v max是机器人的最大移动速度上限,Δd是路点间距。在全局路径上,譬如机器人的最大速度上限v max=1m/s,计算得到Δd=3m。将全局路径上,距离机器人初始位置3m处的路点设置为第一路点,6m处的路点设置为第二路点,如此类推,依次设置直到倒数第二个路点距离机器人目的地位置小于3m。最后,将机器人目的地位置设置为最后一个路点。
进一步地,步骤S100可以包括:将当前路点作为中间目标点,当机器人距离当前路点小于3m时,将下一个路点设置为下一个中间目标点,直到机器人移动到达给定的目的地位置。具体地,参照图8,机器人将第一个路点作为机器人的中间目标点,当机器人距离当前路点小于1m,可以将下一个路点设置为机器人的中间目标点,直至机器人到达最后一个路点,并最终抵达目的地位置。
对于步骤S200的具体实施方式
进一步地,所述步骤S200包括:构建所述线性速度模型公式,计算预测行人轨迹信息,
Figure PCTCN2022128602-appb-000011
Figure PCTCN2022128602-appb-000012
其中,p x、p y是当前所述行人位置数据的坐标值,p v是当前所述行人速度数据的速度值,p θ是当前所述行人占地面积半径数据的面积值,
Figure PCTCN2022128602-appb-000013
是所述预测行人轨迹信息的坐标值。
机器人预测行人从当前位置至少两秒后的所述预测行人轨迹位置信息。机器人预测行人从当前位置至少两秒后的所述预测行人轨迹位置信息。参照图7,假设行人#1所在的位置为 (p x,p y),然后预测某一时间(比如2秒)后朝箭头方向移动,通过上述的线性速度模型公式计算出行人#1的预测坐标位置为
Figure PCTCN2022128602-appb-000014
对于步骤S300的具体实施方式
参照图7,需要计算k时刻机器人当前路点与周围行人#1及行人#2的某一时间(比如2秒)的预测位置直线上的无碰撞的路点
Figure PCTCN2022128602-appb-000015
使得从到当前的路点
Figure PCTCN2022128602-appb-000016
到下个路点
Figure PCTCN2022128602-appb-000017
的距离最小。机器人通过获取行人#1及行人#2两者的当前路点的行人位置数据的坐标值、行人速度数据的速度值及行人占地面积半径数据的面积值,输入线性速度模型公式,得出行人#1及行人#2两秒后预测的坐标位置。图7中机器人找寻到下一个无行人障碍的路点
Figure PCTCN2022128602-appb-000018
机器人在前进过程中与行人#1及行人#2的实时位置保持人际距离。
具体地,在所述步骤S300中,通过以下方式构建所述机器人与行人的无碰撞距离:
d=p b+r b+d b
其中,p b是行人的半径,r b是机器人的半径,d b是机器人与行人保持的距离,
优选地,所述人际距离包括社交空间距离及私人空间距离,所述社交空间距离不超过1.2m,所述私人空间距离不超过0.5m,
根据图9,当机器人行人密度逐渐增加的多个路点中移动时,所述机器人随着行人密度的增加(从0.2至0.8),机器人与行人之间的保持的距离线性递减,不超过与行人的私人空间距离。图9中显示,行人的密度较小时,机器人与行人遵循距离私人空间距离,即不超过1.2m;行人的密度较大时,机器人与行人遵循距离私人空间距离,即不超过0.5m。
对于步骤S400的具体实施方式
由于行人步行行为总是最小化代谢能量。具体的,在社会行为学研究中表明,当人类在行走足够长的距离时,通常会以单位距离代谢成本最小的速度行走,它能够使得在代谢能量值固定的情况下行走距离最长,在社会行为学中,该代谢函数表示为,
E=λ 01p v 2
其中,p v是行人速度,λ 0和λ 1为权重参数,两个权重参数从行人行为统计数据集中估计得到。
同样地,机器人在移动足够长的距离时,为了让机器人移动行走模仿行人步行行为,通 过以下方式构建机器人的代谢能量目标函数,计算机器人的代谢能量值:
f=a 0+a 1v 2+a 2ω 2
其中,为了让机器人移动行走模仿行人步行行为,a 0、a 1、a 2是机器人的代谢能量目标函数的权重参数,v是机器人的线速度,ω是机器人的角速度,f是机器人的代谢能量值。
进一步地,所述步骤S400中:通过以下方式构建闭环控制模型,计算从当前路点到达下一个路点的轨迹数据:参照图7所示机器人要移动的两个路点,当前路点的坐标为
Figure PCTCN2022128602-appb-000019
下一个路点的坐标为
Figure PCTCN2022128602-appb-000020
Figure PCTCN2022128602-appb-000021
Figure PCTCN2022128602-appb-000022
Figure PCTCN2022128602-appb-000023
其中,ρ是从当前路点的坐标
Figure PCTCN2022128602-appb-000024
到下一个路点的坐标
Figure PCTCN2022128602-appb-000025
之间的距离,
Figure PCTCN2022128602-appb-000026
φ=θ g,θ是当前路点的偏转角度值,θ g是下一个路点的偏转角度值,K ρ、K α、K φ是权重参数。
如图7所示,最后的大黑点为机器人当前的目标路点,虚线黑色圆为机器人距离目标路点最近的无碰撞的位置。因此,在附图7示例中,选择θ g为当前最优方向。
具体地,所述步骤S400中:机器人在多个路点之间移动,对于移动过程中的多个路点,按照以下的方式进行轨迹优化:首先使K ρ取一预设值,譬如K ρ取3,通过公式α=K ρsinα-K αα-K φφ进行输入,通过优化计算找寻一组K α、K φ的值,使得生成一条从当前位置到点
Figure PCTCN2022128602-appb-000027
的轨迹,然后根据机器人的代谢能量目标函数计算得到代谢能量值,多个路点之间移动的所述轨迹数据及所述代谢能量值依次迭代直到机器人的代谢能量值 最小。参照图10,经过上述步骤过程,优化计算出图中具有多个离散点的最优轨迹及相应的K α、K φ的值。
综上,上述的移动机器人全局路径规划和导航方法使得移动机器人能够根据场景中行人的步行方向的偏好,自主生成符合场景中行人步行规范的全局路径,在指引移动机器人运动的同时,减少对周围行人和公共交通秩序的影响。此外,还可以使移动机器人能够根据周围静态/动态场景特征,自主生成类人导航行为,便于周围行人理解和接受该移动机器人,在实现导航任务的同时,减少对交通效率和对周围行人的影响。
应当认识到,本发明实施例中的方法步骤可以由计算机硬件、硬件和软件的组合、或者通过存储在非暂时性计算机可读存储器中的计算机指令来实现或实施。所述方法可以使用标准编程技术。每个程序可以以高级过程或面向对象的编程语言来实现以与计算机系统通信。然而,若需要,该程序可以以汇编或机器语言实现。在任何情况下,该语言可以是编译或解释的语言。此外,为此目的该程序能够在编程的专用集成电路上运行。
此外,可按任何合适的顺序来执行本文描述的过程的操作,除非本文另外指示或以其他方式明显地与上下文矛盾。本文描述的过程(或变型和/或其组合)可在配置有可执行指令的一个或多个计算机系统的控制下执行,并且可作为共同地在一个或多个处理器上执行的代码(例如,可执行指令、一个或多个计算机程序或一个或多个应用)、由硬件或其组合来实现。所述计算机程序包括可由一个或多个处理器执行的多个指令。
进一步,所述方法可以在可操作地连接至合适的任何类型的计算平台中实现,包括但不限于个人电脑、迷你计算机、主框架、工作站、网络或分布式计算环境、单独的或集成的计算机平台、或者与带电粒子工具或其它成像装置通信等等。本发明的各方面可以以存储在非暂时性存储介质或设备上的机器可读代码来实现,无论是可移动的还是集成至计算平台,如硬盘、光学读取和/或写入存储介质、RAM、ROM等,使得其可由可编程计算机读取,当存储介质或设备由计算机读取时可用于配置和操作计算机以执行在此所描述的过程。此外,机器可读代码,或其部分可以通过有线或无线网络传输。当此类媒体包括结合微处理器或其他数据处理器实现上文所述步骤的指令或程序时,本文所述的发明包括这些和其他不同类型的非暂时性计算机可读存储介质。当根据本发明所述的方法和技术编程时,本发明还可以包括计算机本身。
计算机程序能够应用于输入数据以执行本文所述的功能,从而转换输入数据以生成存储至非易失性存储器的输出数据。输出信息还可以应用于一个或多个输出设备如显示器。在本发明优选的实施例中,转换的数据表示物理和有形的对象,包括显示器上产生的物理和有形对象的特定视觉描绘。
以上所述,只是本发明的较佳实施例而已,本发明并不局限于上述实施方式,只要其以相同的手段达到本发明的技术效果,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。在本发明的保护范围内其技术方案和/或实施方式可以有各种不同的修改和变化。

Claims (19)

  1. 一种移动机器人全局路径规划方法,其特征在于,所述方法包括以下步骤:
    S10,响应于路径规划请求,获取目标区域内的行人信息,所述行人信息包括行人位置、行人速度及行人占地面积半径;
    S20,根据所述行人位置,通过静态地图对行人进行分类,得到分类结果,所述静态地图包括多个网格;
    S30,获取每个网格中行人的所述行人信息,对行人的移动方向执行聚类处理,得到多个聚类结果;
    S40,根据所述聚类结果,确定每个所述网格的混合Von-Mises分布,以及,根据所述混合Von-Mises分布,确定所述网格的行人移动方向偏好;
    S50,根据每个所述网格的混合Von-Mises分布和所述行人移动方向偏好,确定移动机器人最优的全局移动路径。
  2. 根据权利要求1所述的路径规划方法,其中,所述步骤S10包括:
    通过图像采集或近场采集方式对所述目标区域在预设时间内的所述行人信息进行采集,得到所述目标区域在所述预设时间的所有所述行人信息。
  3. 根据权利要求1所述的路径规划方法,其中,所述步骤S20包括:
    将每个行人的所述行人位置与所述静态地图的二维网格坐标进行匹配,将行人信息分配至对应的所述网格中。
  4. 根据权利要求1所述的路径规划方法,其中,所述步骤S30包括:
    通过聚类度量对每个所述网格的多个行人的移方向进行聚类处理,所述聚类度量包括elbow、间隔统计量、轮廓系数和Canopy中的至少一种。
  5. 根据权利要求1所述的路径规划方法,其中,所述步骤S40包括:
    以每个所述网格的多个所述聚类结果为
    Figure PCTCN2022128602-appb-100001
    确定所述网格中行人移动方向的所述混合Von-Mises分布,通过公式得到:
    Figure PCTCN2022128602-appb-100002
    其中,p θ、α、μ、κ分别是混合Von-Mises分布的计算参数,M是所述聚类结果的数量,α m是每个所述聚类结果的权重参数且
    Figure PCTCN2022128602-appb-100003
    μ m和κ m是每个分布的统计模型参数;
    获取所述混合Von-Mises分布中每个独立的Von-Mises分布,通过公式得到:
    Figure PCTCN2022128602-appb-100004
    其中J 0(κ)是0阶贝塞尔修正函数,为
    Figure PCTCN2022128602-appb-100005
    通过计算极大似然估计得到统计模型参数μ和κ,将每个独立的Von-Mises分布合并为所述混合Von-Mises分布时确定权重参数α m,计算方式为:
    Figure PCTCN2022128602-appb-100006
    其中,P m是所述聚类结果中数据数量,P是所有网格中所述聚类结果的数据数量总和;
    生成行人步行偏好方向地图。
  6. 根据权利要求1所述的路径规划方法,其中,所述步骤S40包括:
    每个独立的Von-Mises分布的数似然函数为
    Figure PCTCN2022128602-appb-100007
    通过计算极大似然估计可以得到统计模型参数μ和κ,计算方式为
    Figure PCTCN2022128602-appb-100008
  7. 根据权利要求5所述的路径规划方法,其中,所述步骤S50包括:
    以移动机器人所处的所述网格作为起点,将每格移动的成本作为:
    g′(s)=g(s)+l(s,θ)
    其中g(s)为移动机器人移动一个网格的移动成本,l(s,θ)为受到行人移动方向偏好的影响而导致的移动成本变化,l(s,θ)通过以下公式得到:
    Figure PCTCN2022128602-appb-100009
    通过图搜索算法基于行人移动方向偏好选择最优路径。
  8. 根据权利要求7所述的路径规划方法,其中,所述步骤S50包括:
    根据每个所述网格中的所述行人移动方向偏好,执行所述目标区域内所有网格的迭代计算,得到符合所述行人移动偏好方向的最小消费全局路径。
  9. 一种移动机器人自主导航方法,其特征在于,所述方法包括权利要求1至8中任一权利要求所述的路径规划方法的步骤,且还包括以下步骤:
    S100、基于给定的目的地位置和机器人初始位置,获取无障碍物的全局路径,将全局路 径分隔成多个路点,其中相邻的路点之间具有多个路点间距;
    S200、对于每个路点通过检测模块获取多个行人信息,通过线性速度模型输入所述行人信息,得到预测行人轨迹位置信息,其中,所述行人信息包括行人位置数据、行人速度数据及行人占地面积半径数据;
    S300、计算当前时间点的路点周围的每个行人轨迹位置信息,根据预测的行人轨迹位置信息,寻找与预测的行人位置信息直线距离最短的下一个无碰撞行人的路点,同时根据人际距离模型,在机器人移动过程中与行人保持人际距离;
    S400、提供机器人的代谢能量目标函数及闭环控制模型,将机器人的线速度及角速度输入所述代谢能量目标函数,以输出机器人的代谢能量值,再将所述代谢能量值输入所述闭环控制模型,使达到下一个路点的轨迹数据输送到机器人的运动控制器,然后控制机器人移动到下一个路点。
  10. 根据权利要求9所述的方法,其中,所述步骤S100包括:
    设置所述机器人的最大速度,所述路点间距通过以下公式计算:
    Δd=3×v max
    其中,v max是机器人的最大移动速度上限,Δd是路点间距。
  11. 根据权利要求10所述的方法,其中,所述步骤S100包括:
    将当前路点作为中间目标点,当机器人距离当前路点小于3m时,将下一个路点设置为下一个中间目标点,直到机器人移动到达给定的目的地位置。
  12. 根据权利要求9所述的方法,其中,所述步骤S200包括:
    构建所述线性速度模型公式,计算预测行人轨迹信息,
    Figure PCTCN2022128602-appb-100010
    Figure PCTCN2022128602-appb-100011
    其中,p x、p y是当前所述行人位置数据的坐标值,p v是当前所述行人速度数据的速度值,p θ是当前所述行人占地面积半径数据的面积值,
    Figure PCTCN2022128602-appb-100012
    是所述预测行人轨迹信息的坐标值。
  13. 根据权利要求9所述的方法,其中,在所述步骤S300中,
    通过以下方式构建所述机器人与行人的无碰撞距离:
    d=p b+r b+d b
    其中,p b是行人的半径,r b是机器人的半径,d b是机器人与行人保持的距离,
    所述人际距离包括社交空间距离及私人空间距离,所述社交空间距离不超过1.2m,所述私人空间距离不超过0.5m,
    所述机器人随着行人密度的增加,机器人与行人之间的保持的人际距离线性递减,不超过与行人的私人空间距离。
  14. 根据权利要求9所述的方法,其中,在所述步骤S400中,
    通过以下方式构建机器人的代谢能量目标函数,计算机器人的代谢能量值:
    f=a 0+a 1v 2+a 2ω 2
    其中,a 0、a 1、a 2是机器人的代谢能量目标函数的权重参数,v是机器人的线速度,ω是机器人的角速度,f是机器人的代谢能量值。
  15. 根据权利要求14所述的方法,其中,所述步骤S400中:
    通过以下方式构建闭环控制模型,计算从当前路点到达下一个路点的轨迹数据:
    Figure PCTCN2022128602-appb-100013
    Figure PCTCN2022128602-appb-100014
    Figure PCTCN2022128602-appb-100015
    其中,当前路点的坐标为
    Figure PCTCN2022128602-appb-100016
    下一个路点的坐标为
    Figure PCTCN2022128602-appb-100017
    其中,ρ是从当前路点的坐标
    Figure PCTCN2022128602-appb-100018
    到下一个路点的坐标
    Figure PCTCN2022128602-appb-100019
    之间的距离,
    Figure PCTCN2022128602-appb-100020
    φ=θ g,θ是当前路点的偏转角度值,θ g是下一个路点的偏转角度值,K ρ、K α、K φ是权重参数。
  16. 根据权利要求15所述的方法,其中,所述步骤S400中:
    使K ρ取一预设值,通过
    α=K ρsinα-K αα-K φφ,
    优化计算找寻一组K α、K φ的值,使得生成从当前位置到点
    Figure PCTCN2022128602-appb-100021
    的轨迹;
    根据机器人的代谢能量目标函数计算得到代谢能量值,多个路点之间移动的所述轨迹数据及所述代谢能量值依次迭代直到机器人的代谢能量值最小。
  17. 根据权利要求9所述的方法,其中,所述步骤S200包括:
    机器人预测行人从当前位置至少两秒后的所述预测行人轨迹位置信息。
  18. 一种计算机可读存储介质,其上储存有程序指令,所述程序指令被处理器执行时实施如权利要求1至17中任一项所述的方法。
  19. 一种计算机装置,其特征在于,包括:
    图像采集设备;
    根据权利要求18所述的计算机可读存储介质。
PCT/CN2022/128602 2022-04-07 2022-10-31 人机共存环境中遵循行人规范的移动机器人全局导航方法 WO2023193424A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210360087.8 2022-04-07
CN202210360087.8A CN115145261B (zh) 2022-04-07 2022-04-07 人机共存下遵循行人规范的移动机器人全局路径规划方法
CN202210359160.XA CN114740849B (zh) 2022-04-07 2022-04-07 基于行人步行决策规则的移动机器人自主导航方法及装置
CN202210359160.X 2022-04-07

Publications (1)

Publication Number Publication Date
WO2023193424A1 true WO2023193424A1 (zh) 2023-10-12

Family

ID=88244014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128602 WO2023193424A1 (zh) 2022-04-07 2022-10-31 人机共存环境中遵循行人规范的移动机器人全局导航方法

Country Status (1)

Country Link
WO (1) WO2023193424A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117369480A (zh) * 2023-12-05 2024-01-09 北京理工大学 一种室内复杂环境下轮腿机器人路径规划方法与系统
CN118075350A (zh) * 2024-02-29 2024-05-24 重庆大学 一种基于双模型预测的服务迁移方法
CN118072502A (zh) * 2024-04-17 2024-05-24 北京工业大学 电子围栏的规划方法、装置、电子设备和存储介质
CN118192613A (zh) * 2024-05-13 2024-06-14 天津市品茗科技有限公司 一种ai机器人动态避障方法及系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558856A (zh) * 2013-11-21 2014-02-05 东南大学 动态环境下服务动机器人导航方法
CN104950305A (zh) * 2015-06-17 2015-09-30 电子科技大学 一种基于稀疏约束的实波束扫描雷达角超分辨成像方法
WO2019147235A1 (en) * 2018-01-24 2019-08-01 Ford Global Technologies, Llc Path planning for autonomous moving devices
CN110285813A (zh) * 2019-07-01 2019-09-27 东南大学 一种室内移动机器人人机共融导航装置及方法
CN110673826A (zh) * 2019-10-25 2020-01-10 山东大学 群机器人在区域搜索中的随机搜索方法及系统
CN110827326A (zh) * 2019-11-14 2020-02-21 清华大学苏州汽车研究院(吴江) 模拟人车冲突场景模型生成方法、装置、设备和存储介质
CN111291690A (zh) * 2020-02-17 2020-06-16 深圳市联合视觉创新科技有限公司 路线规划方法、路线规划装置、机器人及介质
CN112325884A (zh) * 2020-10-29 2021-02-05 广西科技大学 一种基于dwa的ros机器人局部路径规划方法
CN113110521A (zh) * 2021-05-26 2021-07-13 中国科学技术大学 移动机器人路径规划控制方法及其控制装置、存储介质
US20210269059A1 (en) * 2020-02-29 2021-09-02 Uatc, Llc Trajectory Prediction for Autonomous Devices
WO2021208143A1 (zh) * 2020-04-16 2021-10-21 苏州大学 人机共融环境中移动型机器人路径规划采样方法及系统
CN114397896A (zh) * 2022-01-10 2022-04-26 贵州大学 一种改进粒子群算法的动态路径规划方法
CN114740849A (zh) * 2022-04-07 2022-07-12 哈尔滨工业大学(深圳) 基于行人步行决策规则的移动机器人自主导航方法及装置
CN115145261A (zh) * 2022-04-07 2022-10-04 哈尔滨工业大学(深圳) 人机共存下遵循行人规范的移动机器人全局路径规划方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558856A (zh) * 2013-11-21 2014-02-05 东南大学 动态环境下服务动机器人导航方法
CN104950305A (zh) * 2015-06-17 2015-09-30 电子科技大学 一种基于稀疏约束的实波束扫描雷达角超分辨成像方法
WO2019147235A1 (en) * 2018-01-24 2019-08-01 Ford Global Technologies, Llc Path planning for autonomous moving devices
CN110285813A (zh) * 2019-07-01 2019-09-27 东南大学 一种室内移动机器人人机共融导航装置及方法
CN110673826A (zh) * 2019-10-25 2020-01-10 山东大学 群机器人在区域搜索中的随机搜索方法及系统
CN110827326A (zh) * 2019-11-14 2020-02-21 清华大学苏州汽车研究院(吴江) 模拟人车冲突场景模型生成方法、装置、设备和存储介质
CN111291690A (zh) * 2020-02-17 2020-06-16 深圳市联合视觉创新科技有限公司 路线规划方法、路线规划装置、机器人及介质
US20210269059A1 (en) * 2020-02-29 2021-09-02 Uatc, Llc Trajectory Prediction for Autonomous Devices
WO2021208143A1 (zh) * 2020-04-16 2021-10-21 苏州大学 人机共融环境中移动型机器人路径规划采样方法及系统
CN112325884A (zh) * 2020-10-29 2021-02-05 广西科技大学 一种基于dwa的ros机器人局部路径规划方法
CN113110521A (zh) * 2021-05-26 2021-07-13 中国科学技术大学 移动机器人路径规划控制方法及其控制装置、存储介质
CN114397896A (zh) * 2022-01-10 2022-04-26 贵州大学 一种改进粒子群算法的动态路径规划方法
CN114740849A (zh) * 2022-04-07 2022-07-12 哈尔滨工业大学(深圳) 基于行人步行决策规则的移动机器人自主导航方法及装置
CN115145261A (zh) * 2022-04-07 2022-10-04 哈尔滨工业大学(深圳) 人机共存下遵循行人规范的移动机器人全局路径规划方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN, HONG: "Chinese Medical Encyclopedia (Public Health·Health Statistics)", 31 December 2019, PEKING UNION MEDICAL COLLEGE PRESS, CN, ISBN: 978-7-5679-1324-0, article YAN HONG: "Passage; Chinese Medical Encyclopedia", pages: 107, XP009550120 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117369480A (zh) * 2023-12-05 2024-01-09 北京理工大学 一种室内复杂环境下轮腿机器人路径规划方法与系统
CN117369480B (zh) * 2023-12-05 2024-02-23 北京理工大学 一种室内复杂环境下轮腿机器人路径规划方法与系统
CN118075350A (zh) * 2024-02-29 2024-05-24 重庆大学 一种基于双模型预测的服务迁移方法
CN118072502A (zh) * 2024-04-17 2024-05-24 北京工业大学 电子围栏的规划方法、装置、电子设备和存储介质
CN118192613A (zh) * 2024-05-13 2024-06-14 天津市品茗科技有限公司 一种ai机器人动态避障方法及系统

Similar Documents

Publication Publication Date Title
WO2023193424A1 (zh) 人机共存环境中遵循行人规范的移动机器人全局导航方法
CN112074383B (zh) 使用2d和3d路径规划的机器人导航
Meng et al. A two-stage optimized next-view planning framework for 3-D unknown environment exploration, and structural reconstruction
Wallar et al. Reactive motion planning for unmanned aerial surveillance of risk-sensitive areas
KR20110026776A (ko) 실제 로봇의 다중 경로계획 방법
Cai et al. Prediction-based path planning for safe and efficient human–robot collaboration in construction via deep reinforcement learning
Ioannidis et al. A path planning method based on cellular automata for cooperative robots
Kaufman et al. Autonomous exploration by expected information gain from probabilistic occupancy grid mapping
CN115061499B (zh) 无人机控制方法及无人机控制装置
WO2023082985A1 (zh) 用于生成电子设备的导航路径的方法和产品
Lian et al. Improved coding landmark-based visual sensor position measurement and planning strategy for multiwarehouse automated guided vehicle
CN113848888A (zh) 一种agv叉车路径规划方法、装置、设备及存储介质
Ravankar et al. Safe mobile robot navigation in human-centered environments using a heat map-based path planner
CN116295426A (zh) 基于三维重建质量反馈的无人机自主探索方法及装置
Belavadi et al. Frontier exploration technique for 3d autonomous slam using k-means based divisive clustering
CN114740849B (zh) 基于行人步行决策规则的移动机器人自主导航方法及装置
CN118258407A (zh) 基于分层场景图谱的导航方法、系统、终端及存储介质
CN115145261B (zh) 人机共存下遵循行人规范的移动机器人全局路径规划方法
Megalingam et al. 2D-3D hybrid mapping for path planning in autonomous robots
Takiguchi et al. Collision avoidance algorithm using deep learning type artificial intelligence for a mobile robot
Olson et al. Optimal multi-agent coverage and flight time with genetic path planning
CN115600053A (zh) 一种导航方法及相关设备
Garzón et al. Pedestrian Trajectory Prediction in Large Infrastructures-A Long-term Approach based on Path Planning
Aburaya et al. Review of vision-based reinforcement learning for drone navigation
Goodwin A robust and efficient autonomous exploration methodology of unknown environments for multi-robot systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936352

Country of ref document: EP

Kind code of ref document: A1