CN111382528A - 一种基于人工智能的多段压裂天然气水平井示踪方法 - Google Patents

一种基于人工智能的多段压裂天然气水平井示踪方法 Download PDF

Info

Publication number
CN111382528A
CN111382528A CN202010478361.2A CN202010478361A CN111382528A CN 111382528 A CN111382528 A CN 111382528A CN 202010478361 A CN202010478361 A CN 202010478361A CN 111382528 A CN111382528 A CN 111382528A
Authority
CN
China
Prior art keywords
fracturing
artificial intelligence
horizontal well
tracer
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010478361.2A
Other languages
English (en)
Other versions
CN111382528B (zh
Inventor
谭晓华
苟良杰
毛正林
林思诗
李阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202010478361.2A priority Critical patent/CN111382528B/zh
Publication of CN111382528A publication Critical patent/CN111382528A/zh
Application granted granted Critical
Publication of CN111382528B publication Critical patent/CN111382528B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Mining

Abstract

本发明属于天然气水平井示踪解释领域,特别涉及一种基于人工智能的多段压裂天然气水平井示踪方法;它针对目前多段压裂水平井示踪技术人工智能化低、示踪时间短、施工复杂等问题;其技术方案是:基于人工智能和示踪剂监测技术,根据流线数值模拟法和达西方程建立数据库,改变固体示踪剂的投放方式,改进固体示踪剂得到更准确的生产数据,数据库和生产数据自动生成对应的分析模型,模型自动计算各压裂分段中采出液和采出气的贡献;本发明使用简单便捷,能够长时间(6‑8年)同时监测产气产水剖面,精确计算各个压裂分段的产气产水量,能监测开发各个阶段剖面的具体情况,避免主观判断的影响,实现全智能的天然气水平井示踪。

Description

一种基于人工智能的多段压裂天然气水平井示踪方法
技术领域
本发明属于数据信息化油气开发示踪领域,特别涉及一种基于人工智能的多段压裂天然气水平井示踪方法。
背景技术
我国的非常规天然气资源储量丰富,但由于非常规天然气复杂的生储规律,开发难度较大;现阶段水平井大规模分段压裂技术是提高致密气采收率的重要措施之一,并随着开发技术的提高,压裂段数也随之增多;为了优化压裂施工参数,提高压裂效率,更深入地认识产气产水剖面,裂就需要计算压裂后各压段的产水量和产气量,监测并分析各压裂段的产气产水剖面,对压裂施工效果进行评价改进。
随着科学技术的进步,结合信息技术和油气田开发专业技术推进智能化油气田是当下的能源革命的重大主题,但目前国内外主要采用生产测井方式进行地下生产剖面的监测,但该方法需要专业的井下仪器和相应的解释方法,对井下仪器依赖较大、对井段状况有较高的要求,且测试费用昂贵;传统示踪剂技术费用高昂,且易对环境和人体造成破坏,缺乏和电子技术结合,示踪方式单一,缺乏精密有序的示踪过程和对示踪结果进行系统逻辑化的分析,更新落远后于计算机技术的发展;针对目前多段压裂水平井示踪技术人工智能化低、效率低、示踪时间短、施工复杂等问题,不依赖井下测试仪器,通过人工智能技术和示踪剂监测技术结合进行示踪剂监测功能的智能化,推动油气田智能化,因此提出一种基于人工智能的多段压裂天然气水平井示踪方法具有重大意义。
发明内容
本发明的目的是:为了解决目前多段压裂水平井示踪技术缺乏精密有序的示踪过程和对示踪结果进行系统逻辑化的分析、人工智能化低、效率低、示踪时间短、施工复杂等问题;本发明基于人工智能和示踪剂监测技术,可以自动对比数据库中的内容和生产数据,生成对应模型,优化工作流程,提高工作效率,实现示踪剂监测功能的智能化。
为了实现上述目的,本发明提供了一种基于人工智能的多段压裂天然气水平井示踪方法,该方法包括以下步骤:根据流线数值模拟法和达西方程建立数据库,根据压裂水平段数确定固体示踪剂组数,分段压裂时,固体示踪剂随压裂支撑剂2一同泵入地层裂缝1中,开井生产一段时间后,将生产数据输入到数据库中,数据库对比实验数据和生产数据利用流线数值模拟法和示踪剂流动特征方程自动拟合出压裂液反排规律模型,压裂段产气模型,压裂段产液模型;压裂液反排规律模型拟合出该储层的压裂液反排规律,压裂段产气模型计算出各压裂分段中采出气的贡献,压裂段产液模型计算出各压裂分段中采出液的贡献。
上述一种基于人工智能的多段压裂天然气水平井示踪方法中:根据流线数值模拟法和达西方程建立数据库。
上述一种基于人工智能的多段压裂天然气水平井示踪方法中:基于数据库和生产数据自动生成对应的分析模型,该对应的分析模型能够将数据库中的实验数据和生产数据进行对比,结合流线数值模拟法和示踪剂流动特征方程自动拟合出压裂液反排规律模型,压裂段产气模型,压裂段产液模型。
上述一种基于人工智能的多段压裂天然气水平井示踪方法中:压裂液反排规律模型拟合出该储层的压裂液反排规律,压裂段产气模型计算出各压裂分段中采出气的贡献,压裂段产液模型计算出各压裂分段中采出液的贡献。
上述一种基于人工智能的多段压裂天然气水平井示踪方法中:所述数据库中固体示踪剂组数等于水平压裂段段数,且一组固体示踪剂唯一对应一个水平压裂段。
上述一种基于人工智能的多段压裂天然气水平井示踪方法中:所述数据库中每组固体示踪剂包含一种水敏性固体示踪剂(3)和一种气敏性固体示踪剂(4),且每组的水敏性固体示踪剂(3)和气敏性固体示踪剂(4)示踪成分不同。
上述一种基于人工智能的多段压裂天然气水平井示踪方法中:所述数据库中水敏性固体示踪剂3成分为:稀有金属盐、氟苯甲酸类有机物、环氧树脂、二氧化硅、缓释剂;气敏性固体示踪剂4成分为:氟苯甲酸酯类、环氧树脂、二氧化硅、缓释剂。
上述一种基于人工智能的多段压裂天然气水平井示踪方法中:所述数据库中固体示踪剂的结构参数为:水敏性固体示踪剂直径为20目-40目,气敏性固体示踪剂的直径为20目-40目。
上述一种基于人工智能的多段压裂天然气水平井示踪方法中:所述数据库中固体示踪剂的硬度为洛氏1-3HRC。
上述一种基于人工智能的多段压裂天然气水平井示踪方法中:所述数据库中固体示踪剂具有6-8年的监控周期。
与现有技术相比,本发明具有以下有益效果:有序的示踪过程和对示踪结果进行系统逻辑化分析,操作便捷、效率高、监测误差小、优化工作流程,能够长时间(5-8年)同时监测产气产水剖面,精确计算各个压裂分段的产气产水量和压裂液的反排规律,使得在开发各个阶段都能智能监测剖面的具体情况,对评价压裂效果,调整开发方案,提高采收率有着重要意义。
附图说明
附图1是固体示踪剂在地层裂缝中的示意图
附图2是进行人工智能的多段压裂天然气水平井示踪方法的流程图
图中:1:地层裂缝,2:压裂支撑剂,3:水敏性固体示踪剂4:气敏性固体示踪剂。
具体实施方式
下面结合附图对本发明做进一步说明。
如图1、图2所示,本发明一种基于人工智能的多段压裂天然气水平井示踪方法,方法包括以下步骤:根据流线数值模拟法和达西方程建立数据库,根据压裂水平段数确定固体示踪剂组数,分段压裂时,固体示踪剂随压裂支撑剂2一同泵入地层裂缝1中,开井生产一段时间后,将生产数据输入到数据库中,数据库对比实验数据和生产数据利用流线数值模拟法和示踪剂流动特征方程自动拟合出压裂液反排规律模型,压裂段产气模型,压裂段产液模型;压裂液反排规律模型拟合出该储层的压裂液反排规律,压裂段产气模型计算出各压裂分段中采出气的贡献,压裂段产液模型计算出各压裂分段中采出液的贡献。
本发明一种基于人工智能的多段压裂天然气水平井示踪方法中:生产数据包括:产出液和产出气的体积,固体示踪剂的浓度,储层的岩性,压裂液的注入体积。
本发明一种基于人工智能的多段压裂天然气水平井示踪方法中:根据流线数值模拟法和达西方程建立数据库;固体示踪剂组数等于压裂分段数;数据库中每组固体示踪剂包含一种水敏性固体示踪剂3和一种气敏性固体示踪剂4;数据库中水敏性固体示踪剂3成分为:稀有金属盐、氟苯甲酸类有机物、环氧树脂、二氧化硅、缓释剂;数据库中气敏性固体示踪剂4成分为:氟苯甲酸酯类、环氧树脂、二氧化硅、缓释剂;数据库中固体示踪剂的结构参数为:水敏性固体示踪剂直径为20目-40目,气敏性固体示踪剂的直径为20目-40目。为了区分采出液和采出气中各压裂分段的贡献,每组的水敏性固体示踪剂3和气敏性固体示踪剂4示踪成分不同。
本发明一种基于人工智能的多段压裂天然气水平井示踪方法中:由于固体示踪剂有着选择性惰性,气敏性固体示踪剂在接触天然气时,能够释放出示踪物质,而接触水时则呈现惰性,当地层裂缝1只产气时,气敏性固体示踪剂会微溶于气体,随着采出气到达地面,水敏性固体示踪剂不会随气体产出;反之,设计的水敏性示踪剂接触水时可以释放其独特的示踪物质,而与天然气接触时则呈现惰性;当地层裂缝1只产水时,水敏性固体示踪剂会微溶于液体,随着采出液到达地面,气敏性固体示踪剂不会随液体产出;当地层裂缝1气水同产时,气敏性固体示踪剂会微溶于气体,水敏性固体示踪剂会微溶于液体,两种固体示踪剂随着采出液和采出气到达地面。
本发明一种基于人工智能的多段压裂天然气水平井示踪方法中:固体示踪剂的硬度为洛氏1-3HRC,在地层裂缝1中受到外力的影响较小。
与现有技术相比,本发明具有以下有益效果:有序的示踪过程和对示踪结果进行系统逻辑化分析,操作便捷、效率高、监测误差小、优化工作流程,能够长时间(5-8年)同时监测产气产水剖面,精确计算各个压裂分段的产气产水量和压裂液的反排规律,使得在开发各个阶段都能智能监测剖面的具体情况,对评价压裂效果,调整开发方案,提高采收率有着重要意义。

Claims (9)

1.一种基于人工智能的多段压裂天然气水平井示踪方法,其特征在于:基于人工智能和示踪剂追踪技术,根据流线数值模拟法和达西方程建立数据库,改变固体示踪剂的投放方式,改进固体示踪剂的精确性和实效性得到更准确的生产数据,将生产数据输入到数据库中,数据库对比实验数据和生产数据利用流线数值模拟法和示踪剂流动特征方程自动拟合出分析模型。
2.根据权利要求1所述的一种基于人工智能的多段压裂天然气水平井示踪方法,其特征在于:分析模型包括:压裂液反排规律模型,压裂段产气模型,压裂段产液模型。
3.根据权利要求1所述的一种基于人工智能的多段压裂天然气水平井示踪方法,其特征在于:利用压裂液反排规律模型拟合出该储层的压裂液反排规律,利用压裂段产气模型计算出各压裂分段中采出气的贡献,利用压裂段产液模型计算出各压裂分段中采出液的贡献。
4.根据权利要求1所述的一种基于人工智能的多段压裂天然气水平井示踪方法,其特征在于:根据水平压裂段的数目确定固体示踪剂的组数,且一组固体示踪剂唯一对应一个水平压裂段;分段压裂时,固体示踪剂随压裂支撑剂(2)一同泵入地层裂缝(1)中。
5.根据权利要求1所述的一种基于人工智能的多段压裂天然气水平井示踪方法,其特征在于:数据库中每组固体示踪剂包含一种水敏性固体示踪剂(3)和一种气敏性固体示踪剂(4),且每组的水敏性固体示踪剂(3)和气敏性固体示踪剂(4)示踪成分不同。
6.根据权利要求1所述的一种基于人工智能的多段压裂天然气水平井示踪方法,其特征在于:数据库中水敏性固体示踪剂(3)成分为:稀有金属盐、氟苯甲酸类有机物、环氧树脂、二氧化硅、缓释剂;气敏性固体示踪剂(4)成分为:氟苯甲酸酯类、环氧树脂、二氧化硅、缓释剂。
7.根据权利要求1所述的一种基于人工智能的多段压裂天然气水平井示踪方法,其特征在于:数据库中固体示踪剂的结构参数为:水敏性固体示踪剂直径为20目-40目,气敏性固体示踪剂的直径为20目-40目。
8.根据权利要求1所述的一种基于人工智能的多段压裂天然气水平井示踪方法,其特征在于:数据库中固体示踪剂的硬度为洛氏1-3HRC。
9.根据权利要求1所述的一种基于人工智能的多段压裂天然气水平井示踪方法,其特征在于:数据库中固体示踪剂具有6-8年的监控周期。
CN202010478361.2A 2020-05-29 2020-05-29 一种基于人工智能的多段压裂天然气水平井示踪方法 Active CN111382528B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010478361.2A CN111382528B (zh) 2020-05-29 2020-05-29 一种基于人工智能的多段压裂天然气水平井示踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010478361.2A CN111382528B (zh) 2020-05-29 2020-05-29 一种基于人工智能的多段压裂天然气水平井示踪方法

Publications (2)

Publication Number Publication Date
CN111382528A true CN111382528A (zh) 2020-07-07
CN111382528B CN111382528B (zh) 2020-08-28

Family

ID=71222053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010478361.2A Active CN111382528B (zh) 2020-05-29 2020-05-29 一种基于人工智能的多段压裂天然气水平井示踪方法

Country Status (1)

Country Link
CN (1) CN111382528B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116771330A (zh) * 2023-06-21 2023-09-19 大庆亿莱检验检测技术服务有限公司 一种智能控制的气基示踪剂监测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535126A (zh) * 2015-01-16 2015-04-22 中国水利水电科学研究院 一种河道枯季流量测量系统和方法
CN105178947A (zh) * 2015-09-18 2015-12-23 中国石油天然气股份有限公司 一种水平井找堵水一体化方法
CN105888653A (zh) * 2016-05-06 2016-08-24 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种多段压裂水平井示踪找水方法
US9914872B2 (en) * 2014-10-31 2018-03-13 Chevron U.S.A. Inc. Proppants
CN108952656A (zh) * 2018-06-12 2018-12-07 中国石油天然气股份有限公司 多段压裂水平井产液剖面测试方法及管柱
CN110230489A (zh) * 2018-03-05 2019-09-13 中国石油化工股份有限公司 一种多段压裂水平井产液剖面测试设备和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914872B2 (en) * 2014-10-31 2018-03-13 Chevron U.S.A. Inc. Proppants
CN104535126A (zh) * 2015-01-16 2015-04-22 中国水利水电科学研究院 一种河道枯季流量测量系统和方法
CN105178947A (zh) * 2015-09-18 2015-12-23 中国石油天然气股份有限公司 一种水平井找堵水一体化方法
CN105888653A (zh) * 2016-05-06 2016-08-24 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种多段压裂水平井示踪找水方法
CN110230489A (zh) * 2018-03-05 2019-09-13 中国石油化工股份有限公司 一种多段压裂水平井产液剖面测试设备和方法
CN108952656A (zh) * 2018-06-12 2018-12-07 中国石油天然气股份有限公司 多段压裂水平井产液剖面测试方法及管柱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谭晓华 等: "ZB气田Xu-2气藏水侵方向研究新方法", 《科学技术与工程》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116771330A (zh) * 2023-06-21 2023-09-19 大庆亿莱检验检测技术服务有限公司 一种智能控制的气基示踪剂监测系统
CN116771330B (zh) * 2023-06-21 2023-12-15 大庆亿莱检验检测技术服务有限公司 一种智能控制的气基示踪剂监测系统

Also Published As

Publication number Publication date
CN111382528B (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
CN105117511B (zh) 一种缝洞油藏井间连通通道及流动参数的表征方法
CN103452547B (zh) 试井资料中续流数据的分析处理方法和系统
CN110210157A (zh) 一种页岩气藏压裂水平井非稳态扩散下产能计算方法
CN105840187A (zh) 致密性油藏水平井分段压裂产能计算方法
CN107291667B (zh) 一种井间连通程度确定方法及系统
CN109577959B (zh) 一种利用示踪剂测定相邻压裂段裂缝连通性的方法
CN109707373B (zh) 一种基于产液剖面测试和井间示踪的水平井-直井双向示踪方法
CN104514558A (zh) 一种微量元素井间监测方法
CN111382528B (zh) 一种基于人工智能的多段压裂天然气水平井示踪方法
CN105443120A (zh) 一种海相整装气田边水水侵早期特征分析方法
CN108825226A (zh) 一种采用化学示踪剂评估压后产气量的方法及装置
CN105930604A (zh) 一种确定页岩气开采程度的方法及装置
CN107956470A (zh) 一种气基痕量化学示踪剂及利用其测量气井各段产气贡献量的方法
CN109555515A (zh) 地层坍塌压力确定方法和装置
CN106014365B (zh) 一种预测水驱开发油田产量递减率的方法
CN106404600B (zh) 判别粘弹性颗粒驱油剂在多孔介质中渗流行为的方法
CN204255815U (zh) 一种新型煤层渗透率测试试验装置
CN111982567B (zh) 深孔反循环取样过程中瓦斯损失量补偿模型的构建方法
Chang et al. Post-frac evaluation of deep shale gas wells based on a new geology-engineering integrated workflow
CN115596434A (zh) 一种基于油压阈值判定有效钻进区间的方法
CN108664678B (zh) 一种产量预测方法
CN203499679U (zh) 岩屑自然伽玛信息在线检测装置
CN105003238A (zh) 利用井筒压力温度剖面分析井下蒸汽干度方法
CN110644975B (zh) 一种缝洞型油藏示踪剂曲线定量解释方法
CN114922614A (zh) 一种控压钻井工况下的地层压力监测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant