CN111381325A - 用于在光纤中组合激光束的设备和相应的方法 - Google Patents

用于在光纤中组合激光束的设备和相应的方法 Download PDF

Info

Publication number
CN111381325A
CN111381325A CN201911393304.8A CN201911393304A CN111381325A CN 111381325 A CN111381325 A CN 111381325A CN 201911393304 A CN201911393304 A CN 201911393304A CN 111381325 A CN111381325 A CN 111381325A
Authority
CN
China
Prior art keywords
optical
laser
cladding
core
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911393304.8A
Other languages
English (en)
Other versions
CN111381325B (zh
Inventor
M.嘉蒂格里奥
L.迪斯蒂法诺
A.阿利亚蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spotlight Technology Italy
Original Assignee
Prima Electro SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prima Electro SpA filed Critical Prima Electro SpA
Publication of CN111381325A publication Critical patent/CN111381325A/zh
Application granted granted Critical
Publication of CN111381325B publication Critical patent/CN111381325B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0734Shaping the laser spot into an annular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3524Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being refractive
    • G02B6/3526Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being refractive the optical element being a lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3514Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element moving along a line so as to translate into and out of the beam path, i.e. across the beam path

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lasers (AREA)
  • Laser Surgery Devices (AREA)
  • Laser Beam Processing (AREA)

Abstract

本申请涉及一种在多包层光纤中引导激光辐射的组合以便改变通过光纤本身传播的激光束的光学特性以在镜头焦点中产生不同能量分布的设备,以及一种利用在该设备中的波前轮廓选择而产生激光束的方法。该设备包括:多包层光纤,光开关模块,以及一组激光模块。

Description

用于在光纤中组合激光束的设备和相应的方法
技术领域
本公开涉及在多包层(multi-clad)光纤中的引导激光辐射的组合,以便改变通过光纤本身传播的激光束的光学特性(例如,横模和/或数值孔径),以在镜头焦点中产生不同能量分布。
一个或多个实施例可以应用于高功率激光器领域。
背景技术
在通过施加包括不同过程和应用的激光束来处理材料时,能够采用具有能适应应用环境和特定过程的特性的激光束可能是有用的。
用于调整激光器的传播轮廓的上述参数的已知技术可以包括使用多包层光纤,该多包层光纤包括至少一个芯,以及至少一个内包层和外包层,它们被设计为引导(即传播)在其中传输的光。
通常,已知用于产生具有不同的波前轮廓特性的激光束的方法,其中,将激光束注入到多包层有源光纤(特别是双包层(double-clad)光纤)的一端,并在该多包层光纤的另一端处发射,并且其中,为了产生输出激光束的轮廓的不同特性,将输入激光束注入多包层光纤的芯或多包层光纤的包层中。该方法通常用在激光发生器的输出光纤上,并且因此用在引导激光器自身的总功率的光纤上,这相应地限制了高功率激光器的使用。
可以使用将激光束引导到芯或包层(cladding layer)中的光学组件来获得这种解决方案。特别地,此解决方案最初用于在空间中合并光束的激光器(例如盘形激光器(disk laser)),其中采用上述光学装置更为简单。对于不存在自由空间传播元件而光束的传播完全发生在光纤内部的光纤激光器,使用上述装置需要中断光纤中的传播,以便插入自由空间耦合装置,结果是效率低下且复杂性更高。
为了避免这种一贯的限制,光纤激光器制造商已经提出了一些解决方案。为此目的,已经采用了弯曲输出光纤以能够将光束从芯引导到包层的方法,或者是能够改变光纤的折射率以便将光束从芯移动到包层的致动器,反之亦然。然而,这些方法已被证明是复杂且昂贵的。例如,在文档WO2018/104575 A1中描述了另一种更简单和明显的方法,该方法涉及激光加工设备及其用途,该设备包括具有第一馈送光纤的第一激光装置和具有第二馈送光纤的第二激光装置。连接到第一和第二馈送光纤以及多包层光纤的光束组合部件被设计成通过使第一馈送光纤与多包层光纤的芯对准并且使第二馈送光纤与所述多包层光纤的至少一个包层对准而形成复合激光束。通过芯和/或包层的传播使得能够发射复合激光束。在给定情况下,控制单元控制复合光束的第一激光束和第二激光束中的至少一个的功率密度以调节功率密度。
该解决方案除了别的方面外使得有可能获得在芯中较低且在包层中较高的光束参数积(BPP)(即发散的半角与激光束的最小半径(或腰部)之间的乘积)使得有可能提供全玻璃设备,即传播完全发生在光纤中的设备,但是存在一些缺点,其中事实是不能在两种情况下都使用总功率,而只能在芯或在包层中使用可用功率的一部分。
尽管在该领域中进行了广泛的研究活动(例如,如上文所述通过各种文献所证明的那样),但是仍期望改进的解决方案。
发明内容
一个或多个实施例的目的是有助于提供这种改进的解决方案。
根据一个或多个实施例,上述目的可以通过具有所附权利要求书中阐述的特性的设备来实现。
包括用于将一组光纤耦合到多包层光纤的接口的可选光路的设备可以是这种设备的示例。
一个或多个实施例可以涉及一种相应的方法。
利用选择波前轮廓来产生激光束的方法可以提供这种方法的示例。
本公开的实施例具有的优点是使得更容易获得改进的功能,例如可以在多包层光纤的两个或多个芯之间缩放(scale)的功率。
一个或多个实施例使得能够在多包层光纤的第一芯中更容易地分配一个或多个激光束的功率。
一个或多个实施例使得更容易获得准高斯型,环形型或两者的混合的激光轮廓,例如使得能够以渐进且灵活的方式从一个轮廓通向另一轮廓。
权利要求书形成本文关于实施例所提供的技术教导的必不可少的部分。
附图说明
现在将参考附图纯粹通过示例的方式来描述一个或多个实施例,其中:
- 图1表示根据本公开的耦合器的横截面视图;
- 图2是根据本公开的设备的范例;
- 图3表示图1的细节;以及
- 图4表示根据本公开的激光轮廓的图。
具体实施方式
在随后的描述中,说明了一个或多个具体细节,以便能够深入理解本公开的实施例的示例。可以在没有一个或多个特定细节的情况下或利用其他方法,组件,材料等来提供实施例。在其他情况下,未以这样的方式详细说明或描述已知的操作,材料或结构,使得实施例的某些方面将不会被模糊。
在本说明书的框架中对“实施例”或“一个实施例”的引用意图表明关于该实施例描述的特定配置、结构或特性被包括在至少一个实施例中。同样,在本说明书的一个或多个点中可能出现的诸如“在实施例中”或“在一个实施例中”等短语不一定指代同一个实施例。
此外,在一个或多个实施例中,可以以任意适当的方式组合特定构造、结构或特性。
提供本文中使用的引用仅为了方便起见,因此不限定保护范围或实施例的范围。
图1是多包层光纤10(在本例中为双包层光纤)的横截面示图(相对于元件在其中延伸的纵向z而言),该多包层光纤10与单包层光纤不同,包括多层结构,如下所述。
如图1中的示例所示,双包层光纤10包括:
- 芯12,其包括具有第一折射率n1的材料;
- 第一包层14,其具有将光限制在芯12中的功能,该第一包层14包括具有第二折射率n2的材料(该第二折射率n2低于第一折射率n1)并且围绕第一芯12;
- 第二包层16,其具有引导光的功能,即,传输电磁辐射的功能,并且包括具有第三折射率n3的材料;该第三折射率n3高于第二折射率n2且小于或等于第一折射率n1;以及
- 第三包层18,其包括具有第四折射率n4的材料;在本文描述的示例中,这种第三包层18也是引导层,其第四折射率n4低于第三折射率n3
要指出的是,尽管随后的描述指代双包层光纤10,但可以将这些描述扩展到一般的多包层光纤。
通常,根据本公开的解决方案涉及的多包层光纤10包括被至少一个导光包层即包层16围绕的导光芯12。还可以存在另外的导光层或光限制层,根据已知的多包层光纤可用的不同结构,相应的折射率之间的比率不同。
在示例性实施例中,还存在限制包层14,其中围绕芯12的这种限制包层14的折射率n2低于芯12的折射率n1,并且引导包层16的折射率n3高于设置在芯12和引导包层16之间的限制包层14的折射率n2
在各个实施例中,分别具有引导激光辐射的功能的芯12的第一折射率n1和第二包层16的第三折射率n3通常分别高于第一包层14和第三包层18的折射率n2,n4的值。此外,在此上下文中,第一折射率n1和第三折射率n3优选彼此相同。而且,第二折射率n2和第四折射率n4可以相同或不同,它们的值在任何情况下均低于第一折射率n1且高于第二折射率n1。 n2的值以能够包含激光辐射。
适用于本文所述的设备和方法的多包层光纤可以在芯12周围呈现一系列的包层,其具有逐渐减小的相应折射率,例如n1 > n2 > n3 > n4
双包层光纤10,或更一般地多包层光纤,可以包含围绕光纤10的层状结构的另一个保护层(在图中看不到),例如,由硅树脂或某种其他合成材料制成的保护套。
在其他各种实施例中,代替第三包层18,可以有保护层。在其他各种实施例中,第三包层18通过其折射率被配置为以便操作为限制层。
一束或多束光束可通过全内反射(TIR)在光纤10中的芯12和/或第二包层16中传播。
应当注意,尽管在图1的示例中被表示为具有同心的圆形截面,但是芯12和第二包层16两者都可以呈现不同的形状。例如,第一芯12可具有正方形或矩形形状,和/或第二芯16可包括具有由多个具有线型或圆形形状的段形成的周界的横截面。
图2是产生具有可变光学参数的激光束的设备100的范例。激光束在双包层光纤10的一端(例如,图中可见的一端)耦合到输入接口10A,并且在光纤10的相对端(在图中不可见)处的输出接口处发射。该设备100包括:
- 双包层光纤10;
- 第一激光模块LM120和第二激光模块LM140,每个包括至少一个激光源,例如光纤或二极管激光源,其激光被配置用于经由光纤120f,140f的相应部分以及相应的控制模块进行引导以用于控制所述相应激光源(例如,用于打开或关闭源);
- 光开关模块或光开关200,其包括输入端口210和两个输出端口224、264(例如光纤到自由空间光耦合器),一个或多个可调节光学组件A,例如包括可以通过限定两个光路OPc,OPr的机械致动器来调节的反射镜,其中通过第一输出节点224的第一路径OPc被定义在输入节点210与第一组输入通道122、124、126、128中的输入通道(例如以124表示的通道)之间,而通过第二输出节点264的第二路径OPr被定义在输入节点210与第二组输入通道162、164、166中的输入通道(例如以164表示的通道)之间;可以控制光开关200以在第一光路OPc和第二光路OPr之间切换;特别地,在所图示的示例中,光开关200包括逻辑单元230,以可选地在外部控制模块的控制下驱动这种可调节光学组件;第一和第二光路OPc,OPr可包括在自由空间中的相应的第一部分以及在其中辐射经由光纤的相应部分(例如,由光纤224f,264f的一部分)被引导的相应的第二部分;以及
- 耦合接口,即用于耦合到双包层光纤10的接口10A(为简便起见,称为耦合器),其包括第一芯12的第一组输入通道122、124、126、128和第二包层16的第二组输入通道162、164、166。
注意,即使在图2的示例中,第一组输入通道122、124、126、128表示四个输入通道,并且第二组输入通道162、164、166表示三个输入通道。然而,这些数量纯粹是通过非限制性示例提供的,否则应理解,在可用空间的限制内,第一组通道和第二组通道都可以存在任何数量的输入通道。
输入通道122、124、126、128和162、164、166可沿着耦合器10A中的多包层光纤10的截面的纵轴延伸,该组输入通道122、124、126、128和162、164、166具有外壳的功能,即耦合光纤。
如图2所表示的,例如:
- 设备100的第一激光模块LM120耦合到相应光纤122f的一端,而前述相应光纤122f的相对端耦合到第一组输入通道122、124、126、128中的输入通道之一,例如耦合到输入通道122;
- 设备100的第二激光模块LM140耦合到相应光纤140f的一端,而前述相应光纤140f的相对端耦合到光开关200的输入节点210;
- 第一输出节点224耦合到相应光纤224f的一端,而前述相应光纤224f的相对端耦合到双包层光纤10的芯12的第一组输入通道122、124、126、128中的输入通道之一,例如由124表示的输入通道;以及
- 第二输出节点264耦合到相应光纤264f的一端,而前述相应光纤264f的相对端耦合到双包层光纤10的第二包层16的第二组输入通道162、164、166的输入通道之一,例如由164表示的输入通道。
双包层光纤10配置为在输出端处提供在光纤中传播的激光束,特别是从第一激光模块LM120和第二激光模块LM140之间的至少一个开始的传播,即当两者中的至少一个处于通电状态,即打开,如下所述。
在一个实施例中,可以将另外的激光模块耦合到另外的输入通道,例如,对于芯的每个通道126、128一个,使得一旦模块处于各自的通电状态,就可以在输出处提供高功率激光束。
图3例示了光开关200的实现方式,其中,特别地,可以经由光开关选择的相应的第一和第二光路的自由空间OPcff,OPrff中的相应部分是可见的。
例如,光开关200包括:
- 第一准直透镜E;
- 第一可移动反射面A,例如可定向反射镜Am;
- 第二反射面,例如定向反射镜B;以及
- 第一聚焦透镜G和第二聚焦透镜F。
从输入端口210走到第一输出端口224的第一光路OPcff的自由空间部分包括:
- 第一聚焦透镜E;
- 相对于来自透镜E的光束的传播方向成45°定向的可调节反射镜A;
- 平行于可调节反射镜A的定向反射镜B,其反射面朝向彼此反射;以及
- 第一聚焦透镜G。
第二光路OPrff的自由空间部分包括:
- 输入耦合器210;
- 第一准直透镜E;以及
- 第二聚焦透镜F,
其中可调节反射镜A设置成与来自透镜E的光束的传播方向平行,以免拦截该光束。
这样,第二激光模块LM140的光纤140f发出的电磁辐射遵循以下光路:
a)第一光路OPcff:其指向透镜E,然后到达透镜F,并且然后到达包层16的输入通道164;以及
b)第二光路OPrff:如果反射镜A位于点a)中所述的光路上,则电磁辐射被反射朝向反射镜B,并且然后被反射朝向聚焦透镜G和朝向芯12的输入通道124。
该解决方案有助于具有可在芯和包层之间缩放的功率,而且有助于将所有功率注入芯,从而具有准高斯模式,环形模式或两者的组合。
由双包层光纤10提供的上述激光束的光学性质可以改变。特别地,有可能获得至少三个输出激光束波前轮廓,如图4所例示的,其中三个轮廓LG,LR,LM表示作为光纤半径R的函数的横向激光强度的曲线(即例如,以瓦特表示的功率),其中轮廓的中心对应于光纤的中心。
在变型实施例中,第一光路OPc和第二光路OPr中的一个或多个可以完全用光纤获得,即,这里描述为“自由空间中的部分”OPcff,OPrff的各个部分也可以包括由光纤制成的一个或多个零件或完全由光纤制成。换句话说,在该变型实施例中,本文描述的设备包括没有任何自由空间部分的光纤开关,并且因此该设备可以被定义为完全由光纤制成的全玻璃设备。
现在下面描述一种用于通过在用于组合光纤中的激光束的设备100中选择波前轮廓来产生激光束的方法。
通常,在设备100中,例如在参照图2描述的设备中,一种用于改变由多包层光纤的一端发射的激光束的参数,特别是用于选择波前轮廓的方法。包括以下操作:
- 选择每个激光模块LM120,L140的通电状态;以及
- 通过开关200选择要耦合到第二模块的第一光路或第二光路。
例如,参考图4,可以通过以下方式获得准高斯类型的轮廓LG,其可以与75%的功率相关联:
- 接通第一模块LM120;和/或
- 在开关200中选择第一光路OPc并接通第二模块LM140。
再次参照图4,例如,可以通过在开关200中选择第二光路OPr和通过接通第二模块LM140(可能关闭模块LM120)来获得可以关联到25%的功率的环形型的轮廓LR
例如,可以通过以下方式获得混合型的轮廓LM,其可以与100%的功率相关联:
- 接通第一模块LM120;以及
- 在开关200中选择第二光路OPr,并接通第二模块LM140。
然后,可以通过选择第一模块LM120和第二模块LM140的最大功率的百分比来获得多个中间组合。
在变型实施例中,一定数量的模块可以连接到芯12的光纤122,而一定数量的模块可以借助于一个或多个光开关连接到包层16的光纤164。
因此,从前面的讨论中,清楚地呈现出了该解决方案的优点。
与设想将通常构成高功率光纤激光器的某些激光模块的输出引导到芯或包层中的解决方案相比,当希望作为第二方法的典型特征而仅在低BPP(芯中的传播)或仅在高BPP(包层中的传播)使用光束时,所描述的设备和方法将有助于不放弃使用激光器可以发射的所有功率的可能性。
在这方面,本文所讨论的设备和方法通过光纤的包层的芯中的功率的光学装置展示了耦合解决方案的优点,而没有设想仅将总可用激光功率引导到芯或包层之一中。
所描述的设备和方法使得更容易获得改进的功能,例如可以在多包层光纤的两个或更多个同心区域之间缩放的功率。
所描述的设备和方法使得能够促进在多包层光纤的第一芯中更容易地分配一个或多个激光束的功率。
所描述的设备和方法使得能够促进获得准高斯型,环形型或两者的混合的激光轮廓,例如使得能够以灵活的方式从一个轮廓通向另一轮廓。
所描述的设备和方法使得可以更容易地获得芯中的部分功率和包层中的部分功率的分布。
一个或多个实施例既提供了使用光学装置的耦合解决方案的优点,又提供了在激光的传输光纤的芯或包层中的功率分配的灵活性,从而有助于引导通常构成高功率激光器的激光模块的部分的输出进入芯或包层而不受这两种解决方案中任一种的限制的可能性。一个或多个实施例的一个优点是,例如即使在没有“切换”由激光器提供的所有高功率的步骤的情况下,也使用低BPP时激光器可以发射的功率的总和的可能性。
在不损害基本原理的情况下,细节和实施例可以相对于已纯粹通过示例的方式描述的内容而有所变化(甚至明显地变化),而不由此脱离保护范围。保护范围由所附权利要求书限定。
一个或多个实施例可以例如通过开关来管理各个模块的功率,以解决直接在光纤本身中管理所有功率的问题。

Claims (14)

1.一种设备(100),包括:
- 多包层光纤(10),包括
导光芯(12),至少有另一个包层(16)包围在所述导光芯(12)周围,
输入接口(10A),其包括在所述芯(12)中的被配置为接收至少第一光纤(120f)的第一组输入通道(122、124、126)和在所述至少一个引导包层(16)中被配置为接收至少第二光纤(264f)的第二组输入通道(162、164, 166),
特征在于其包括:
- 光开关模块(200),包括:
i)输入端口(210),
ii)第一(224)和第二(264)输出端口,
iii)所述输入端口(210)与所述芯(12)中的所述第一组输入通道(122、124、126)中的所述第一输入通道(124)之间的通过所述第一输出端口(224)的第一光路(OPc),以及
iv)在所述输入端口(210)和所述至少一个引导包层(16)中的所述第二组输入通道(162、164、166)中的第二输入通道(164)之间的通过所述第二输出端口(264)的至少第二光路(OPr)),
所述光开关模块(200)是可控制的(23)以便在所述第一光路(OPc)和所述第二光路(OPr)之间切换,
- 一组激光模块(LM120,LM140),其包括至少一个第一激光模块(LM120)和至少一个第二激光模块(LM140),所述激光模块(LM120,LM140)被配置为当处于各自的通电状态时发出各自的激光束,
所述至少第一激光模块(LM120)通过所述至少第一光纤(120f)耦合到所述第一组输入通道(122、124、126、128)中的输入通道(122),
所述至少第二激光模块(LM140)耦合到所述光开关模块(200)。
2.根据权利要求1所述的设备(100),其特征在于:
- 所述第一光路(OPc)至少包括光纤部分(224f),并且所述第二光路(OPr)至少包括光纤部分(264f),
- 所述光开关模块(200)中的所述第一(OPc)和第二(OPr)光路是可择一选择的(230)以便控制所述光开关模块(200)中的可调节光学组件(A)。
3.根据权利要求1或权利要求2所述的设备(100),其特征在于,所述至少第二激光模块(LM140)经由第四光纤(140f)耦合至所述光开关模块(200)。
4.根据前述权利要求中的任一项所述的设备(100),其特征在于,所述设备包括多个激光模块,所述多个激光模块耦合到所述多包层光纤(10)中的所述芯(12)中的所述第一组输入通道(122、124、126、128)中的多个输入通道中的相应的输入通道(124、126、128)。
5.根据前述权利要求中的任一项所述的设备(100),其特征在于:
- 所述可选的第一光路(OPc)与取向在第一位置的所述可调节光学元件(A)相交,
- 所述第二光路(OPr)不与定向在第二位置的所述可调节光学元件(A)相交。
6.根据前述权利要求中的任一项所述的设备(100),其特征在于,所述光学组件组还包括:
a)第一准直透镜(E),
b)所述可调节元件(A)包括可在所述第一位置和所述第二位置之间调节的反射镜,
c)反射镜(B),
d)第一聚焦透镜(G),
e)第二聚焦透镜(F),
其中:
- 所述第一光路(OPc)被限定在所述输入端口(210),所述第一准直透镜(E),定向在所述第一位置的所述可调节反射镜(A),所述反射镜(B),所述第一聚焦透镜(G)和所述第一输出端口(224)之间,以及
- 所述第二光路(OPr)被限定在所述输入端口(210),所述第一准直透镜(E),定向在所述第二位置的所述可调节反射镜(A),所述第二聚焦透镜和所述第二输出端口(264)之间。
7.根据前述权利要求中的任一项所述的设备(100),其特征在于,所述设备包括围绕所述芯(12)的限制包层(14)和引导包层(16),所述限制包层(14)的折射率(n2)低于所述芯(12)的折射率(n1),所述引导包层(16)的折射率(n3)高于插在所述芯(12)和所述引导包层(16)之间的所述限制包层(14)的折射率(n2)。
8.根据前述权利要求中的任一项所述的设备(100),其特征在于,所述多包层光纤(10)包括至少第三包层(18)。
9.根据前述权利要求中的任一项所述的设备(100),其特征在于,所述多包层光纤(10)包括围绕芯(12)的一系列包层,其具有相应逐渐减小的折射率。
10.根据权利要求6所述的设备(100),其特征在于,所述可调节反射镜(A)包括致动器以及所述致动器的控制模块(230)。
11.一种利用根据权利要求1至10中的任一项所述的在设备(100)中的波前轮廓选择而产生激光束的方法,其中,所述波前轮廓选择包括:
- 选择所述一组激光模块(LM120,LM140)中相应的所述至少第一激光模块(LM120)和至少第二激光模块(LM140)的相应通电状态,
- 在所述光开关模块(200)中择一选择(230,A)所述第一(OPc)和第二(OPr)光路之一。
12.根据权利要求11所述的方法,包括:
- 在所述光开关模块(200)中选择所述第一光路(OPc),
- 选择所述一组激光模块(LM120,LM140)中所述至少第一激光模块(LM120)的所述通电状态。
13.根据权利要求11所述的方法,包括:
- 在所述光开关模块(200)中选择所述第二光路(OPr),以及
- 选择所述一组激光模块(LM120,LM140)中所述至少第二激光模块(LM140)的所述通电状态。
14.根据权利要求12所述的方法,还包括选择所述一组激光模块(LM120,LM140)中所述至少第二激光模块(LM140)的所述通电状态。
CN201911393304.8A 2018-12-31 2019-12-30 用于在光纤中组合激光束的设备和相应的方法 Active CN111381325B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT102018000021538 2018-12-31
IT102018000021538A IT201800021538A1 (it) 2018-12-31 2018-12-31 Apparato per combinazione di fasci laser in fibre ottiche e procedimento corrispondente

Publications (2)

Publication Number Publication Date
CN111381325A true CN111381325A (zh) 2020-07-07
CN111381325B CN111381325B (zh) 2024-04-30

Family

ID=66589618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911393304.8A Active CN111381325B (zh) 2018-12-31 2019-12-30 用于在光纤中组合激光束的设备和相应的方法

Country Status (4)

Country Link
US (1) US11133638B2 (zh)
CN (1) CN111381325B (zh)
DE (1) DE102019220596A1 (zh)
IT (1) IT201800021538A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116056829A (zh) * 2020-07-07 2023-05-02 松下知识产权经营株式会社 用于更改光束形状和强度的阶跃芯光纤结构和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514563A (zh) * 2003-08-19 2004-07-21 武汉光迅科技有限责任公司 一种波长可控制光分插复用器
CN106918876A (zh) * 2010-04-08 2017-07-04 通快激光与系统工程有限公司 用于借助多包层光纤产生具有不同射束剖面特性的激光束的方法和机构
CN107111051A (zh) * 2014-10-20 2017-08-29 可利雷斯股份有限公司 光学组件和用于产生这样的光学组件的方法
WO2018104575A1 (en) * 2016-12-08 2018-06-14 Corelase Oy Laser processing apparatus and method
CN108780189A (zh) * 2016-04-06 2018-11-09 特拉迪欧德公司 用于改变激光束轮廓的光纤结构和方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11254160A (ja) * 1998-03-10 1999-09-21 Matsushita Electric Ind Co Ltd レーザ装置
JP2000031564A (ja) * 1998-07-15 2000-01-28 Mitsubishi Electric Corp レーザ制御装置
JP3956109B2 (ja) * 2002-04-30 2007-08-08 住友電気工業株式会社 バンドルファイバを用いた光源装置の製造方法
WO2009077637A1 (en) * 2007-12-14 2009-06-25 Corelase Oy Method and device relating to optical fibers
US8320426B2 (en) * 2008-12-31 2012-11-27 Ipg Photonics Corporation Apparatus for selectively distributing energy from a laser beam
JP5499403B2 (ja) * 2010-04-20 2014-05-21 株式会社村谷機械製作所 レーザ加工装置及びレーザ加工方法
DE102011003686A1 (de) * 2011-02-07 2012-08-09 Trumpf Laser- Und Systemtechnik Gmbh Laserbearbeitungsvorrichtung
JP6846605B2 (ja) * 2016-03-17 2021-03-24 パナソニックIpマネジメント株式会社 ファイバ結合装置
JP6407936B2 (ja) * 2016-10-19 2018-10-17 ファナック株式会社 ビーム分岐装置
EP3546109B1 (en) * 2016-11-22 2022-11-09 Panasonic Intellectual Property Management Co., Ltd. Laser processing device and laser processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514563A (zh) * 2003-08-19 2004-07-21 武汉光迅科技有限责任公司 一种波长可控制光分插复用器
CN106918876A (zh) * 2010-04-08 2017-07-04 通快激光与系统工程有限公司 用于借助多包层光纤产生具有不同射束剖面特性的激光束的方法和机构
CN107111051A (zh) * 2014-10-20 2017-08-29 可利雷斯股份有限公司 光学组件和用于产生这样的光学组件的方法
CN108780189A (zh) * 2016-04-06 2018-11-09 特拉迪欧德公司 用于改变激光束轮廓的光纤结构和方法
WO2018104575A1 (en) * 2016-12-08 2018-06-14 Corelase Oy Laser processing apparatus and method

Also Published As

Publication number Publication date
US20200212644A1 (en) 2020-07-02
CN111381325B (zh) 2024-04-30
US11133638B2 (en) 2021-09-28
DE102019220596A1 (de) 2020-07-02
IT201800021538A1 (it) 2020-07-01

Similar Documents

Publication Publication Date Title
CN108780189B (zh) 用于改变激光束轮廓的光纤结构和方法
US11215761B2 (en) Method and arrangement for generating a laser beam having a differing beam profile characteristic by coupling different input laser beams into different cores of a multi-clad fiber
EP3631919B1 (en) Systems and methods for modifying beam characteristics
CN110412769B (zh) 一种光纤激光合束器
US20220365298A1 (en) Optical fiber structures and methods for beam shaping
JP2020515878A (ja) 電力送達およびビーム切り替えのためのファイバ束を利用するレーザシステム
WO2013165548A2 (en) Multi-function beam delivery fibers and related system and method
US10690928B2 (en) Methods of and systems for heat deposition in additive manufacturing
CN113169505A (zh) 具有可控输出光束强度分布曲线的超高光纤激光系统
CN111381325B (zh) 用于在光纤中组合激光束的设备和相应的方法
US20180217412A1 (en) Multi-wavelength fiber laser
CN108698905A (zh) 加工光纤的方法和系统
WO2021065657A1 (ja) 光コンバイナ及びレーザ装置
WO2023048920A1 (en) Acoustically controlled laser system
WO2023097302A1 (en) All-fiber laser beam tuning by adjustment of angular intensity distribution
US20060153514A1 (en) Device for thermally treating at least one optical fibre

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230822

Address after: Torino

Applicant after: Spotlight Technology Italy

Address before: Torino

Applicant before: PRIMA ELECTRO S.P.A.

TA01 Transfer of patent application right
CB02 Change of applicant information

Country or region after: Italy

Address after: Torino

Applicant after: Guke Photonics Italy Ltd.

Address before: Torino

Applicant before: Spotlight Technology Italy

Country or region before: Italy

CB02 Change of applicant information
GR01 Patent grant