CN114922614A - 一种控压钻井工况下的地层压力监测方法 - Google Patents

一种控压钻井工况下的地层压力监测方法 Download PDF

Info

Publication number
CN114922614A
CN114922614A CN202210721290.3A CN202210721290A CN114922614A CN 114922614 A CN114922614 A CN 114922614A CN 202210721290 A CN202210721290 A CN 202210721290A CN 114922614 A CN114922614 A CN 114922614A
Authority
CN
China
Prior art keywords
pressure
gas
neural network
suction
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210721290.3A
Other languages
English (en)
Inventor
梁海波
林锦花
张禾
杨海
李忠兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202210721290.3A priority Critical patent/CN114922614A/zh
Publication of CN114922614A publication Critical patent/CN114922614A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

本发明提供一种控压钻井工况下的地层压力监测方法,包括:步骤1.控压钻井工况下,井内达到正常循环状态时,测量气测值;步骤2.通过PWD直测抽吸压力与井底压力;步骤3.建立基于蜂群优化算法的RNN神经网络模型,将气测值与抽吸压力的大小用于训练基于蜂群优化算法的RNN神经网络模型;步骤4.通过训练好的神经网络获得井筒内压差;根据压差公式,进而获得地层压力。本发明提供的种控压钻井工况下的地层压力监测方法,通过气测值拟合井筒压差,井底压力、抽吸压力提出了一种新的地层压力监测方法,实现了控压钻井条件下对碳酸盐岩地层孔隙压力随钻测量,提高了地层压力计算准确性。可以对井下地层压力做定性评价,具有实时监测,直观评价的特点。

Description

一种控压钻井工况下的地层压力监测方法
技术领域
本发明涉及石油、天然气等钻录井勘探开发技术领域,尤其涉及一种控压钻井工况下的地层压力监测方法。
背景技术
近年来,随着钻录井工程不断增加,随钻地层压力测量技术有了很大的发展。但碳酸盐岩地层孔隙压力预测仍是一个难题,因缺少对于钻井孔隙压力参数的分析,往往导致在钻井作业实际操作中缺乏对于井喷等未知事故爆发可能性的预测及应对措施,这就造成了井喷事故一旦发生,就会对施工人员的安全带来很大危险,同时也会造成一定环境污染。
控压钻井技术是解决窄安全密度窗口地层钻井难题的有效手段,目前国内外在钻井工程中监测地层压力通常采用随钻压力监测的方法,而目前随钻压力检测方法主要有标准钻速法、西格玛法、DC指数法、岩石强度等方法,这些方法均涉及中间参数较多,计算过程复杂,导致工程现场使用存在困难。特别地,利用欠压实理论预测碳酸盐岩地层孔隙压力数值通常会偏大或与正常规律相反。
公开号为CN109577969A的中国专利文献公开了一种基于岩石压缩系数计算碳酸盐岩地层孔隙压力的方法,依据岩石多孔弹性力学理论,通过分析岩石压缩系数与孔隙压力、有效应力的本构关系,结合Biot-Willis有效应力定律建立表征孔隙压力与岩石压缩系数关系的碳酸盐岩孔隙压力预测量化模型;然后通过大量岩石地层压实系数测试和数据模拟,根据拟合得到的岩石地层压实系数与有效应力、孔隙度的定量关系,结合碳酸盐岩岩石物理模拟数据开展孔隙压力预测量化模型验证分析,实测孔隙压力。公开号为CN101963056B的中国专利文献公开了一种利用测井资料预测碳酸盐岩地层孔隙压力的方法,利用测井资料预测碳酸盐岩地层孔隙压力的方法是基于有效应力定理,通过建立骨架纵波速度和孔隙流体纵波速度方程,以此建立碳酸盐岩地层孔隙压力方程,从而根据测得的测井数据检测碳酸盐岩地层孔隙压力。但以上两种方法均计算复杂,公式繁多,而且对地层压力的监测缺乏及时性和真实性。
发明内容
本发明的目的在于解决上述现有技术存在的缺陷,提供一种控压钻井工况下的地层压力监测方法。
一种控压钻井工况下的地层压力监测方法,包括以下步骤:
步骤1.控压钻井工况下,井内达到正常循环状态时,测量气测值;
步骤2.通过PWD直测抽吸压力与井底压力;
步骤3.建立基于蜂群优化算法的RNN神经网络模型,将气测值与抽吸压力的大小用于训练基于蜂群优化算法的RNN神经网络模型;
步骤4.通过训练好的神经网络获得井筒内压差;根据压差公式,进而获得地层压力。
进一步地,如上所述的控压钻井工况下的地层压力监测方法,所述步骤1包括:
井内达到正常循环状态时,停止钻进,将钻头放至井底循环,分离地层气与上提所产生的抽吸气;
停泵,以稳定速度上提一个单根,然后下放至井底,开泵循环将抽吸气分隔开;
以不同上提速度重复上述步骤两次,继续钻进,直至抽吸气反出地面,期间禁止停泵;
测量气测全烃峰值,减去气测基值,得到气体抽吸量;
将不同上提速度下气体抽吸量与抽吸压力的大小投入基于蜂群优化算法的RNN神经网络模型训练。
进一步地,如上所述的控压钻井工况下的地层压力监测方法,步骤4中通过训练好的神经网络获得井筒内压差包括:
通过所述RNN神经网络模型得到气测值与抽吸压力的关系,当气体抽吸量为零时,抽吸压力即为井筒内压差。
进一步地,如上所述的控压钻井工况下的地层压力监测方法,步骤4中所述压差公式为:
PP=ΔP+Pd
其中,Pp为地层压力,ΔP为井筒内压差,Pd为井底压力。
有益效果:
本发明提供的种控压钻井工况下的地层压力监测方法,通过气测值拟合井筒压差,井底压力、抽吸压力提出了一种新的地层压力监测方法,实现了控压钻井条件下对碳酸盐岩地层孔隙压力随钻测量,提高了地层压力计算准确性。可以对井下地层压力做定性评价,具有实时监测,直观评价的特点。
附图说明
图1为本发明涉及一种控压钻井工况下的地层压力监测方法流程图。
图2为本发明提供的实施例的流程图。
图3为实施例中上提速度与抽吸压力关系图。
图4为实施例中气测值与抽吸压力关系图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-图4所示,本发明提供一种控压钻井工况下的地层压力监测方法,包括以下操作方法:
(1)控压钻井工况下,井内达到正常循环状态时,测量气测值。
具体地,只有在井内达到正常循环状态时,压差=井筒压力-地层压力公式才成立。
(2)通过随钻压力监测系统PWD直测抽吸压力与井底压力。
(3)井内达到正常循环状态时,停止钻进,将钻头放至井底循环,分离地层气与上提所产生的抽吸气;
具体地,井内正常循环状态是公式成立的前提,停止钻进方便分离抽吸气,便于测量气体量。
(4)停泵,以稳定速度上提一个单根,然后下放至井底,开泵循环将抽吸气分隔开;
具体地,本步骤的目的是分隔抽吸气体,便于后续得到气体抽吸量。
(5)以不同上提速度重复上述步骤两次,继续钻进,直至抽吸气反出地面,期间禁止停泵;
具体地,在不同上提速度下的抽吸压力与气体抽吸量曲线中选出一条最具代表性的曲线,用做后续分析,提高整个拟合过程的精度。
(6)测量气测全烃峰值,减去气测基值,得到气体抽吸量;
具体地,本步骤目的是为得到井筒内压差。只有当气体抽吸量为零时,测得抽吸压力为井筒内压差。
(7)将不同上提速度下气体抽吸量与抽吸压力的大小投入基于蜂群优化算法的RNN神经网络模型训练;
具体地,不同上提速度下的抽吸压力通过以不同上提速度重复步骤3与步骤4,用PWD分别直测不同速度下的抽吸压力。
(8)通过对基于蜂群优化算法的RNN神经网络模型进行训练,得到气测值与抽吸压力的关系,而气体抽吸量为零时,抽吸压力即为井筒内压差;
(9)通过压差减去井底压力即可得到地层压力,实现通过气测值拟合压差,基于单根峰、井底压差、波动压力等参数监测地层压力。
结果如下:
表1数据记录
气测值/x 0.1 0.2 0.3 0.4 0.5
抽吸压力/y 2.756 2.912 3.055 3.224 3.380
通过表1可知抽吸压力与气测值为线性关系,两者间具体关系为y=1.56x+2.5974。
本发明提供的种控压钻井工况下的地层压力监测方法,通过气测值拟合井筒压差,井底压力、抽吸压力提出了一种新的地层压力监测方法,实现了控压钻井条件下对碳酸盐岩地层孔隙压力随钻测量,提高了地层压力计算准确性。可以对井下地层压力做定性评价,具有实时监测,直观评价的特点。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (4)

1.一种控压钻井工况下的地层压力监测方法,其特征在于,包括以下步骤:
步骤1.控压钻井工况下,井内达到正常循环状态时,测量气测值;
步骤2.通过PWD直测抽吸压力与井底压力;
步骤3.建立基于蜂群优化算法的RNN神经网络模型,将气测值与抽吸压力的大小用于训练基于蜂群优化算法的RNN神经网络模型;
步骤4.通过训练好的神经网络获得井筒内压差;根据压差公式,进而获得地层压力。
2.根据权利要求1所述的控压钻井工况下的地层压力监测方法,其特征在于,所述步骤1包括:
井内达到正常循环状态时,停止钻进,将钻头放至井底循环,分离地层气与上提所产生的抽吸气;
停泵,以稳定速度上提一个单根,然后下放至井底,开泵循环将抽吸气分隔开;
以不同上提速度重复上述步骤两次,继续钻进,直至抽吸气反出地面,期间禁止停泵;
测量气测全烃峰值,减去气测基值,得到气体抽吸量;
将不同上提速度下气体抽吸量与抽吸压力的大小投入基于蜂群优化算法的RNN神经网络模型训练。
3.根据权利要求1所述的控压钻井工况下的地层压力监测方法,其特征在于,步骤4中通过训练好的神经网络获得井筒内压差包括:
通过所述RNN神经网络模型得到气测值与抽吸压力的关系,当气体抽吸量为零时,抽吸压力即为井筒内压差。
4.根据权利要求3所述的控压钻井工况下的地层压力监测方法,其特征在于,步骤4中所述压差公式为:
PP=ΔP+Pd
其中,Pp为地层压力,ΔP为井筒内压差,Pd为井底压力。
CN202210721290.3A 2022-06-24 2022-06-24 一种控压钻井工况下的地层压力监测方法 Pending CN114922614A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210721290.3A CN114922614A (zh) 2022-06-24 2022-06-24 一种控压钻井工况下的地层压力监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210721290.3A CN114922614A (zh) 2022-06-24 2022-06-24 一种控压钻井工况下的地层压力监测方法

Publications (1)

Publication Number Publication Date
CN114922614A true CN114922614A (zh) 2022-08-19

Family

ID=82815162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210721290.3A Pending CN114922614A (zh) 2022-06-24 2022-06-24 一种控压钻井工况下的地层压力监测方法

Country Status (1)

Country Link
CN (1) CN114922614A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117420150A (zh) * 2023-12-18 2024-01-19 西安石油大学 一种基于钻井参数的分析预测系统及其预测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117420150A (zh) * 2023-12-18 2024-01-19 西安石油大学 一种基于钻井参数的分析预测系统及其预测方法
CN117420150B (zh) * 2023-12-18 2024-03-08 西安石油大学 一种基于钻井参数的分析预测系统及其预测方法

Similar Documents

Publication Publication Date Title
CN102953726B (zh) 一种水驱油田优势通道识别方法及装置
CN107291667B (zh) 一种井间连通程度确定方法及系统
CN112343587A (zh) 一种特低渗透油藏优势渗流通道识别表征方法
CN110162851B (zh) 一种电缆地层测试泵抽数值模拟及其过程的数值校正方法
US20210071518A1 (en) Method for interpreting and evaluating production profile of multi-layer gas reservoir based on downhole distributed temperature monitoring
CN104899411B (zh) 一种储层产能预测模型建立方法和系统
Dolan et al. Special applications of drill-stem test pressure data
CN112132454A (zh) 一种煤层顶板或底板含水层富水性综合评价方法
CN114922614A (zh) 一种控压钻井工况下的地层压力监测方法
CN110130875A (zh) 抽油机异常工况监控方法
CN114370269B (zh) 深层碳酸盐岩气藏有效储层物性下限综合确定方法
CN110671095B (zh) 一种地质地层压力智能随钻软测量方法
Warren et al. An evaluation of the significance of permeability measurements
CN109184661B (zh) 用于底水油藏水平井高产液位置识别的监测方法及其系统
CN104790943A (zh) 一种油气储层含油性与孔隙性综合指数的计算方法
CN112069690B (zh) 一种深水断块油藏长水平井多级油嘴测试产能的评价方法
McConnell Double porosity well testing in the fractured carbonate rocks of the Ozarks
CN111963149A (zh) 一种考虑滞地液量增压的压裂后地层压力求取方法
CN117131971A (zh) 基于Xgboost算法的储层优势渗流通道预测方法
CN109538199A (zh) 一种煤系地层含气量评价方法、装置及电子设备
CN111950111A (zh) 一种适用于底部开放的碳酸盐岩储层动态分析方法
CN112035993A (zh) 一种底部定压的碳酸盐岩储层测试评价方法
CN111155980A (zh) 一种水流优势通道识别方法及装置
CN111444462B (zh) 根据不稳定试井测算串珠体数据的方法及设备
CN111594113B (zh) 一种致密储层井间裂缝开度动态反演方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination