CN111378189A - 一种基于辐射冷却的智能调温材料及其制备方法 - Google Patents

一种基于辐射冷却的智能调温材料及其制备方法 Download PDF

Info

Publication number
CN111378189A
CN111378189A CN202010060124.4A CN202010060124A CN111378189A CN 111378189 A CN111378189 A CN 111378189A CN 202010060124 A CN202010060124 A CN 202010060124A CN 111378189 A CN111378189 A CN 111378189A
Authority
CN
China
Prior art keywords
material layer
radiation cooling
layer
intelligent temperature
organic system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010060124.4A
Other languages
English (en)
Inventor
张德宝
周志华
刘俊伟
焦时飞
张卓奋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010060124.4A priority Critical patent/CN111378189A/zh
Publication of CN111378189A publication Critical patent/CN111378189A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2339/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Toxicology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种基于辐射冷却的智能调温材料及其制备方法,该智能调温材料包括上下两层,上层为发射材料层,下层为反射材料层,本发明的反射材料层反射太阳光,阻止太阳辐射热进入智能调温材料,同时发射材料层能够根据环境温度的变化做出实时响应,通过可逆相变调节自身发射率,进而调节发射功率,起到温度控制的作用;本发明可以维持目标物体温度的恒定,既解决了无主动式温控设备情况下的问题,又可在有温控设备的情况下实现节能,是未来节能减排和温度控制的重要手段;相比之前提到的智能调温材料,本发明的产物为二氧化钒颗粒与有机体系分散基质构成的复合型薄膜,在制备的过程较为简单的同时,又能够保持良好的光学性质。

Description

一种基于辐射冷却的智能调温材料及其制备方法
技术领域
本发明属于材料科学技术领域,具体涉及一种基于辐射冷却的智能调温材料及其制备方法。
背景技术
大气层由氮气、氧气和水蒸气等组成,充当了辐射冷却半透明介质。在大多数波长带中由于大气的低透过率,会减弱从地面到宇宙的热辐射。然而,在8-13μm波长范围内,大气却对热辐射呈现高度透过的性质。因此从理论上来讲,在大气窗口具有高发射率的地面物体都可以向外太空辐射热量。有研究团队利用二氧化钒材料的相变特性,设计实现了一种智能太阳光反射器,以金属铝作为反射板,通过化学气相沉积的方法在金属铝上生长了1200nm的二氧化硅,并通过光刻技术在顶层形成二氧化钒纳米块。研究表明,相变温度前后材料的发射率差值在48%左右。也有研究团队提出一种基于相变的光子纳米结构,由上下两部分组成,上部为二氧化钛、二氧化钒和硒化锌的交替层,下部为金属银作为反射层,利用法布里-珀罗茨共振空腔原理,材料在相变温度前后的发射率差值达到了50%。
上述智能调温材料虽然能够在一定程度上被动地维持温度恒定,但是由于存在法布里-珀罗茨共振空腔,或者利用光刻技术进行的表面图案化改造,在形成昂贵的制造成本的同时,又无法大面积应用,因此需要进一步地改进。
目前,很多领域均需要将温度维持在一定范围内,二氧化钒可通过离子的掺杂,控制相变温度。但现有技术均涉及智能窗领域,调节的是太阳光波段,即低温状态,保持可见光透过的同时,透过近红外线,实现对室内的升温;高温状态,在保持可见光透过的同时,阻止近红外线透过,防止室内获得多余的热量,增加冷负荷,但是应用领域较为单一。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于辐射冷却的智能调温材料及其制备方法。
本发明是通过以下技术方案实现的:
一种基于辐射冷却的智能调温材料,包括上下两层,上层为发射材料层,下层为反射材料层;
所述发射材料层由球形颗粒和有机体系分散基质组成,所述球形颗粒为二氧化钒,直径尺寸为10~100nm,并通过掺杂离子调节相变温度,所述掺杂离子为W6+、Mo6+、Nb5+、Ru4+、F-或Mg2+,所述有机体系分散基质可为聚氨酯、丙烯酸和聚乙烯吡咯烷酮中的一种;
所述反射材料层由银或铝构成。
在上述技术方案中,所述发射材料层的厚度为10~100μm。
在上述技术方案中,所述反射材料层的厚度为200nm~100μm。
一种基于辐射冷却的智能调温材料的制备方法,按照下列步骤进行:
步骤一、将二氧化钒颗粒缓慢放入乙醇溶液中,通过磁力搅拌器于20-25℃条件下搅拌30~120分钟,得到分散均匀的混合溶液,再向混合溶液中缓慢加入有机体系分散基质,继续搅拌30~120分钟,使二氧化钒颗粒与有机体系分散基质均匀悬浮于乙醇溶液中,称为前体溶液;
其中,反应物的质量份数比是:二氧化钒颗粒1~10份,乙醇溶液10~200份,有机体系分散基质1~50份;
步骤二、将步骤一得到的前体溶液通过旋涂、滴铸或卷积的方式在基板上生长出均匀的薄膜,于20-25℃条件进行干燥,去除多余的溶剂,得到发射材料层;
步骤三、通过电子束蒸发或磁控溅射的工艺方式将银或铝作为反射材料层镀在步骤二中所述发射材料层的底部,与其结合形成智能调温材料。
在上述技术方案中,所述有机体系分散基质可为聚氨酯、丙烯酸和聚乙烯吡咯烷酮中的一种。
在上述技术方案中,所述反射材料层在太阳光波段实现90%以上的反射率。
在上述技术方案中,所述智能调温材料于相变温度前后,在0.3~2.5μm太阳光波段能够实现0.9以上的反射率,在8~13μm大气窗口波段的发射率差值为0.3~0.7。
与现有技术相比,本发明的技术方案所带来的有益效果是:
(1)本发明的反射材料层反射太阳光,阻止太阳辐射热进入智能调温材料,同时发射材料层能够根据环境温度的变化做出实时响应,通过可逆相变调节自身发射率,进而调节发射功率,起到温度控制的作用。
(2)本发明可以维持目标物体温度的恒定,既解决了无主动式温控设备情况下的问题,又可在有温控设备的情况下实现节能,是未来节能减排和温度控制的重要手段。
(3)相比之前提到的智能调温材料,本发明的产物为二氧化钒颗粒与有机体系分散基质构成的复合型薄膜,在制备的过程较为简单的同时,又能够保持良好的光学性质。
附图说明
图1是本发明的结构示意图。
其中:1为发射材料层;2为反射材料层。
对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据以上附图获得其他的相关附图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合具体实施例进一步说明本发明的技术方案。
实施例1
如图1所示,一种基于辐射冷却的智能调温材料,所述智能调温材料由上下两层组成。上层为发射材料层1,由二氧化钒颗粒和有机体系分散基质组成,能够根据环境温度的变化,发生可逆相变,当环境温度高于相变温度,发射材料层1在8~13μm大气窗口波段的发射率就会增加,当环境温度低于相变温度,发射材料层1在大气窗口波段的发射率就会减小;下层为反射材料层2,由金属银、铝等材料组成。智能调温材料于相变温度前后,在0.3~2.5μm太阳光波段能够实现0.9以上的反射率,在8~13μm大气窗口波段的发射率差值为0.3~0.7。
所述二氧化钒颗粒直径为10~100nm,并通过掺杂离子调节相变温度,对外界环境变化及时做出响应,进行可逆相变。
所述掺杂离子为W6+、Mo6+、Nb5+、Ru4+、F-或Mg2+,对相变温度的调控效率见表1。经上述离子的掺杂,可将智能调温材料的相变温度调节至10℃~68℃。通过离子调节相变温度的步骤与相关技术参数记录于下表中的各参考文献中:
表1
Figure BDA0002374193240000041
[1]Tan X,Yao T,Long R,et al.Unraveling Metal-insulator TransitionMechanism ofVO2 Triggered by Tungsten Doping[J].Scientific Reports,2012,2:466
[2]Jin P,Tanemura S.V1-xMoxO2 thermochromic films depositedby reactivemagnetron sputtering[J].Thin SolidFilms,1996,281-282(none):239-242.
[3]Zhang R,Yin C,Fu Q,et al.Metal-to-insulator transition and itseffective manipulation studied from investigations inV1-xNb x O2,bulks[J].Ceramics International,2017:S0272884217324665.
[4]Gu D,Zheng H,Ma Y,et al.A highly-efficient approach for reducingphase transition temperature of VO2 polycrystalline thin films through Ru4+-doping[J].Journal of Alloys and Compounds,2019,790:602-609.
[5]Burkhardt W,Christmann T,Meyer B K,et al.W-and F-doped VO2 filmsstudied by photoelectron spectrometry[J].Thin SolidFilms,1999,345:
[6]周家东,高彦峰,刘新玲,et al.Mg-doped VO2 Nanoparticles:HydrothermalSynthesis,Enhanced Visible Transmittance and Decreased Metal-insulatorTransition Temperature[J].材料科学,2013,15(1).
[7]Raman A P,Anoma M A,Zhu L,et al.Passive radiative cooling belowambient air temperature under direct sunlight[J].Nature,2014,515(7528):540-544.
[8]Sun K,Riedel C,Urbani A,et al.Dataset for VO2 thermo-chromicmetamaterial-based smart optical solarreflector[J].Acs Photonics,2018.
[9]Kort-Kamp W J M,Kramadhati S,Azad A K,et al.Passive radiative"thermostat"enabled by phase-change photonic nanostructures[J].2019.
所述有机体系分散基质可为聚氨酯、丙烯酸和聚乙烯吡咯烷酮中的一种。
相对于现有技术,本智能调温材料利用的是大气窗口波段,通过调节大气窗口波段的发射率,达到维持温度恒定的目的,调节效率更加高效,且应用领域更为广泛,比如建筑、军工、电子、机械设备等。在建筑领域。为保证人体热舒适,本发明可作为屋顶结构,维持室内空气处于稳定的温度。在电子、机械设备领域,设备的最佳工作环境也可以采用本发明来维持,以提高设备工作效率,延长工作寿命。
实施例2
一种基于辐射冷却的智能调温材料的制备方法,按照下列步骤进行:
首先按照质量份分别准备具有掺杂离子的二氧化钒颗粒1~10份、乙醇溶液10~200份,有机体系分散基质1~50份。然后将二氧化钒颗粒缓慢放入乙醇溶液中,通过磁力搅拌器于常温下搅拌30~120分钟,得到分散均匀的混合溶液,再向混合溶液中缓慢加入有机体系分散基质,继续搅拌30~120分钟,使二氧化钒颗粒与有机体系分散基质均匀悬浮于乙醇溶液中,称为前体溶液;将上述前体溶液通过旋涂、滴铸或卷积等方式,在基板上生长出均匀的薄膜,于室温干燥一段时间,去除多余的溶剂,上述薄膜成为发射材料层1,并通过电子束蒸发、磁控溅射等工艺方式将反射材料层2镀在发射材料层1的底部,与其结合,形成智能调温材料。
采用上述方案,本发明通过掺杂离子调节二氧化钒颗粒的相变温度,且将二氧化钒颗粒与有机体系分散基质形成的复合薄膜与反射材料层结合,从而使得智能调温材料在相变温度前后保持在太阳光波段90%以上反射率的同时,又能在大气窗口波段将发射率差值维持在30%~70%。这样智能调温材料一方面能够最小化吸收太阳光,另一方面能够在没有任何能源输入的情况下,通过调整在大气窗口波段发射率的差值,实现温控的目的。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (7)

1.一种基于辐射冷却的智能调温材料,其特征在于:包括上下两层,上层为发射材料层,下层为反射材料层;
所述发射材料层由球形颗粒和有机体系分散基质组成,所述球形颗粒为二氧化钒,直径尺寸为10~100nm,并通过掺杂离子调节相变温度,所述掺杂离子为W6+、Mo6+、Nb5+、Ru4+、F-或Mg2+,所述有机体系分散基质可为聚氨酯、丙烯酸和聚乙烯吡咯烷酮中的一种;
所述反射材料层由银或铝构成。
2.根据权利要求1所述的一种基于辐射冷却的智能调温材料,其特征在于:所述发射材料层的厚度为10~100μm。
3.根据权利要求1所述的一种基于辐射冷却的智能调温材料,其特征在于:所述反射材料层的厚度为200nm~100μm。
4.一种基于辐射冷却的智能调温材料的制备方法,其特征在于,按照下列步骤进行:
步骤一、将二氧化钒颗粒缓慢放入乙醇溶液中,通过磁力搅拌器于20-25℃条件下搅拌30~120分钟,得到分散均匀的混合溶液,再向混合溶液中缓慢加入有机体系分散基质,继续搅拌30~120分钟,使二氧化钒颗粒与有机体系分散基质均匀悬浮于乙醇溶液中,称为前体溶液;
其中,反应物的质量份数比是:二氧化钒颗粒1~10份,乙醇溶液10~200份,有机体系分散基质1~50份;
步骤二、将步骤一得到的前体溶液通过旋涂、滴铸或卷积的方式在基板上生长出均匀的薄膜,于20-25℃条件进行干燥,去除多余的溶剂,得到发射材料层;
步骤三、通过电子束蒸发或磁控溅射的工艺方式将银或铝作为反射材料层镀在步骤二中所述发射材料层的底部,与其结合形成智能调温材料。
5.根据权利要求4所述的一种基于辐射冷却的智能调温材料的制备方法,其特征在于:所述有机体系分散基质可为聚氨酯、丙烯酸和聚乙烯吡咯烷酮中的一种。
6.根据权利要求4所述的一种基于辐射冷却的智能调温材料的制备方法,其特征在于:所述反射材料层在太阳光波段实现90%以上的反射率。
7.根据权利要求4所述的一种基于辐射冷却的智能调温材料的制备方法,其特征在于:所述智能调温材料于相变温度前后,在0.3~2.5μm太阳光波段能够实现0.9以上的反射率,在8~13μm大气窗口波段的发射率差值为0.3~0.7。
CN202010060124.4A 2020-01-19 2020-01-19 一种基于辐射冷却的智能调温材料及其制备方法 Pending CN111378189A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010060124.4A CN111378189A (zh) 2020-01-19 2020-01-19 一种基于辐射冷却的智能调温材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010060124.4A CN111378189A (zh) 2020-01-19 2020-01-19 一种基于辐射冷却的智能调温材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111378189A true CN111378189A (zh) 2020-07-07

Family

ID=71215287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010060124.4A Pending CN111378189A (zh) 2020-01-19 2020-01-19 一种基于辐射冷却的智能调温材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111378189A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175458A (zh) * 2020-09-30 2021-01-05 哈尔滨工业大学(威海) 一种自适应控温辐射致冷涂层及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624029A (zh) * 2004-10-28 2005-06-08 中山大学 二氧化钒太阳热智能控温高聚物薄膜
CN101265374A (zh) * 2008-01-24 2008-09-17 复旦大学 一种智能隔热保温膜及其制备方法
CN104385713A (zh) * 2014-10-22 2015-03-04 张家港康得新光电材料有限公司 温控窗膜及温控窗膜的制作方法
JP2017186397A (ja) * 2016-04-01 2017-10-12 コニカミノルタ株式会社 二酸化バナジウム含有粒子及び二酸化バナジウム含有粒子の製造方法
US20180335651A1 (en) * 2014-05-28 2018-11-22 National Technology & Engineering Solutions Of Sandia, Llc Thermochromic low-emissivity film
CN109518148A (zh) * 2018-12-14 2019-03-26 哈尔滨工业大学 一种利用高能脉冲反应磁控溅射制备二氧化钒智能热控器件的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624029A (zh) * 2004-10-28 2005-06-08 中山大学 二氧化钒太阳热智能控温高聚物薄膜
CN101265374A (zh) * 2008-01-24 2008-09-17 复旦大学 一种智能隔热保温膜及其制备方法
US20180335651A1 (en) * 2014-05-28 2018-11-22 National Technology & Engineering Solutions Of Sandia, Llc Thermochromic low-emissivity film
CN104385713A (zh) * 2014-10-22 2015-03-04 张家港康得新光电材料有限公司 温控窗膜及温控窗膜的制作方法
JP2017186397A (ja) * 2016-04-01 2017-10-12 コニカミノルタ株式会社 二酸化バナジウム含有粒子及び二酸化バナジウム含有粒子の製造方法
CN109518148A (zh) * 2018-12-14 2019-03-26 哈尔滨工业大学 一种利用高能脉冲反应磁控溅射制备二氧化钒智能热控器件的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175458A (zh) * 2020-09-30 2021-01-05 哈尔滨工业大学(威海) 一种自适应控温辐射致冷涂层及其应用

Similar Documents

Publication Publication Date Title
Li et al. A materials perspective on radiative cooling structures for buildings
Huang et al. Single nanoporous MgHPO4· 1.2 H2O for daytime radiative cooling
Li et al. Radiative cooling: harvesting the coldness of the universe
CN108866483B (zh) 一种智能热控器件及其制备方法
Li et al. Spectrally selective absorbers/emitters for solar steam generation and radiative cooling‐enabled atmospheric water harvesting
US8664513B2 (en) Solar modules with enhanced efficiencies via use of spectral concentrators
Xu et al. Passive and dynamic phase-change-based radiative cooling in outdoor weather
US20180335651A1 (en) Thermochromic low-emissivity film
EP2562472B1 (en) Light convergence device, manufacturing method thereof and solar battery system
Cho et al. Full-color solar-heat-resistant films based on nanometer optical coatings
Chan et al. Potential passive cooling methods based on radiation controls in buildings
KR20160147649A (ko) 메타물질-보강된 수동형 복사 냉각 패널
CN112921273B (zh) 一种基于相变材料二氧化钒的动态热辐射制冷器件
Qi et al. Ordered-porous-array polymethyl methacrylate films for radiative cooling
WO2019101006A1 (zh) 疏水自洁净表面温度昼夜低于气温的反思托克斯荧光及辐射制冷涂料及其制备方法
KR20190101870A (ko) 자연복사냉각 시스템
Qu et al. Bifunctional template-induced VO2@ SiO2 dual-shelled hollow nanosphere-based coatings for smart windows
CN113025219B (zh) 可拉伸辐射冷却胶带及其制备方法和应用
CN111378189A (zh) 一种基于辐射冷却的智能调温材料及其制备方法
Chowdhary et al. Selective thermal emitters for high-performance all-day radiative cooling
Guo et al. Dynamic thermal radiation regulation for thermal management
TW202000621A (zh) 複合鎢氧化物膜及其製造方法、以及具有該膜之膜形成基材及物品
Bhupathi et al. Porous vanadium dioxide thin film-based Fabry− Perot cavity system for radiative cooling regulating thermochromic windows: experimental and simulation studies
Yan et al. Scalable and dynamically passive thermal regulation over solar wavelengths enabled by phase-transition metamaterials
CN117250672A (zh) 基于铟锑碲的多波段兼容可编程热辐射器及应用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200707