CN111394999B - 一种基于平板丝的复合环保材料的构建方法 - Google Patents

一种基于平板丝的复合环保材料的构建方法 Download PDF

Info

Publication number
CN111394999B
CN111394999B CN202010063069.4A CN202010063069A CN111394999B CN 111394999 B CN111394999 B CN 111394999B CN 202010063069 A CN202010063069 A CN 202010063069A CN 111394999 B CN111394999 B CN 111394999B
Authority
CN
China
Prior art keywords
flat
silk
small
flat wire
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010063069.4A
Other languages
English (en)
Other versions
CN111394999A (zh
Inventor
杨明英
陈玉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010063069.4A priority Critical patent/CN111394999B/zh
Publication of CN111394999A publication Critical patent/CN111394999A/zh
Application granted granted Critical
Publication of CN111394999B publication Critical patent/CN111394999B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/15Proteins or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/10Animal fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种基于平板丝的复合环保材料的构建方法。本发明包括如下步骤:将蚕置于平板吐丝床上,待吐丝尽后,将已吐丝的蚕自平板吐丝床上取下,获得平板丝;将获得的平板丝烘干,利用丝素蛋白溶液浸泡处理,浸泡一段时间后,进行冷冻干燥,获得多孔/小孔径平板丝;利用乙醇处理小孔径平板丝,获得不溶性小孔径平板丝;利用含锌离子的水溶液浸没不溶性小孔径平板丝,完全浸泡后,加入有机配体反应5~30min,取出后利用水进行洗涤直到上清为清澈水溶液,即获得平板丝‑MOFs复合材料。本技术构建得到的复合吸附膜具有较高的吸附功能,尤其适合于吸附重金属离子和有机污染物。

Description

一种基于平板丝的复合环保材料的构建方法
技术领域
本发明涉及一种基于平板丝的复合材料的构建方法,尤其涉及一种基于平板丝的复合环保材料的构建方法。
背景技术
由于工业的飞速发展以及人口增多,生活、工业等产生的废弃物被大量投入到河流、湖泊中,造成了严重的水体污染。污水中的酸、碱、氧化剂,以及铜、镉、汞、砷等化合物,苯、二氯乙烷、乙二醇等有机毒物,对水生生物有致命风险,影响饮用水源、风景区景观。因此,制备一种高吸附性能的材料进行水中污染物处理具有重要意义。
由于吸附剂具有大的比表面积、高的吸附容量和很高的表面活性,因此吸附被认为是一种去除废水中重金属的有效、经济的方法。吸附是一种物质从液相传递到固相(吸附剂)的表面,并且通过物理或化学作用结合起来。目前,活性炭吸附剂、碳纳米管吸附剂、生物吸附剂和介孔硅吸附剂都被广泛应用于处理重金属废水中。但是,这些吸附剂一般为粉末/纳米颗粒的形式,投入到水体中不利于回收处理,并且一般不可以进行循环利用。并且很多吸附剂吸附效率不高,实际应用中投入量大,不仅增加成本,还会造成水体负担,甚至存在二次污染的问题。
蚕丝蛋白,富含丝素蛋白(SF)与丝胶蛋白(SS),是天然的高分子蛋白,与其他天然高分子相比具有较好的可加工性能、生物相容性和稳定性好等优点。随着丝素蛋白研究的不断扩展,蚕丝蛋白的的功能被不断开发利用。将蚕丝蛋白加工成多孔支架或者具有粗糙表面的膜材料可用于重金属、有机物等污染物的吸附。其氨基酸含量丰富,其中的氨基和羧基能够螯合重金属离子,与传统吸附剂活性炭、沸石相比,具有价格低廉、选择吸附性好、处理效率高的特点。平板丝,由蚕吐丝一层层叠加平铺而成,维持蚕丝蛋白的原始结构,不需加工修饰,不易板结,且具有良好的力学性能,可用其作为水污染处理材料,但是单纯的平板丝与重金属结合后形成的螯合物难以固液分离,也不易回收再生使用,并且对溶液中的重金属、有机污染物吸附能力不高。
金属-有机骨架化合物(MOFs)因其含有结构多孔、比表面积大易加工修饰等特点而成为了良好的气体储存、气体选择性吸附和分离、重金属吸附材料。但是多数MOFs是在水热条件下合成的,加工性较差,与基底的结合能力弱,在应用过程中易团聚和脱落。且合成的MOFs多为纳米颗粒的形式,不易于回收和重复使用,且在酸性条件下不稳定易降解,限制了其实际应用。例如专利号为“CN201510614360.5”的专利“一种巯基功能化MOFs材料的制备及其吸附去除水体中重金属离子的应用”,该方法改善了MOFs对重金属离子的吸附能力,并赋予MOFs能够选择性去除水体中铅、汞等重金属离子的能力,但是其修饰后MOFs仍为纳米颗粒的形式,将其投入到大面积水净化处理中仍然会面临吸附材料的回收问题。
发明内容
为了解决背景技术中的问题,本发明提出了一种平板丝-MOFs复合吸附材料的原位构建方法,本发明通过仿生矿化的方法在平板丝表面原位诱导合成具有多孔结构的MOFs纳米颗粒,构建一种具有粗糙表面结构、高比表面积、高吸附效率的平板丝-MOFs复合吸附材料。本技术构建得到的复合吸附膜具有较高的吸附功能,尤其适合于吸附重金属离子和有机污染物。
本发明采用的技术方案包括如下步骤:
(1)制备平板丝:将5龄蚕置于平板吐丝床上,待吐丝尽后,将已吐丝的蚕自平板吐丝床上取下,获得平板丝;
优选的熟蚕布放密度为3~4千克/平方米。
(2)制备小孔径平板丝:将步骤(1)获得的平板丝烘干,利用丝素蛋白溶液浸泡处理,浸泡一段时间后,进行冷冻干燥,获得多孔/小孔径平板丝;
(3)小孔径平板丝β不溶性处理:利用乙醇处理步骤(2)中获得的小孔径平板丝,获得不溶性小孔径平板丝;
(4)平板丝-MOFs复合材料的构建:利用含锌离子的水溶液浸没不溶性小孔径平板丝,完全浸泡后,加入有机配体反应5~30min,取出后利用水进行洗涤直到上清为清澈水溶液,即获得平板丝-MOFs复合材料;
(5)吸附性能测试:
利用步骤(4)获得的平板丝-MOFs复合材料进行有机染料的吸附:取平板丝-MOFs复合材料置于有机染料的水溶液中进行吸附;
利用步骤(4)获得的平板丝-MOFs复合材料进行重金属的吸附:取平板丝-MOFs复合材料置于重金属离子溶液中进行吸附;
(6)将经过步骤(5)吸附后的平板丝-MOFs复合材料与水溶液分离后,对平板丝-MOFs复合材料和水溶液进行吸附效果测定分析。
所述步骤(1)中的蚕为家蚕或柞蚕;
所述步骤(2)中的丝素蛋白溶液可以由丝胶蛋白溶液、明胶溶液或壳聚糖溶液替换;所述步骤(2)中的浸泡处理时间为0.5-4h。
所述步骤(2)中的丝素蛋白溶液的质量百分比浓度为8%-20%,优化为15%。
所述步骤(4)中的锌离子为可溶性锌盐中的锌离子,可溶性锌盐为Zn(NO3)2·6H2O、Zn(CH3COO)2中的任一种;所述有机配体为2-甲基咪唑、苯并咪唑和咪唑中任一种;所述锌离子与有机配体的摩尔比为1:0.1-100。
所述步骤(5)中的有机染料为罗丹明B(RB)或甲基蓝,也可以为其他有机污染物。
所述步骤(5)的重金属离子溶液中的重金属离子为金、银、铜、铁或铅。
所述步骤(6)中的水溶液为步骤(5)中的有机染料水溶液或重金属离子溶液。
所述步骤(5)和步骤(6)中的吸附效果测定分析具体为:对水溶液中剩余金属离子进行ICP测定得到剩余金属离子浓度,并根据公式:吸附率(%)=[(加入金属离子浓度-溶液中剩余金属离子浓度)*溶液体积]/(加入金属离子浓度*溶液体积),分别计算出单纯平板丝与复合平板丝对重金属离子的吸附率;或者通过观测平板丝与平板丝-MOFs复合材料上有颜色的重金属离子以及有机染料的颜色变化分析平板丝-MOFs复合材料的吸附效果。
本发明的有益效果:
(1)本发明的制备过程无需添加任何额外的试剂,合成过程简单,具有耗能低,生物安全性高,价格低廉,无污染等优势。
(2)通过本发明所运用的平板丝由蚕直接吐丝形成,保留蚕丝本身的优良的理化性质。
(3)利用原位诱导的方式在平板丝表面构建MOFs纳米颗粒,具有颗粒均匀,负载量高,稳定性好等特点。
(4)由于MOFs颗粒具有多孔结构,均匀分布在平板丝上,增加了平板丝的表面粗糙度,提高了平板丝比表面积,进一步加大了吸附污染物的面积,提高了吸附效率。
(5)本发明制得的平板丝-MOFs复合材料更易回收和再利用。
附图说明
图1为实施例1中单纯的平板丝及构建的平板丝-MOFs复合材料的SEM图像;
图2为实施例1制备的构建的平板丝-MOFs复合材料的EDS元素分析;
图3为实施例1中平板丝及平板丝-MOFs复合材料进行罗丹明B吸附后的宏观照片;
图4为实施例1中平板丝-MOFs复合材料进行罗丹明B吸附后的SEM图像;
图5为实施例2中平板丝及平板丝-MOFs复合材料进行Cu2+吸附后的宏观照片观察;
图6为实施例2中平板丝-MOFs复合材料进行Cu2+吸附后的SEM图像。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案作进一步的详细说明,以下实施例是对本发明的解释而本发明并不局限于以下实施例。
实施例1
(1)平板丝制备:将5龄蚕置于平板吐丝床上,待吐丝尽后,将已吐丝的蚕自平板吐丝床上取下,获得平板丝。
(2)小孔径平板丝的制备:将获得平板丝烘干,利用8%丝素蛋白溶液浸泡处理,浸泡30min后,进行冷冻干燥,获得多孔/小孔径平板丝。
(3)小孔径平板丝β不溶性处理:将步骤(2)中获得的小孔径平板丝利用90%乙醇处理10min;然后,利用75%乙醇处理2h。取出后,再次冷冻干燥,获得不溶性小孔径平板丝。
(4)平板丝-MOFs复合材料的构建:利用Zn(NO3)2·6H2O水溶液(40mM)浸没平板丝,完全浸泡后,加入2-甲基咪唑(160mM)反应15min,取出后利用水进行洗涤直到上清为清澈水溶液,即获得平板丝-MOFs复合材料。
(5)利用步骤(4)获得的平板丝-MOFs复合材料进行有机染料的吸附:取一定量的平板丝置于罗丹明B有机染料中,进行吸附性能测试。
结果分析:
如图1为本实施例中单纯的平板丝及构建的平板丝-MOFs复合材料的SEM图像,从两张对比图可以看到,单纯的平板丝表面光滑,经过MOFs涂层后的复合平板丝表面存在明显的纳米颗粒;
如图2所示为本实施例制备的平板丝-MOFs复合材料的EDS元素分析图像,由图像可知由Zn元素对比结果发现,蚕丝蛋白纤维表面颜色变浅,左图虚线圈内颜色较暗,证明Zn元素大量存在于蚕丝蛋白纤维的表面。
平板丝及平板丝-MOFs复合材料分别对不同浓度的罗丹明B进行吸附,以吸附前原溶液颜色作为对照,对其吸附颜色深浅及吸附程度进行判断,吸附结果如图3所示,由对比结果表1可知单纯的平板丝未能完全吸附溶液中的罗丹明B,吸附程度远低于平板丝-MOFs复合材料,平板丝-MOFs复合材料对三个浓度的溶液吸附程度均接近100%。
表1平板丝及平板丝-MOFs复合材料进行罗丹明B吸附后的对比结果
Figure BDA0002375115440000051
图4为实施例1中平板丝-MOFs复合材料进行罗丹明B吸附后的SEM图像;由图像可知吸附后平板丝-MOFs复合材料的表面MOFs结构未发生明显的变化,证明对于有机物质的吸附可能由单纯的物理吸附造成的。
实施例2
(1)平板丝制备:将5龄蚕置于平板吐丝床上,待吐丝尽后,将已吐丝的蚕自平板吐丝床上取下,获得平板丝。
(2)小孔径平板丝的制备:将获得平板丝烘干,利用15%丝素蛋白溶液浸泡处理,浸泡1h后,进行冷冻干燥,获得多孔/小孔径平板丝。
(3)小孔径平板丝β不溶性处理:将步骤(2)中获得的小孔径平板丝利用90%乙醇处理10min;然后,利用75%乙醇处理2h。取出后,再次冷冻干燥,获得不溶性小孔径平板丝。
(4)平板丝-MOFs复合材料的构建:利用Zn(CH3COO)2水溶液(44.44mM)浸没平板丝,完全浸泡后,加入2-甲基咪唑(1600mM)反应10min,取出后利用水进行洗涤直到上清为清澈水溶液,即获得平板丝-MOFs复合材料。
(5)利用步骤(4)获得的平板丝-MOFs复合材料进行Cu2+的吸附:取一定量的平板丝置于蓝色Cu2+溶液中,进行吸附性能测试。
结果分析:
平板丝及平板丝-MOFs复合材料分别对不同浓度的Cu2+进行吸附,以吸附前原溶液颜色作为对照,对其吸附颜色深浅及吸附程度进行判断,吸附结果对比如图5所示,由对比结果表2可知单纯的平板丝未能完全吸附溶液中的Cu2+,吸附程度远低于平板丝-MOFs复合材料,平板丝-MOFs复合材料对三个浓度的溶液吸附程度均接近100%。
表2平板丝及平板丝-MOFs复合材料进行Cu2+吸附后的对比结果
Figure BDA0002375115440000061
如图6所示为实施例2中平板丝-MOFs复合材料进行Cu2+吸附后的SEM图像,由图像可知,进行Cu2+吸附后,平板丝-MOFs复合纤维表面的颗粒状MOFs变为片层状结构,证明了平板丝-MOFs复合材料可通过与Cu2+化学反应实现高效的吸附。

Claims (4)

1.一种基于平板丝的复合环保材料的构建方法,其特征在于,包括如下步骤:
(1)制备平板丝:将5龄蚕置于平板吐丝床上,待吐丝尽后,将已吐丝的蚕自平板吐丝床上取下,获得平板丝;
(2)制备小孔径平板丝:将步骤(1)获得的平板丝烘干,利用丝素蛋白溶液浸泡处理,浸泡一段时间后,进行冷冻干燥,获得小孔径平板丝;
(3)小孔径平板丝不溶性处理:利用乙醇处理步骤(2)中获得的小孔径平板丝,获得不溶性小孔径平板丝;
(4)平板丝-MOFs复合材料的构建:利用含锌离子的水溶液浸没不溶性小孔径平板丝,完全浸泡后,加入有机配体反应5~30min,取出后利用水进行洗涤直到上清液为清澈水溶液,即获得平板丝-MOFs复合材料;
所述步骤(4)中的锌离子为可溶性锌盐中的锌离子,可溶性锌盐为Zn(NO3)2•6H2O、Zn(CH3COO)2中的任一种;所述有机配体为2-甲基咪唑、苯并咪唑和咪唑中任一种;所述锌离子与有机配体的摩尔比为1:0.1-100。
2.根据权利要求1所述的基于平板丝的复合环保材料的构建方法,其特征在于,所述步骤(1)中的蚕为家蚕或柞蚕。
3.根据权利要求1所述的基于平板丝的复合环保材料的构建方法,其特征在于,所述步骤(2)中的浸泡处理时间为0.5-4h。
4.根据权利要求1所述的基于平板丝的复合环保材料的构建方法,其特征在于,所述步骤(2)中的丝素蛋白溶液的质量百分比浓度为8%-20%。
CN202010063069.4A 2020-01-19 2020-01-19 一种基于平板丝的复合环保材料的构建方法 Active CN111394999B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010063069.4A CN111394999B (zh) 2020-01-19 2020-01-19 一种基于平板丝的复合环保材料的构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010063069.4A CN111394999B (zh) 2020-01-19 2020-01-19 一种基于平板丝的复合环保材料的构建方法

Publications (2)

Publication Number Publication Date
CN111394999A CN111394999A (zh) 2020-07-10
CN111394999B true CN111394999B (zh) 2021-06-08

Family

ID=71434237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010063069.4A Active CN111394999B (zh) 2020-01-19 2020-01-19 一种基于平板丝的复合环保材料的构建方法

Country Status (1)

Country Link
CN (1) CN111394999B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040124151A1 (en) * 2000-12-12 2004-07-01 Maxim, Llc, A Limited Liability Corporation Fibrous protein adsorption of heavy metals
KR20150011302A (ko) * 2013-07-22 2015-01-30 광주과학기술원 중금속 흡착제, 이를 이용한 중금속 흡착 방법, 이의 제조방법 및 이의 재생방법
CN103418029A (zh) * 2013-08-29 2013-12-04 中国人民解放军军事医学科学院卫生装备研究所 一种丝素/壳聚糖复合多孔支架的制备方法
CN105801878B (zh) * 2016-04-11 2017-12-29 武汉纺织大学 一种丝素蛋白基纳米MOFs的制备方法
CN106178107B (zh) * 2016-07-01 2019-04-30 浙江大学 一种蚕丝/胶原复合支架及其制备与应用
CN107051398B (zh) * 2017-04-26 2020-01-14 浙江大学 一种制备丝蛋白纳米纤维-金属有机框架复合薄膜的方法
CN109498829A (zh) * 2018-10-25 2019-03-22 江苏科技大学 蚕丝蛋白创伤敷料及其制备方法和应用

Also Published As

Publication number Publication date
CN111394999A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
Rajendran et al. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review
Lin et al. A systematic review of metal organic frameworks materials for heavy metal removal: Synthesis, applications and mechanism
Ihsanullah et al. Aerogel-based adsorbents as emerging materials for the removal of heavy metals from water: Progress, challenges, and prospects
Liu et al. Rapid and efficient removal of heavy metal and cationic dye by carboxylate-rich magnetic chitosan flocculants: role of ionic groups
Wang et al. Eco-friendly poly (acrylic acid)-sodium alginate nanofibrous hydrogel: A multifunctional platform for superior removal of Cu (II) and sustainable catalytic applications
Liu et al. In situ preparation of chitosan/ZIF-8 composite beads for highly efficient removal of U (VI)
Li et al. Phosphate adsorption on metal oxides and metal hydroxides: A comparative review
Duan et al. Chemically modified kapok fiber for fast adsorption of Pb 2+, Cd 2+, Cu 2+ from aqueous solution
Zhou et al. rGO/CNQDs/ZIF-67 composite aerogel for efficient extraction of uranium in wastewater
Wu et al. Ultra-high selective removal of CR and Cr (VI) from aqueous solutions using polyethyleneimine functionalized magnetic hydrochar: Application strategy and mechanisms insight
Shang et al. Preferable uptake of phosphate by hydrous zirconium oxide nanoparticles embedded in quaternary-ammonium Chinese reed
Zhang et al. Removal of methyl orange from aqueous solutions by adsorption on cellulose hydrogel assisted with Fe 2 O 3 nanoparticles
Bao et al. Amino-assisted AHMT anchored on graphene oxide as high performance adsorbent for efficient removal of Cr (VI) and Hg (II) from aqueous solutions under wide pH range
Wang et al. High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined Pseudomonas putida and Talaromyces amestolkiae biomass for Pb (II) removal from wastewater
Priya et al. Recovery and reuse of Ni (II) from rinsewater of electroplating industries
Li et al. Highly selective adsorption of dyes and arsenate from their aqueous mixtures using a silica-sand/cationized-starch composite
Huong et al. Novel lanthanum-modified activated carbon derived from pine cone biomass as ecofriendly bio-sorbent for removal of phosphate and nitrate in wastewater
Liu et al. Synergistically adsorbing and reducing Uranium from water by a novel nano zero-valent copper/MXene 0D/2D nanocomposite
Zhou et al. BiOCl0. 875Br0. 125/polydopamine functionalized PVDF membrane for highly efficient visible-light-driven photocatalytic degradation of roxarsone and simultaneous arsenic immobilization
Su et al. Preparation of a surface molecular‐imprinted adsorbent for Ni2+ based on Penicillium chrysogenum
CN110560012A (zh) 一种利用树脂负载水合氧化铁去除水中磷的方法
Qiao et al. Preparation of zeolitic imidazolate framework-67/wool fabric and its adsorption capacity for reactive dyes
Hashemian MnFe2O4/bentonite nano composite as a novel magnetic material for adsorption of acid red 138
CN111151221A (zh) 一种超快去除水体中重金属的大孔生物炭基杂化材料及其制备方法与应用
Chaudhuri et al. Graphene oxide-based dendritic adsorbent for the excellent capturing of platinum group elements

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant