CN111381143A - RBDT dynamic characteristic testing device and testing method - Google Patents
RBDT dynamic characteristic testing device and testing method Download PDFInfo
- Publication number
- CN111381143A CN111381143A CN202010192405.5A CN202010192405A CN111381143A CN 111381143 A CN111381143 A CN 111381143A CN 202010192405 A CN202010192405 A CN 202010192405A CN 111381143 A CN111381143 A CN 111381143A
- Authority
- CN
- China
- Prior art keywords
- rbdt
- pulse
- marx generator
- energy storage
- tested
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 59
- 239000003990 capacitor Substances 0.000 claims description 60
- 238000004146 energy storage Methods 0.000 claims description 47
- 238000007599 discharging Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 238000002955 isolation Methods 0.000 claims description 5
- 230000001960 triggered effect Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 8
- 230000000630 rising effect Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2607—Circuits therefor
- G01R31/263—Circuits therefor for testing thyristors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
本发明属于功率半导体器件特性测试领域,具体涉及一种RBDT动态特性测试装置及测试方法,装置包括:Marx发生器,包括待测RBDT的脉冲放电电路,充电器,第一限流电阻,第一二极管;充电器控制对Marx发生器和脉冲放电电路的充电;Marx发生器串联待测RBDT构成环路,在充电之后向待测RBDT输出不同的触发电压脉冲;第一限流电阻和第一二极管设置于Marx发生器和待测RBDT构成的环路上,防止待测RBDT的脉冲电路对Marx发生器的工作产生影响,同时保护Marx发生器上面的开关器件。本发明通过改变对Marx发生器控制方式输出不同动态特性的触发电压脉冲,准确地得到反应RBDT动态特性的波形参数。
The invention belongs to the field of power semiconductor device characteristic testing, and in particular relates to an RBDT dynamic characteristic testing device and a testing method. The device comprises: a Marx generator, a pulse discharge circuit including an RBDT to be tested, a charger, a first current limiting resistor, a first diode; the charger controls the charging of the Marx generator and the pulse discharge circuit; the Marx generator is connected in series with the RBDT to be tested to form a loop, and outputs different trigger voltage pulses to the RBDT to be tested after charging; the first current limiting resistor and the first A diode is arranged on the loop formed by the Marx generator and the RBDT to be tested, to prevent the pulse circuit of the RBDT to be tested from affecting the work of the Marx generator, and to protect the switching devices on the Marx generator. The invention accurately obtains the waveform parameters reflecting the dynamic characteristics of the RBDT by changing the control mode of the Marx generator to output trigger voltage pulses with different dynamic characteristics.
Description
技术领域technical field
本发明属于功率半导体器件特性测试领域,更具体地,涉及一种RBDT动态特性测试装置及测试方法。The invention belongs to the field of power semiconductor device characteristic testing, and more particularly, relates to an RBDT dynamic characteristic testing device and a testing method.
背景技术Background technique
脉冲功率技术是指在较长的时间内存储起来,然后通过开通器件将储存起来的能量在很短的时间内释放到负载上,产生高功率电脉冲的电物理技术,在高功率微波、核物理技术、污水净化等领域有广泛应用;现有技术中的脉冲功率发生电路的储能方式多以电容储能和电感储能为主。Pulse power technology refers to the electro-physical technology that stores the energy for a long time, and then releases the stored energy to the load in a very short time by turning on the device to generate high-power electrical pulses. It is widely used in physical technology, sewage purification and other fields; the energy storage methods of pulse power generating circuits in the prior art are mostly capacitive energy storage and inductive energy storage.
在脉冲功率系统中,常用的一般为气体开关和液体开关,例如火花间隙、闸流管和油浸式开关,这些开关耐压高、通流大,但是工作不稳定,寿命低和工作频率低。随着近年来半导体开关的发展迅速,越来越多的半导体开关被应用到脉冲功率应用上,如电力电子中的晶闸管、绝缘栅双极性晶体管。这些开关工作频率高,工作稳定和寿命长,但是耐压低通流能力较弱。In pulsed power systems, gas switches and liquid switches are commonly used, such as spark gaps, thyratrons and oil-immersed switches. These switches have high withstand voltage and large current, but are unstable in operation, with low life and low operating frequency. . With the rapid development of semiconductor switches in recent years, more and more semiconductor switches are applied to pulse power applications, such as thyristors and insulated gate bipolar transistors in power electronics. These switches have high operating frequency, stable operation and long lifespan, but have weak current-passing capability at low voltages.
为了适应脉冲功率技术的发展,专门应用于脉冲功率技术的脉冲功率半导体器件也得到进一步的研究,例如RBDT(reverse blocking diode thyristor,反向阻断晶体管晶闸管)。RBDT是一种电压触发型半导体器件,其为两端器件,具有阳极和阴极,没有专门用于触发开通或关断的端口。RBDT的触发过程是给RBDT正向施加一个上升速率较大的电压脉冲,在施加触发电压之后,RBDT可以在极短的时间内导通。RBDT为一种半导体器件,具有通流能力强、可靠性高和体积小等优点。In order to adapt to the development of pulse power technology, pulse power semiconductor devices specially applied to pulse power technology have also been further studied, such as RBDT (reverse blocking diode thyristor, reverse blocking transistor thyristor). An RBDT is a voltage-triggered semiconductor device, which is a two-terminal device with an anode and a cathode, and no ports dedicated to triggering turn-on or turn-off. The triggering process of the RBDT is to apply a voltage pulse with a large rising rate to the RBDT in the forward direction. After the trigger voltage is applied, the RBDT can be turned on in a very short time. RBDT is a semiconductor device with the advantages of strong current capacity, high reliability and small size.
目前已有的RBDT测试电路都是利用开关闭合导通后,电容上的电压瞬间施加到RBDT上,以此来触发开通RBDT,为了输出峰值较大的电压脉冲,一般还会使用变压器。这种测试电路一般无法改变部分输出电压参数,例如改变输出电压上升速率时,无法保证输出电压峰值保持不变。这种测试电路无法全面准确地测得反映RBDT动态特性的波形及其参数。At present, the existing RBDT test circuits use the voltage on the capacitor to be instantly applied to the RBDT after the switch is closed and turned on, so as to trigger the opening of the RBDT. In order to output a voltage pulse with a large peak value, a transformer is generally used. This kind of test circuit generally cannot change some output voltage parameters, for example, when changing the output voltage rising rate, it cannot guarantee that the output voltage peak value remains unchanged. This test circuit cannot fully and accurately measure the waveform and its parameters reflecting the dynamic characteristics of the RBDT.
发明内容SUMMARY OF THE INVENTION
本发明提供一种RBDT动态特性测试装置及测试方法,用以解决现有的RBDT测试电路无法输出所需的各种参数要求的RBDT触发信号进而导致不能全面且准确的反映RBDT动态特性的波形及其参数的技术问题。The present invention provides an RBDT dynamic characteristic test device and a test method, which are used to solve the problem that the existing RBDT test circuit cannot output the RBDT trigger signal required by various parameters required, thereby causing the waveform and Technical issues with its parameters.
本发明解决上述技术问题的技术方案如下:一种RBDT动态特性测试装置,包括:Marx发生器,包括待测RBDT的脉冲放电电路,充电器,第一限流电阻,第一二极管;The technical solution of the present invention to solve the above technical problems is as follows: an RBDT dynamic characteristic testing device, comprising: a Marx generator, a pulse discharge circuit including the RBDT to be tested, a charger, a first current limiting resistor, and a first diode;
其中,所述充电器用于控制对所述Marx发生器和所述脉冲放电电路的充电过程并进行充电;所述Marx发生器串联所述待测RBDT构成环路,用于在所述充电之后向所述待测RBDT输出不同动态特性的触发电压脉冲;所述脉冲放电电路用于当所述待测RBDT在所述触发电压脉冲的触发下开通后进行放电,放电电流流经所述待测RBDT,以进行待测RBDT动态特性分析,所述第一限流电阻和所述第一二极管均设置于所述Marx发生器和所述待测RBDT构成的环路上,所述第一二极管用于防止所述待测RBDT开通前所述脉冲放电电路向所述Marx发生器放电,所述第一限流电阻用于在RBDT开通时避免Marx发生器内部的开关器件流过过大的电流而损坏;Wherein, the charger is used to control the charging process of the Marx generator and the pulse discharge circuit and perform charging; the Marx generator is connected in series with the RBDT to be tested to form a loop, which is used for charging to the Max generator after charging. The RBDT to be tested outputs trigger voltage pulses with different dynamic characteristics; the pulse discharge circuit is used to discharge when the RBDT to be tested is turned on under the trigger of the trigger voltage pulse, and the discharge current flows through the RBDT to be tested , in order to analyze the dynamic characteristics of the RBDT to be tested, the first current limiting resistor and the first diode are all arranged on the loop formed by the Marx generator and the RBDT to be tested, and the first diode The tube is used to prevent the pulse discharge circuit from discharging to the Marx generator before the RBDT to be tested is turned on, and the first current limiting resistor is used to prevent the switching device inside the Marx generator from flowing through an excessively large when the RBDT is turned on. damaged by current;
所述动态特性包括所述触发电压脉冲的上升速率、幅值和脉宽。The dynamic characteristics include a rise rate, an amplitude and a pulse width of the trigger voltage pulse.
本发明的有益效果是:本发明提出的测试装置,利用的Marx发生器的原理,通过改变对其的控制方式,可以输出一定峰值电压下不同电压上升速率的输出波形,或者相同电压上升速率下不同峰值电压的输出波形,同时测试装置不会对被测波形产生干扰,可以准确地得到的RBDT反应动态特性的波形参数。而现有测试方法输出的触发电压波形部分参数无法满足要求的情况,例如改变输出的电压上升速率时,其输出电压也会跟随变化,这不利于对RBDT动态特性做一个精确地测试。因此,本发明引入Marx发生器,解决了现有的RBDT测试电路无法输出所需的各种参数要求的RBDT触发信号进而导致不能全面且准确的反映RBDT动态特性的波形及其参数的技术问题。The beneficial effects of the present invention are: the test device proposed by the present invention utilizes the principle of the Marx generator, and by changing its control mode, it can output output waveforms with different voltage rising rates under a certain peak voltage, or under the same voltage rising rate The output waveforms of different peak voltages, and the test device will not interfere with the measured waveforms, and the waveform parameters of the dynamic characteristics of the RBDT can be accurately obtained. However, when some parameters of the trigger voltage waveform output by the existing test methods cannot meet the requirements, for example, when the output voltage rise rate is changed, the output voltage will follow the change, which is not conducive to an accurate test of the dynamic characteristics of the RBDT. Therefore, the present invention introduces a Marx generator, which solves the technical problem that the existing RBDT test circuit cannot output the RBDT trigger signal required by various parameters required, thereby causing the waveform and its parameters that cannot comprehensively and accurately reflect the dynamic characteristics of the RBDT.
上述技术方案的基础上,本发明还可以做如下改进。On the basis of the above technical solutions, the present invention can also be improved as follows.
进一步地,所述Marx发生器包括:第一控制模块,一一对应的n个第一驱动模块、n个第一开关器件和n个第一储能电容,多个第二限流电阻,以及多个第二二极管;Further, the Marx generator includes: a first control module, a one-to-one correspondence of n first drive modules, n first switching devices and n first energy storage capacitors, a plurality of second current limiting resistors, and a plurality of second diodes;
其中,所述第一控制模块用于分别独立地向n个第一驱动模块发送控制信号以驱动n个第一开关器件在对应开通时刻开通;;各时刻下,各开通的第一开关器件所对应的第一储能电容之间串联并向所述待测RBDT输出触发电压;Wherein, the first control module is used to independently send control signals to the n first driving modules to drive the n first switching devices to be turned on at the corresponding turn-on time; The corresponding first energy storage capacitors are connected in series and output a trigger voltage to the RBDT to be tested;
所述多个第二限流电阻用于在所述n个第一开关器件均断开且所述充电器同时向所述n个第一储能电容充电时,限制每个第一储能电容的充电电流;另外在所述充电之后且存在第一开关器件开通时,限制各所述第一储能电容放电,防止开通的第一开关器件因第一储能电容放电电流过大而损坏;所述多个第二二极管用于防止在存在多个第一开关器件开通时该多个第一开关器件所对应的多个第一储能电容之间构成放电环路而影响所述第一控制模块的控制精度。The plurality of second current limiting resistors are used to limit each of the first energy storage capacitors when the n first switching devices are all turned off and the charger simultaneously charges the n first energy storage capacitors In addition, after the charging and when the first switching device is turned on, the discharge of each of the first energy storage capacitors is restricted to prevent the turned on first switching device from being damaged due to the excessive discharge current of the first energy storage capacitor; The plurality of second diodes are used to prevent the formation of a discharge loop between the plurality of first energy storage capacitors corresponding to the plurality of first switching devices when the plurality of first switching devices are turned on, thereby affecting the first switching device. The control precision of a control module.
本发明的进一步有益效果是:根据实际需要,通过改变各储能电容的充电电压大小和/或各时刻的开关开通个数来输出所需的触发电压幅值,通过选用不同触发开通时刻的及时开通开关或者控制各及其开通开关的开通时间来实现所需上升速率的电压脉冲。The further beneficial effects of the present invention are: according to actual needs, the required trigger voltage amplitude is output by changing the size of the charging voltage of each energy storage capacitor and/or the number of switches turned on at each moment, and by selecting different trigger turn-on moments in time The switches are turned on or the turn-on time of each and its turn-on switches is controlled to achieve a voltage pulse with a desired rate of rise.
进一步,所述Marx发生器输出的所述触发电压脉冲的脉宽大于所述脉冲放电电路输出的电流脉冲的脉宽。Further, the pulse width of the trigger voltage pulse output by the Marx generator is greater than the pulse width of the current pulse output by the pulse discharge circuit.
本发明的进一步有益效果是:为了减弱Marx发生器对RBDT测试结果的影响,Marx发生器输出的电压脉冲的脉宽需要大于装置中脉冲放电电路输出的电流脉冲的脉宽,这可以避免Marx发生器中所有开关器件关断时,电路突然的改变给RBDT特性测试带来电磁干扰。The further beneficial effect of the present invention is: in order to weaken the influence of the Marx generator on the RBDT test result, the pulse width of the voltage pulse output by the Marx generator needs to be larger than the pulse width of the current pulse output by the pulse discharge circuit in the device, which can avoid the occurrence of Marx When all the switching devices in the device are turned off, the sudden change of the circuit brings electromagnetic interference to the RBDT characteristic test.
进一步,所述第一限流电阻的阻值基于所述Marx发生器输出的所述触发电压脉冲的峰值电压和脉宽确定。Further, the resistance value of the first current limiting resistor is determined based on the peak voltage and pulse width of the trigger voltage pulse output by the Marx generator.
本发明的进一步有益效果是:当Marx发生器输出的触发电压脉冲脉宽较大时,Marx发生器的输出端需串联一个电阻Rlimit,防止RBDT触发开通之后Marx发生器中开通的开关器件因为流过的电流过大而损坏。The further beneficial effect of the present invention is: when the pulse width of the trigger voltage pulse output by the Marx generator is large, the output end of the Marx generator needs to be connected in series with a resistor R limit to prevent the switching device opened in the Marx generator after the RBDT is triggered and opened because the Excessive current flow and damage.
进一步,所述脉冲放电电路包括:串联并构成环路的第二储能电容、负载电阻、第三二极管和所述待测RBDT;且当所述第二储能电容放电时,所述脉冲放电电路在负载电阻上形成电流脉冲。Further, the pulse discharge circuit includes: a second energy storage capacitor, a load resistor, a third diode and the RBDT to be measured that are connected in series and form a loop; and when the second energy storage capacitor is discharged, the The pulse discharge circuit creates a current pulse across the load resistance.
进一步,所述充电器包括:第二控制模块,第二驱动模块,与每个所述第一储能电容均串联的第一充电电路,第三驱动模块,以及与所述第二储能电容串联的第二充电电路;Further, the charger includes: a second control module, a second driving module, a first charging circuit connected in series with each of the first energy storage capacitors, a third driving module, and a connection with the second energy storage capacitor a second charging circuit connected in series;
所述第二控制模块用于在动态测试之前,向第二驱动模块发送驱动信号,以导通所述第一充电电路而使其向各所述第一储能电容充电,以及向第三驱动模块发送驱动信号,以导通所述第二充电电路而使其向所述第二储能电容充电。The second control module is used for sending a driving signal to the second driving module before the dynamic test, so as to turn on the first charging circuit to charge each of the first energy storage capacitors, and to the third driving module The module sends a driving signal to turn on the second charging circuit to charge the second energy storage capacitor.
进一步,所述第一充电电路包括:串联且与每个所述第一储能电容均构成环路的第二开关器件、第一电源和第三限流电阻,其中,所述第二开关器件由所述第二驱动模块驱动开通;Further, the first charging circuit includes: a second switching device, a first power supply and a third current limiting resistor connected in series and forming a loop with each of the first energy storage capacitors, wherein the second switching device is driven and turned on by the second driving module;
所述第二充电电路包括:串联且与所述第二储能电容构成环路的第三开关器件、第二电源和第四限流电阻,其中,所述第三开关器件由所述第三驱动模块驱动开通。The second charging circuit includes: a third switching device connected in series and forming a loop with the second energy storage capacitor, a second power supply and a fourth current limiting resistor, wherein the third switching device is composed of the third switching device. The driver module driver is turned on.
进一步,所述充电电压根据实际所需的触发电压幅值确定。Further, the charging voltage is determined according to the actual required trigger voltage amplitude.
进一步,所述第一控制模块与每个所述第一驱动模块之间设有干扰隔离元件,和/或,所述第二控制模块分别与所述第二驱动模块和所述第三驱动模块之间设有干扰隔离元件。Further, an interference isolation element is provided between the first control module and each of the first drive modules, and/or the second control module is respectively connected to the second drive module and the third drive module There are interference isolation elements between them.
本发明还提供一种RBDT动态特性测试方法,包括:The present invention also provides a kind of RBDT dynamic characteristic testing method, including:
将待测RBDT设置于如上所述的任一种RBDT动态特性测试装置中;The RBDT to be tested is arranged in any RBDT dynamic characteristic testing device as described above;
控制所述RBDT动态特性测试装置中的Marx发生器产生不同动态特性的触发脉冲电压以施加至所述待测RBDT;Controlling the Max generator in the RBDT dynamic characteristic testing device to generate trigger pulse voltages of different dynamic characteristics to be applied to the RBDT to be tested;
检测每个所述动态特性下所述RBDT动态特性测试装置中的所述脉冲放电电路是否导通,并基于每次导通下对应的RBDT两端的电压以及所述脉冲放电电路放电所输出的电流脉冲,得到所述待测RBDT的动态特性。Detecting whether the pulse discharge circuit in the RBDT dynamic characteristic test device is turned on under each dynamic characteristic, and based on the voltage across the corresponding RBDT under each turn-on and the current output by the discharge of the pulse discharge circuit pulse to obtain the dynamic characteristics of the RBDT to be tested.
附图说明Description of drawings
图1为本发明提供的一种RBDT动态特性测试装置的示意性框图;Fig. 1 is the schematic block diagram of a kind of RBDT dynamic characteristic testing device provided by the present invention;
图2为本发明提供的一种RBDT动态特性测试装置电路图;Fig. 2 is a kind of RBDT dynamic characteristic testing device circuit diagram provided by the present invention;
图3为本发明提供的一种RBDT动态特性测试装置中5级Marx发生器的各级第一开关器件触发信号图。FIG. 3 is a trigger signal diagram of the first switching device at each level of the 5-level Marx generator in an RBDT dynamic characteristic testing device provided by the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
实施例一Example 1
一种RBDT动态特性测试装置,如图1所示,包括:Marx发生器,包括待测RBDT的脉冲放电电路,充电器,第一限流电阻,以及第一二极管;An RBDT dynamic characteristic testing device, as shown in FIG. 1 , includes: a Marx generator, a pulse discharge circuit including the RBDT to be tested, a charger, a first current limiting resistor, and a first diode;
其中,充电器用于控制对Marx发生器和脉冲放电电路的充电过程并进行充电;Marx发生器串联待测RBDT构成环路,用于在充电之后向待测RBDT输出不同动态特性的触发电压脉冲;脉冲放电电路用于当待测RBDT在触发电压脉冲的触发下开通后进行放电,放电电流流经待测RBDT,以进行待测RBDT动态特性分析,第一限流电阻和第一二极管均设置于Marx发生器和待测RBDT构成的环路上,第一二极管用于防止待测RBDT开通前脉冲放电电路向Marx发生器放电,第一限流电阻用于在RBDT开通时避免Marx发生器内部的开关器件流过过大的电流而损坏;Among them, the charger is used to control and charge the Marx generator and the pulse discharge circuit; the Marx generator is connected in series with the RBDT to be tested to form a loop, which is used to output trigger voltage pulses with different dynamic characteristics to the RBDT to be tested after charging; The pulse discharge circuit is used to discharge when the RBDT to be tested is turned on under the trigger of the trigger voltage pulse, and the discharge current flows through the RBDT to be tested to analyze the dynamic characteristics of the RBDT to be tested. The first current limiting resistor and the first diode are both Set on the loop formed by the Marx generator and the RBDT to be tested. The first diode is used to prevent the pulse discharge circuit from discharging to the Marx generator before the RBDT to be tested is turned on. The first current limiting resistor is used to prevent the occurrence of Marx when the RBDT is turned on. The switching device inside the device is damaged due to excessive current flowing;
所述动态特性包括所述触发电压脉冲的上升速率、幅值和脉宽。The dynamic characteristics include a rise rate, an amplitude and a pulse width of the trigger voltage pulse.
利用的Marx发生器的原理,通过改变对其的控制方式,可以输出一定峰值电压下不同电压上升速率的输出波形,或者相同电压上升速率下不同峰值电压的输出波形,同时测试装置不会对被测波形产生干扰,可以准确地得到的RBDT反应动态特性的波形参数。而现有测试方法输出的触发电压波形部分参数无法满足要求的情况,例如改变输出的电压上升速率时,其输出电压也会跟随变化,这不利于对RBDT动态特性做一个精确地测试。因此,本发明引入Marx发生器,解决了现有的RBDT测试电路无法输出所需的各种参数要求的RBDT触发信号进而导致不能全面且准确的反映RBDT动态特性的波形及其参数的技术问题。Using the principle of the Marx generator, by changing its control method, it can output the output waveforms of different voltage rise rates under a certain peak voltage, or the output waveforms of different peak voltages under the same voltage rise rate, and the test device will not If the measured waveform interferes, the waveform parameters of the dynamic characteristics of the RBDT can be accurately obtained. However, when some parameters of the trigger voltage waveform output by the existing test methods cannot meet the requirements, for example, when the output voltage rise rate is changed, the output voltage will follow the change, which is not conducive to an accurate test of the dynamic characteristics of the RBDT. Therefore, the present invention introduces a Marx generator, which solves the technical problem that the existing RBDT test circuit cannot output the RBDT trigger signal required by various parameters required, thereby causing the waveform and its parameters that cannot comprehensively and accurately reflect the dynamic characteristics of the RBDT.
优选的,如图2所示,一种RBDT动态特性测试装置,包括:Marx发生器,待测RBDT的脉冲放电电路,充电器,以及外围电路。Preferably, as shown in FIG. 2 , an RBDT dynamic characteristic testing device includes: a Marx generator, a pulse discharge circuit of the RBDT to be tested, a charger, and a peripheral circuit.
充电器部分包括:用于给Marx发生器中并联的储能电容C1-Cn充电的直流电压源DC1、电阻R0、开关器件T1和T1驱动模块,控制模块2,以及用于给脉冲放电电路中储能电容C0充电的直流电压源DC2、电阻R21、开关器件T2和T2驱动模块。The charger part includes: a DC voltage source DC 1 for charging the energy storage capacitors C 1 -C n in parallel in the Marx generator, a resistor R 0 , a switching device T 1 and a T 1 drive module, a control module 2 , and a The DC voltage source DC 2 , the resistor R 21 , the switching devices T 2 and T 2 are used to charge the energy storage capacitor C 0 in the pulse discharge circuit to drive the module.
其中,储能电容C1-Cn即为前述n个第一储能电容,直流电压源DC1即为前述第一电源,电阻R0即为前述第三限流电阻,开关器件T1即为前述第二开关器件,T1驱动模块即为前述第二驱动模块,控制模块2即为前述第二控制模块,储能电容C0即为前述第二储能电容,直流电压源DC2即为前述第二电源,电阻R21即为前述第四限流电阻、开关器件T2即为前述第三开关器件,T2驱动模块即为前述第三驱动模块。The energy storage capacitors C 1 -C n are the n first energy storage capacitors, the DC voltage source DC 1 is the first power supply, the resistor R 0 is the third current limiting resistor, and the switching device T 1 is the is the aforementioned second switching device, the T1 drive module is the aforementioned second drive module, the control module 2 is the aforementioned second control module, the energy storage capacitor C 0 is the aforementioned second storage capacitor, and the DC voltage source DC 2 is the aforementioned second storage capacitor. For the aforementioned second power supply, the resistor R 21 is the aforementioned fourth current limiting resistor, the switching device T 2 is the aforementioned third switching device, and the T 2 driving module is the aforementioned third driving module.
Marx发生器包括:多个类似虚线框中由电容C2、MOSFET S2、二极管D24和电阻R3构成的模块、电容Cn、电阻R2n+1、MOSFET Sn、各级开关的驱动模块(驱动模块1-驱动模块n)和控制模块1。Marx发生器中各级开关器件具有各自的驱动模块,各个驱动模块接收相互独立的控制信号,控制信号由控制模块1输出。DC1、R0和T1构成Marx发生器的充电电路,开关器件T1由T1驱动模块驱动,其接收控制模块2中输出的控制信号。Marx发生器用于输出RBDT的触发电压脉冲信号。The Marx generator includes: a plurality of modules formed by capacitor C 2 , MOSFET S 2 , diode D 24 and resistor R 3 in a dashed-line box, capacitor C n , resistor R 2n+1 , MOSFET S n , and the driving of switches at all levels module (drive module 1 - drive module n) and
其中,电容C2-电容Cn即为前述第一储能电容,MOSFET S2-MOSFET Sn即为前述第一开关器件,二极管D24即为前述第二二极管,电阻R3、电阻R2n+1即为前述第二限流电阻,驱动模块1-驱动模块n即为前述第一驱动模块,控制模块1即为前述第一控制模块。Wherein, the capacitor C 2 -capacitor C n are the aforementioned first energy storage capacitors, the MOSFET S 2 -MOSFET Sn are the aforementioned first switching device, the diode D 24 is the aforementioned second diode, the resistor R 3 , the resistor R 3 R 2n+1 is the aforementioned second current limiting resistor, the driving module 1 - the driving module n are the aforementioned first driving module, and the
脉冲放电电路包括:储能电容C0、电阻R22、二极管D2、RBDT。图中DC2、R21和T2构成待测RBDT脉冲放电电路的充电电路,T2由T2驱动模块驱动,驱动接收由控制模块2输出的控制信号。外围电路包括:电阻Rlimit和二极管D1。The pulse discharge circuit includes: energy storage capacitor C 0 , resistor R 22 , diode D 2 , and RBDT. In the figure, DC 2 , R 21 and T 2 constitute the charging circuit of the RBDT pulse discharge circuit to be tested. T 2 is driven by the T 2 drive module, which drives and receives the control signal output by the control module 2 . The peripheral circuit includes: resistor R limit and diode D 1 .
其中,电阻R22即为前述负载电阻,二极管D2即为前述第三二极管,电阻Rlimit即为第一限流电阻,二极管D1即为前述第一二极管。The resistor R 22 is the aforementioned load resistor, the diode D 2 is the aforementioned third diode, the resistor R limit is the first current limiting resistor, and the diode D 1 is the aforementioned first diode.
需要说明的是,充电器部分的直流电压源DC1、电阻R0、开关器件T1和T1驱动模块可以归属于Marx发生器,充电器部分的直流电压源DC2、电阻R21、开关器件T2、T2驱动模块和控制模块2可以归属于脉冲放电电路。It should be noted that the DC voltage source DC 1 , the resistor R 0 , the switching devices T 1 and T 1 drive modules of the charger part can belong to the Marx generator, and the DC voltage source DC 2 , the resistor R 21 , the switch of the charger part The device T 2 , the T 2 drive module and the control module 2 can be classified as a pulse discharge circuit.
具体的,控制模块1用于分别独立地向n个驱动模块发送驱动信号以驱动n个开关器件S1-Sn在相应时刻开通;特别地,必须首先触发开通开关器件Sn;各时刻下,各开通的开关所对应的第一储能电容之间串联并向待测RBDT输出触发电压;Marx发生器中的第二限流电阻(电阻R1、R3、R2n+1)和第二二极管(二极管D22、D24…)用于在所述n个开关器件S1-Sn均断开且所述充电器同时向所述n个第一储能电容充电时,限制充电电流;另外在所述充电之后且存在开关器件开通时,阻碍储能电容放电。Specifically, the
则如图2所示,Marx发生器的各个元件的连接关系如下:DC1连接R0的一端,R0的另一端与T1连接,接下来是由多个虚线框中所示模块级联,模块中C2的一端与R4和S2连接,C2的另一端与R3连接,R3的另一端与S2的另一端连接,对于n级Marx发生器,一共有n-1个这样的模块,Cn一端与R2n+1连接,Cn另一端与Sn连接,R2n+1的另一端与Sn的另一端连接。As shown in Figure 2, the connection relationship of each element of the Marx generator is as follows: DC 1 is connected to one end of R 0 , the other end of R 0 is connected to T 1 , and then the modules shown in the dotted box are cascaded , one end of C 2 in the module is connected to R 4 and S 2 , the other end of C 2 is connected to R 3 , the other end of R 3 is connected to the other end of S 2 , for n-level Marx generators, there are a total of n-1 For such a module, one end of C n is connected to R 2n+1 , the other end of C n is connected to Sn , and the other end of R 2n+1 is connected to the other end of Sn .
外围电路中Rlimit与Marx发生器中Sn的一端相连接,另一端与D1的阳极连接,D1阴极与RBDT的阳极连接。In the peripheral circuit, R limit is connected with one end of Sn in the Marx generator, the other end is connected with the anode of D 1 , and the cathode of D 1 is connected with the anode of RBDT.
脉冲放电电路各个元件的连接关系如下:DC2与R21的一端连接,R21的一端与T2一端相连接,T2的另一端与C0、R22连接,R22的另一端与D2阳极相连接,D2的阴极与RBDT的阳极相连接,RBDT的阴极与C0和DC2的另一端相连接,DC2的一端与Marx发生器中的C1的一端相连接。The connection relationship of each element of the pulse discharge circuit is as follows: DC 2 is connected to one end of R 21 , one end of R 21 is connected to one end of T 2 , the other end of T 2 is connected to C 0 and R 22 , and the other end of R 22 is connected to D 2 anode is connected, the cathode of D2 is connected to the anode of RBDT , the cathode of RBDT is connected to the other end of C0 and DC2 , one end of DC2 is connected to one end of C1 in the Marx generator.
充电器用于控制对Marx发生器和脉冲放电电路的充电过程并进行充电;Marx发生器串联待测RBDT构成环路,用于在充电之后向待测RBDT输出不同动态特性的触发电压脉冲;为了可以分析带负载时RBDT的动态特性,测试装置中还具有待测RBDT脉冲放电电路,该脉冲放电电路用于当待测RBDT在触发电压脉冲的触发下开通后进行放电,放电电流流经待测RBDT,以进行待测RBDT动态特性分析,上述动态特性包括触发电压脉冲的上升速率、幅值和脉宽;D1设置于Marx发生器和待测RBDT的环路上,用于防止待测RBDT脉冲电路对Marx发生器产生影响。The charger is used to control and charge the Marx generator and the pulse discharge circuit; the Marx generator is connected in series with the RBDT to be tested to form a loop, which is used to output trigger voltage pulses with different dynamic characteristics to the RBDT to be tested after charging; To analyze the dynamic characteristics of the RBDT under load, the test device also has a pulse discharge circuit for the RBDT to be tested. The pulse discharge circuit is used to discharge when the RBDT to be tested is turned on under the trigger of the trigger voltage pulse, and the discharge current flows through the RBDT to be tested. , in order to analyze the dynamic characteristics of the RBDT to be tested, the above-mentioned dynamic characteristics include the rising rate, amplitude and pulse width of the trigger voltage pulse; D 1 is set on the loop between the Marx generator and the RBDT to be tested, and is used to prevent the pulse circuit of the RBDT to be tested. Affects the Marx generator.
在测试待测RBDT动态特性时,当Marx发生器需要输出不同上升速率但峰值电压相同的电压脉冲时,这可以通过保持充电器对Marx发生器中各储能电容的充电电压不变,控制Marx发生器内开关器件S1-Sn的导通时刻来控制各储能电容在不同时刻向RBDT放电来实现;若需要输出相同的电压上升速率而不同的峰值电压的电压脉冲时,充电器对Marx发生器中各储能电容的充电电压的需要改变,调节Marx发生器内开关器件S1-Sn的导通时刻,确保输出电压脉冲上升速率都相同,因此控制各储能电容的输出电量的时刻和充电器对Marx发生器中各储能电容的充电电压,就可以实现各种触发电压脉冲的输出。当Marx发生器内开关器件S1-Sn的同时导通时,此时Marx发生器输出的电压具有最大的电压上升速率,同时电压峰值也将最大。When testing the dynamic characteristics of the RBDT to be tested, when the Marx generator needs to output voltage pulses with different rise rates but the same peak voltage, this can control the Marx by keeping the charging voltage of each energy storage capacitor in the Marx generator unchanged by the charger. The turn-on time of the switching devices S 1 -S n in the generator is used to control the discharge of the energy storage capacitors to the RBDT at different times; if it is necessary to output voltage pulses with the same voltage rise rate but different peak voltages, the charger will The charging voltage of each energy storage capacitor in the Marx generator needs to be changed, and the turn-on time of the switching devices S 1 -S n in the Marx generator is adjusted to ensure that the output voltage pulse rises at the same rate, so the output power of each energy storage capacitor is controlled. At the time and the charging voltage of the charger to each energy storage capacitor in the Marx generator, the output of various trigger voltage pulses can be realized. When the switching devices S 1 -S n in the Marx generator are turned on at the same time, the voltage output by the Marx generator has the largest voltage rising rate at this time, and the voltage peak value will also be the largest.
Marx发生器用于提供RBDT的触发电压,当开关器件S1-Sn处于关断状态,充电器同时为电容C1-Cn充电,充电完成后,当S1-Sn仍都处于关断状态时,Marx发生器输出电压Vmarx为0V,当需要给RBDT施加触发电压时,控制模块1输出控制信号给S1-Sn各个开关器件对应的驱动模块,当S1-Sn完成状态转换后,由于电容电压不具有突变性,且多个电路保护元件阻碍了电容C1-Cn的迅速放电,此时Marx发生器的输出电压:The Marx generator is used to provide the trigger voltage of RBDT. When the switching devices S 1 -Sn are in the off state, the charger charges the capacitors C 1 -C n at the same time. After the charging is completed, when S 1 -S n are still in the off state When the output voltage Vmarx of the Marx generator is 0V, when the trigger voltage needs to be applied to the RBDT, the
式中,Yi只有两个数值0和1,当开关器件Si(i为1至n任一个)处于关断状态时,Yi为0,若开关器件Si处于导通状态时,Yi为1,VDC1为充电器电源DC1的输出电压。其中,在Marx发生器输出电压时,开关器件Sn必须处于导通状态,从上可以看出,控制S1-Sn的各个开关的状态,可以实现不同Marx输出电压峰值。In the formula, Yi has only two values, 0 and 1. When the switching device Si ( i is any one of 1 to n ) is in the off state, Yi is 0. If the switching device Si is in the on state, Yi is in the on state. is 1, and V DC1 is the output voltage of the charger power supply DC 1 . Among them, when the Marx generator outputs the voltage, the switching device Sn must be in a conducting state. It can be seen from the above that controlling the states of each switch of S 1 -S n can achieve different Max output voltage peaks.
例如,对于一个5级的Marx发生器,S1-S5各个开关器件的触发信号,依次延迟10ns或者依次延迟20ns,当触发信号依次延迟10ns时,Marx发生器输出的电压脉冲上升速率将大于触发信号延迟20ns时Marx发生器输出的电压脉冲上升速率。For example, for a 5-level Marx generator, the trigger signals of each switching device of S 1 -S 5 are delayed by 10ns or 20ns in sequence. When the trigger signal is delayed by 10ns in sequence, the voltage pulse output rate of the Marx generator will be greater than The rate of rise of the voltage pulse output by the Marx generator when the trigger signal is delayed by 20ns.
当S1-Sn的触发信号都相同时,此时Marx发生器输出的电压具有最大的电压上升速率,同时电压峰值也将最大,若需要得到上升速率更大的电压脉冲,则S1-Sn需要使用触发开通时间更短的开关器件。When the trigger signals of S 1 -S n are all the same, the voltage output by the Marx generator has the largest voltage rise rate at this time, and the voltage peak value will also be the largest. Sn requires the use of switching devices with shorter trigger turn-on times.
需要说明的是,Marx发生器中开关器件S1-Sn一般选择使用开通速度较快的MOSFET,在满足测试要求的情况下,还可以使用IGBT等其他半导体开关器件,S1-Sn的具有各自独立的驱动模块电路,且各个驱动模块电路接收到的控制信号也是相互独立的,控制信号由控制模块1给出。另外,由于MOSFET的可以使用的驱动电路较多,因此驱动模块1-驱动模块n不具有固定的电路拓扑形式,只要可以正常的触发开通MOSFET的驱动电路都可以在这些驱动模块中使用。It should be noted that the switching devices S 1 -S n in the Marx generator generally choose to use MOSFETs with faster turn - on speeds. If the test requirements are met, other semiconductor switching devices such as IGBTs can also be used. There are independent driving module circuits, and the control signals received by each driving module circuit are also independent of each other, and the control signals are given by the
其中,开关器件T1、开关器件T2可以使用IGBT、晶闸管和MOSFET等可以被控制的器件。由于开关器件T1和开关器件T2可以使用的驱动电路较多,因此T1驱动模块和T2驱动模块不具有固定的电路拓扑形式,只要可以正常的触发开通开关的驱动电路都可以在这些驱动模块中使用。Among them, the switching device T 1 and the switching device T 2 can be controlled devices such as IGBT, thyristor and MOSFET. Since the switching device T1 and the switching device T2 can use many driving circuits, the T1 driving module and the T2 driving module do not have a fixed circuit topology, as long as the driving circuit that can normally trigger the switch can be used in these used in the drive module.
为了减弱Marx发生器对RBDT测试结果的影响,Marx发生器输出的电压脉冲的脉宽需要大于装置中脉冲放电电路输出的电流脉冲的脉宽,这可以避免Marx发生器中S1-Sn开关器件关断时,电路结构突然的改变给RBDT特性测试带来电磁干扰。In order to reduce the influence of the Marx generator on the RBDT test results, the pulse width of the voltage pulse output by the Marx generator needs to be larger than the pulse width of the current pulse output by the pulse discharge circuit in the device, which can avoid the S 1 -S n switch in the Marx generator When the device is turned off, the sudden change of the circuit structure brings electromagnetic interference to the RBDT characterization test.
另外,限流电阻Rlmit的阻值基于Marx发生器输出的触发电压脉冲的峰值电压和脉宽确定。In addition, the resistance value of the current limiting resistor R lmit is determined based on the peak voltage and pulse width of the trigger voltage pulse output by the Marx generator.
在Marx发生器中,控制模块1与n个第一驱动模块之间设有干扰隔离元件,在充电器中,控制模块2分别与T1驱动模块和T2驱动模块之间设有干扰隔离元件。In the Marx generator, interference isolation elements are provided between the control module 1 and the n first driving modules, and in the charger, interference isolation elements are provided between the control module 2 and the T1 driving module and the T2 driving module respectively. .
需要说明的是,控制模块1和控制模块2可以用同一个控制电路实现,这些控制电路也不具有固定的电路形式,一般都由DSP、单片机或FPGA等芯片构成。It should be noted that the
本测试装置有多种工作方式,其中一种工作方式为:1)控制模块2同时输出控制信号给T1驱动模块与T2驱动模块,这两个驱动模块同时触发开通T1和T2后,DC1给电容C1-Cn充电直至电压稳定,DC2给电容C0充电,直至电压稳定;2)控制模块1输出不同的控制信号给驱动模块1-驱动模块n,驱动模块在对应的时刻触发开通各个开关器件,此时Marx发生器输出电压脉冲;2)RBDT承受Marx发生器输出的电压脉冲,若电压脉冲满足RBDT触发电压的条件,则RBDT将会在短时间触发开通;3)电容C0在RBDT导通之后,对R22放电产生电流脉冲;4)利用电流探头和电压探头测试RBDT的电流与电压。The test device has a variety of working modes, one of which is as follows: 1 ) The control module 2 simultaneously outputs control signals to the T 1 drive module and the T 2 drive module. , DC 1 charges the capacitors C 1 -C n until the voltage is stable, and DC 2 charges the capacitor C 0 until the voltage is stable; 2) The
如图3所示,测试装置中5级Marx发生器的各级开关器件触发信号(前述n取值为5),各级开关触发信号依次延迟10ns。假设S1的触发信号在0时刻发出,则10ns时刻S2的触发信号发出,20ns时刻S3的触发信号发出,30ns时刻S4的触发信号发出,40ns时刻S5的触发信号发出。除了延迟时间不同外,各级开关器件的触发波形都是相同的,触发波形的脉宽较宽,为10μs,则Marx发生器输出的RBDT触发电压脉冲脉宽也为10μs。As shown in FIG. 3 , the triggering signals of the switching devices of the five-level Marx generators in the test device (the value of n above is 5), and the triggering signals of the switches of each level are delayed by 10ns in turn. Assuming that the trigger signal of S1 is issued at time 0 , the trigger signal of S2 is issued at 10ns , the trigger signal of S3 is issued at 20ns, the trigger signal of S4 is issued at 30ns , and the trigger signal of S5 is issued at 40ns . Except for the different delay time, the trigger waveforms of the switching devices at all levels are the same. The pulse width of the trigger waveform is 10 μs, and the pulse width of the RBDT trigger voltage output by the Marx generator is also 10 μs.
实施例二Embodiment 2
一种RBDT动态特性测试方法,包括:An RBDT dynamic characteristic testing method, comprising:
将待测RBDT设置于如上实施例一所述的任一种RBDT动态特性测试装置中;The RBDT to be tested is arranged in any RBDT dynamic characteristic testing device as described in the first embodiment;
控制RBDT动态特性测试装置中的Marx发生器产生不同动态特性的触发脉冲电压以施加至待测RBDT;Control the Max generator in the RBDT dynamic characteristic test device to generate trigger pulse voltages with different dynamic characteristics to be applied to the RBDT to be tested;
检测每个动态特性下RBDT动态特性测试装置中的脉冲放电电路是否导通,并基于测得的RBDT两端的电压以及脉冲放电电路放电所输出的电流脉冲,得到待测RBDT的动态特性。Detect whether the pulse discharge circuit in the RBDT dynamic characteristic test device is turned on under each dynamic characteristic, and obtain the dynamic characteristic of the RBDT to be tested based on the measured voltage across the RBDT and the current pulse output by the discharge of the pulse discharge circuit.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010192405.5A CN111381143B (en) | 2020-03-18 | 2020-03-18 | A kind of RBDT dynamic characteristic testing device and testing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010192405.5A CN111381143B (en) | 2020-03-18 | 2020-03-18 | A kind of RBDT dynamic characteristic testing device and testing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111381143A true CN111381143A (en) | 2020-07-07 |
CN111381143B CN111381143B (en) | 2021-07-27 |
Family
ID=71220659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010192405.5A Active CN111381143B (en) | 2020-03-18 | 2020-03-18 | A kind of RBDT dynamic characteristic testing device and testing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111381143B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111969882A (en) * | 2020-08-25 | 2020-11-20 | 深圳市赛禾医疗技术有限公司 | Driving circuit of transistor and pressure wave saccule angioplasty treatment system |
CN113608093A (en) * | 2021-07-14 | 2021-11-05 | 北京工业大学 | Method for implementing control logic for testing dynamic characteristics of power semiconductor device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101419271A (en) * | 2008-11-28 | 2009-04-29 | 华中科技大学 | Turn-off time detection circuit for semiconductor pulse power switch |
CN101975916A (en) * | 2010-09-20 | 2011-02-16 | 中国电力科学研究院 | Novel reverse recovery protection test method of thyristor |
CN202903960U (en) * | 2012-07-12 | 2013-04-24 | 北京赛德高科铁道电气科技有限责任公司 | Switch performance testing device of a locomotive variable-current power module IGBT |
CN103248338A (en) * | 2013-04-01 | 2013-08-14 | 华中科技大学 | Triggering circuit of reverse switching transistor |
CN103546056A (en) * | 2013-10-15 | 2014-01-29 | 西北核技术研究所 | A kind of XRAM pulse generating circuit |
CN204666777U (en) * | 2015-05-26 | 2015-09-23 | 温州大学 | Reverse recovery current is utilized to measure the circuit of bidirectional semiconductor switch carrier lifetime |
CN105182222A (en) * | 2014-06-17 | 2015-12-23 | 国家电网公司 | Device and method for testing forward recovery characteristics of thyristor based on synthesis loop |
-
2020
- 2020-03-18 CN CN202010192405.5A patent/CN111381143B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101419271A (en) * | 2008-11-28 | 2009-04-29 | 华中科技大学 | Turn-off time detection circuit for semiconductor pulse power switch |
CN101975916A (en) * | 2010-09-20 | 2011-02-16 | 中国电力科学研究院 | Novel reverse recovery protection test method of thyristor |
CN202903960U (en) * | 2012-07-12 | 2013-04-24 | 北京赛德高科铁道电气科技有限责任公司 | Switch performance testing device of a locomotive variable-current power module IGBT |
CN103248338A (en) * | 2013-04-01 | 2013-08-14 | 华中科技大学 | Triggering circuit of reverse switching transistor |
CN103546056A (en) * | 2013-10-15 | 2014-01-29 | 西北核技术研究所 | A kind of XRAM pulse generating circuit |
CN105182222A (en) * | 2014-06-17 | 2015-12-23 | 国家电网公司 | Device and method for testing forward recovery characteristics of thyristor based on synthesis loop |
CN204666777U (en) * | 2015-05-26 | 2015-09-23 | 温州大学 | Reverse recovery current is utilized to measure the circuit of bidirectional semiconductor switch carrier lifetime |
Non-Patent Citations (1)
Title |
---|
谈国强: "三种新型两端半导体开关的快速脉冲产生电路研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111969882A (en) * | 2020-08-25 | 2020-11-20 | 深圳市赛禾医疗技术有限公司 | Driving circuit of transistor and pressure wave saccule angioplasty treatment system |
CN113608093A (en) * | 2021-07-14 | 2021-11-05 | 北京工业大学 | Method for implementing control logic for testing dynamic characteristics of power semiconductor device |
CN113608093B (en) * | 2021-07-14 | 2024-05-24 | 北京工业大学 | Implementation method of control logic for dynamic characteristic test of power semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN111381143B (en) | 2021-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109374996B (en) | Double-pulse test circuit and method for flying capacitor three-level DCDC power component | |
US6097582A (en) | Short circuit protection of IGBTs and other power switching devices | |
CN105044581B (en) | The method of testing and test circuit of a kind of SiC IGBT series connection valve group dynamic voltage balancing characteristics and reverse recovery characteristic | |
Sasaki et al. | Dynamic gate resistance control for current balancing in parallel connected IGBTs | |
CN109765470B (en) | Characteristic test method of power semiconductor device with precise and controllable temperature and current | |
CN115113014B (en) | A power device turn-off failure characteristic testing device and testing method | |
CN111381143A (en) | RBDT dynamic characteristic testing device and testing method | |
CN101419271A (en) | Turn-off time detection circuit for semiconductor pulse power switch | |
CN115932521A (en) | SiC MOSFET repeated surge testing method | |
CN114325284A (en) | Surge testing method capable of realizing automatic repeated surge | |
Lee et al. | Voltage balancing control with active gate driver for series connected SiC MOSFETs | |
CN217606019U (en) | IGBT double-pulse test circuit | |
CN109752638B (en) | A device and method for continuously measuring the output curve of an IGBT chip | |
Zhang et al. | A closed-loop current source gate driver with active gate current control for dynamic voltage balancing in series-connected GaN HEMTs | |
JP7671860B2 (en) | Method and apparatus for fast short detection for shorts in gate-controlled power switches - Patents.com | |
Anurag et al. | Effect of optocoupler gate drivers on SiC MOSFET | |
Wu et al. | Comparative study on reliability and application features of SiC MOSFET | |
JP7375566B2 (en) | Load withstand test method and load withstand test device for voltage-controlled power semiconductor devices | |
CN117250469B (en) | UIS test circuit and UIS test method for semiconductor device | |
Wang et al. | Driving a silicon carbide power MOSFET with a fast short circuit protection | |
Zhao et al. | Study of Si IGBT and SiC MOSFET performance based on double-pulse test | |
Yu et al. | Research on the SiC MOSFETs short circuit detection and protection optimization method | |
CN202309649U (en) | Marx pulse forming circuit | |
Sack et al. | Synchronized switching and active clamping of IGBT switches in a simple marx generator | |
Wang et al. | Series SiC MOSFETs with single gate driver based on capacitance coupling and passive snubber circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |