CN111372329B - 一种连接建立方法及终端设备 - Google Patents

一种连接建立方法及终端设备 Download PDF

Info

Publication number
CN111372329B
CN111372329B CN201811593656.3A CN201811593656A CN111372329B CN 111372329 B CN111372329 B CN 111372329B CN 201811593656 A CN201811593656 A CN 201811593656A CN 111372329 B CN111372329 B CN 111372329B
Authority
CN
China
Prior art keywords
tcp connection
data transmission
network
transmission delay
cellular network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811593656.3A
Other languages
English (en)
Other versions
CN111372329A (zh
Inventor
王皓
姚松平
许辰人
王凡钊
郭兴民
黎项立
陈智宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Huawei Technologies Co Ltd
Original Assignee
Peking University
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201811593656.3A priority Critical patent/CN111372329B/zh
Application filed by Peking University, Huawei Technologies Co Ltd filed Critical Peking University
Priority to PCT/CN2019/122230 priority patent/WO2020134868A1/zh
Priority to KR1020217020094A priority patent/KR102524305B1/ko
Priority to AU2019416232A priority patent/AU2019416232B2/en
Priority to US17/418,689 priority patent/US20220094748A1/en
Priority to EP19901904.3A priority patent/EP3883331A4/en
Priority to JP2021537146A priority patent/JP7193647B2/ja
Publication of CN111372329A publication Critical patent/CN111372329A/zh
Application granted granted Critical
Publication of CN111372329B publication Critical patent/CN111372329B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/141Setup of application sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Abstract

本申请提供一种连接建立方法及终端设备,该方法包括:终端设备先获取所述终端设备与应用服务器之间所建立的MPTCP连接的历史数据。因为历史数据包括Wi‑Fi网络对应的TCP连接的数据传输时延和蜂窝网络对应的TCP连接的数据传输时延,所以终端设备根据所述历史数据,确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi‑Fi网络对应的TCP连接的数据传输时延时,通过蜂窝网络的接口与所述应用服务器建立第一条TCP连接,当所述第一条TCP连接建立成功后,所述终端设备通过Wi‑Fi网络的接口与所述应用服务器建立第二条TCP连接。

Description

一种连接建立方法及终端设备
技术领域
本申请涉及终端技术领域,尤其涉及一种连接建立方法及终端设备。
背景技术
多路径传输控制协议(multi path transmission control protocol,MPTCP)是TCP的扩展,利用多条TCP连接的并行传输提高资源的利用率,增强连接失败的恢复能力。例如用户在观看视频时,手机通过Wi-Fi网络和蜂窝网络分别对应的TCP连接同时传输数据流,这样做的好处是可以提供更大的聚合带宽,下载速率也更高、卡顿变少、播放更流畅。
目前MPTCP的建立方法是优先在Wi-Fi网络建立第一条TCP连接,当第一条TCP连接建立成功后,再在蜂窝网络建立第二条TCP连接。可是如果第一条TCP连接的数据传输时延非常大,将导致第二条TCP连接需要等待较长时间才能建立起来,或者是如果第一条TCP连接无法建立成功,将导致第二条TCP连接也无法建立成功。
发明内容
本申请提供一种连接建立方法及终端设备,用以改善现有的MPTCP中第一条TCP连接数据传输时延大的问题。
第一方面,本申请实施例提供了一种连接建立方法,所述方法适用于终端设备,该方法包括:终端设备先获取所述终端设备与应用服务器之间所建立的MPTCP连接的历史数据。因为历史数据包括Wi-Fi网络对应的TCP连接的数据传输时延和蜂窝网络对应的TCP连接的数据传输时延,所以终端设备根据历史数据,确定蜂窝网络对应的TCP连接的数据传输时延小于等于Wi-Fi网络对应的TCP连接的数据传输时延时,通过蜂窝网络的接口与所述应用服务器建立第一条TCP连接,当第一条TCP连接建立成功后,终端设备通过Wi-Fi网络的接口与所述应用服务器建立第二条TCP连接。
在一种可能的设计中,当终端设备根据所述历史数据,确定所述蜂窝网络对应的TCP连接的数据传输时延大于所述Wi-Fi网络对应的TCP连接的数据传输时延时,通过所述Wi-Fi网络的接口与所述应用服务器建立所述第一条TCP连接;当所述第一条TCP连接建立成功后,所述终端设备通过所述蜂窝网络的接口与所述应用服务器建立所述第二条TCP连接。
本申请实施例中,终端设备优先通过数据传输时延较小的网络的接口建立第一条TCP连接,可以减小MPTCP连接中首条TCP连接建立所耗费的时长,进而有助于减小起始播放时延,提升用户体验。
在一种可能的设计中,终端设备获取所述终端设备与应用服务器之间所建立的MPTCP连接的历史数据之后,按照公式一至公式三计算所述Wi-Fi网络对应的TCP连接的数据传输时延的第一平均值和标准差,以及所述蜂窝网络对应的TCP连接的数据传输时延的第二平均值。若μ2≤μ1+2×σ,则所述终端设备确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi-Fi网络对应的TCP连接的数据传输时延;若μ2>μ1+2×σ,则所述终端设备确定所述蜂窝网络对应的TCP连接的数据传输时延大于所述Wi-Fi网络对应的TCP连接的数据传输时延。
Figure BDA0001920855120000011
Figure BDA0001920855120000021
Figure BDA0001920855120000022
其中,μ1为第一平均值,μ2为第二平均值,σ为标准差,x1至xN为Wi-Fi网络对应的TCP连接的数据传输时延,N为Wi-Fi网络对应的TCP连接的数据传输时延的个数,y1至yM为蜂窝网络对应的TCP连接的数据传输时延,M为蜂窝网络对应的TCP连接的数据传输时延的个数。
本申请实施例中,终端设备可以准确地计算出TCP连接的数据传输时延较小的目标网络,进而通过数据传输时延较小的网络的接口建立第一条TCP连接。
在另一种可能的设计中,终端设备还可以按照公式四计算出蜂窝网络对应的TCP连接的数据传输时延的第二加权均值μ2′。若μ2′≤μ1+2×σ,则确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi-Fi网络对应的TCP连接的数据传输时延;若μ2′>μ1+2×σ,则确定所述蜂窝网络对应的TCP连接的数据传输时延大于所述Wi-Fi网络对应的TCP连接的数据传输时延。
Figure BDA0001920855120000023
其中,y1至yM为蜂窝网络对应的TCP连接的数据传输时延,M为蜂窝网络对应的TCP连接的数据传输时延的个数,ω1至ωM为蜂窝网络对应的TCP连接的数据传输时延的权重值,μ2′为第二加权均值。
本申请实施例中,终端设备通过另一种方式可以准确地计算出TCP连接的数据传输时延较小的目标网络,进而通过数据传输时延较小的网络的接口建立第一条TCP连接。
在一种可能的设计中,若历史数据还包括应用的标识、蜂窝网络的标识和Wi-Fi网络的标识,那么终端设备可以先从历史数据中确定,与所述应用服务器所对应的应用的标识相同的目标TCP连接的数据传输时延集合,然后根据所述蜂窝网络的标识,从所述目标TCP连接的数据传输时延集合中,确定与当前蜂窝网络的标识相同的第一数据传输时延;以及根据所述Wi-Fi网络的标识,从所述目标TCP连接的数据传输时延集合中,确定与当前Wi-Fi网络的标识相同的第二数据传输时延;最终终端设备根据所述第一数据传输时延和所述第二数据传输时延,确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi-Fi网络对应的TCP连接的数据传输时延。
本申请实施例中,终端设备对历史数据中数据进行筛选,选择出应用标识相同,以及接入点相同的数据,以便于准确地确定出数据传输时延较小的网络。
在一种可能的设计中,终端设备计算第二数据传输时延的第二加权均值,其中,建立时间越早的TCP连接的第二数据传输时延的权重越低;当所述第一平均值与两个标准差的和值小于或等于所述第二平均值,且所述第一均值与两个标准差的和值小于或等于所述第二加权均值时,所述终端设备确定所述Wi-Fi网络为目标网络,否则确定所述蜂窝网络为目标网络。
在一种可能的设计中,所述终端设备从所述历史数据中确定不存在所述第一数据传输时延和所述第二数据传输时延;
当所述Wi-Fi网络的接口和所述蜂窝网络的接口均可用时,所述终端设备确定所述蜂窝网络是LTE网络,且所述LTE网络的接收信号强度RSSI大于设定值时,确定所述目标网络为LTE网络,否则确定所述目标网络为Wi-Fi网络。
在一种可能的设计中,终端设备保存当前所建立的两条TCP连接的数据传输时延。这样以便于后续时刻对目标网络的计算。
在一种可能的设计中,向所述终端设备所接入的蜂窝网络的基站发送报文,所述报文用于激活所述终端设备的蜂窝网络。这样可以节省数据传输时延将近200ms的时长。
第二方面,本申请实施例提供一种终端设备,包括处理器和存储器。其中,存储器用于存储一个或多个计算机程序;当存储器存储的一个或多个计算机程序被处理器执行时,使得该终端设备能够实现上述任一方面的任意一种可能的设计的方法。
第三方面,本申请实施例还提供一种装置,该装置包括执行上述任一方面的任意一种可能的设计的方法的模块/单元。这些模块/单元可以通过硬件实现,也可以通过硬件执行相应的软件实现。
第四方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质包括计算机程序,当计算机程序在终端设备上运行时,使得所述终端设备执行上述任一方面的任意一种可能的设计的方法。
第五方面,本申请实施例还提供一种包含计算机程序产品,当所述计算机程序产品在终端上运行时,使得所述终端设备执行上述任一方面的任意一种可能的设计的方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的一种MPTCP应用的系统架构;
图2为本申请实施例提供的一种多网络部署的数据传输系统架构图;
图3为本申请实施例提供的一种TCP协议栈扩充到MPTCP协议栈的示意图;
图4为本申请实施例提供的一种MPTCP实现过程示意图;
图5为本申请实施例提供的一种终端设备的结构示意图;
图6为本申请实施例提供的一种安卓系统架构示意图;
图7为现有技术提供的一种MPTCP建立过程示意图;
图8为本申请实施例提供的一种MPTCP建立过程示意图;
图9为本申请实施例提供的一种连接建立方法流程示意图一;
图10为本申请实施例提供的一种连接建立方法流程示意图二;
图11为本申请实施例提供的一种连接建立装置示意图;
图12为本申请实施例提供的一种终端设备结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请实施例提供的连接建立方法可应用于无线通信系统的数据传输,其中,数据接收端与数据发送端通过无线接入网(Radio Access Network,RAN)以及核心网进行数据交互,所述数据接收端和所述数据发送端之间还可建立传输控制协议(TransmissionControl Protocol,TCP)连接,采用TCP协议进行数据传输。如图1所示,无线通信系统中终端设备和应用服务器之间进行数据交互,终端设备通过空口接入到RAN,经由核心网连接到应用服务器,其中,终端与RAN之间的网络可称为无线网络,RAN与应用服务器之间的网络可称为有线网络。应用服务器与终端之间建立TCP连接并进行数据传输。
其中,应用服务器可以是服务器集群中的服务器,例如某一视频应用的不同视频片段可能分布在不同的服务器上;应用服务器也可以是某一个服务器。
随着通信技术的发展,通信系统已经演进为多个通信网络共同部署的通信架构,终端可接入不止一个通信网络进行通信。需要说明的是,当该通信网络为局域网时,示例性的,该通信网络可以是无线保真(Wireless Fidelity,Wi-Fi)网络、蓝牙网络、zigbee网络或近场通信(near field communication,NFC)网络等近距离通信网络。当该通信网络为广域网时,示例性的,该通信网络可以是第三代移动通信技术(3rd-generation wirelesstelephone technology,3G)网络、第四代移动通信技术(the 4th generation mobilecommunication technology,4G)网络、第五代移动通信技术(5th-generation mobilecommunication technology,5G)网络、未来演进的公共陆地移动网络(public landmobile network,PLMN)或因特网等。
例如,图2中部署有Wi-Fi网络和长期演进(Long Term Evolution,LTE)网络的通信系统中,终端可接入Wi-Fi网络,通过演进的分组数据网关(Evolved Packet DataGateway,ePDG)或被信任网关(trusted gateway,TGW)与应用服务器进行数据传输,也可接入到LTE网络,通过服务网关(Serving Gateway,SGW)或分组数据网关(Packet DataNetwork Gateway,PGW)与应用服务器进行数据传输。
其中,异构网络的部署推动了多路径数据传输业务的发展,目前通过对TCP协议扩展得到了MPTCP协议,利用该MPTCP协议使一个业务可使用多路径的网络资源进行数据传输。例如图2中手机使用Wi-Fi网络资源和LTE网络资源与应用服务器进行数据传输。图3示出了TCP协议栈扩充到MPTCP协议栈的示意图。TCP协议栈中,应用(Application)层的数据流通过一条TCP连接发送,在MPTCP协议栈中,传输层被划分为两个子层:MPTCP层和TCP层,应用层的数据流经由MPTCP层所分解的两条TCP连接传送。
图4示出了MPTCP的使用场景示意图,图4中终端设备和应用服务器之间建立了两条TCP连接,一个TCP连接使用Wi-Fi网络资源,另一个TCP连接使用LTE网络资源。应用服务器的MPTCP层将TCP流分解为两个TCP子流后通过这两个TCP连接分别独立传送至终端设备,终端设备收到两个TCP子流之后,将这两个子流合并后再发送给应用层。
在本申请一些实施例中,图1所示的无线通信系统中终端设备可以是还包含其他功能诸如个人数字助理和/或音乐播放器功能的便携式终端设备,诸如手机、平板电脑、具备无线通讯功能的可穿戴设备(如智能手表)等。便携式终端设备的示例性实施例包括但不限于搭载
Figure BDA0001920855120000041
或者其他操作系统的便携式终端设备。上述便携式终端设备也可以是其他便携式终端设备,诸如具有触敏表面(例如触控面板)的膝上型计算机(laptop)等。还应当理解的是,在本申请其他一些实施例中,上述终端设备也可以不是便携式终端设备,而是具有触敏表面(例如触控面板)的台式计算机。
示例性地,如图5所示,本申请实施例中的终端设备可以为手机,下面以手机为例对实施例进行具体说明。
手机可以包括处理器110,外部存储器接口120,内部存储器121,USB接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及SIM卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对手机的具体限定。在本申请另一些实施例中,手机可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processingunit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(Neural-network Processing Unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是手机的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuitsound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purposeinput/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现手机的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(displayserial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现手机的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现手机的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口可以用于连接充电器为手机充电,也可以用于手机与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他终端设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对手机的结构限定。在本申请另一些实施例中,手机也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过手机的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为终端设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
手机的无线通信功能可以通过天线模块1,天线模块2移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。手机中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将蜂窝网天线复用为无线局域网分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在手机上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(LowNoise Amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在手机上的包括无线局域网(wireless localarea networks,WLAN),蓝牙(bluetooth,BT),全球导航卫星系统(global navigationsatellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(nearfield communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,手机的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得手机可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code divisionmultiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(globalnavigation satellite system,GLONASS),北斗卫星导航系统(beidou navigationsatellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS))和/或星基增强系统(satellite based augmentation systems,SBAS)。
手机通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用LCD(liquid crystal display,液晶显示屏),OLED(organic light-emitting diode,有机发光二极管),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrixorganic light emitting diode的,AMOLED),柔性发光二极管(flex light-emittingdiode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot lightemitting diodes,QLED)等。在一些实施例中,手机可以包括1个或N个显示屏,N为大于1的正整数。
手机可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,手机可以包括1个或N个摄像头,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当手机在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。手机可以支持一种或多种视频编解码器。这样,手机可以播放或录制多种编码格式的视频,例如:MPEG1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现手机的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展手机的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行手机的各种功能应用以及数据处理。存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储手机使用过程中所创建的数据(比如音频数据,电话本等)等。此外,存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
手机可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。手机可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当手机接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。手机可以设置至少一个麦克风170C。在另一些实施例中,手机可以设置两个麦克风,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,手机还可以设置三个,四个或更多麦克风,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口可以是USB接口,也可以是3.5mm的开放移动终端设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。手机根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,手机根据压力传感器180A检测所述触摸操作强度。手机也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定手机的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定手机围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测手机抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消手机的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,手机通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。手机可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当手机是翻盖机时,手机可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测手机在各个方向上(一般为三轴)加速度的大小。当手机静止时可检测出重力的大小及方向。还可以用于识别终端设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。手机可以通过红外或激光测量距离。在一些实施例中,拍摄场景,手机可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。手机通过发光二极管向外发射红外光。手机使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定手机附近有物体。当检测到不充分的反射光时,手机可以确定手机附近没有物体。手机可以利用接近光传感器180G检测用户手持手机贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。手机可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测手机是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。手机可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,手机利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,手机执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,手机对电池142加热,以避免低温导致手机异常关机。在其他一些实施例中,当温度低于又一阈值时,手机对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。可设置于显示屏194。用于检测作用于其上或附近的触摸操作。可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型,并通过显示屏194提供相应的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于手机的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键可以是机械按键。也可以是触摸式按键。手机可以接收按键输入,产生与手机的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接用户标识模块(subscriber identity module,SIM)。SIM卡可以通过插入SIM卡接口,或从SIM卡接口拔出,实现和手机的接触和分离。手机可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。手机通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,手机采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在手机中,不能和手机分离。手机的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本发明实施例以分层架构的Android系统为例,示例性说明手机的软件结构。
图6是本发明实施例的手机的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)和系统库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图6所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序。
应用程序框架层为应用程序层的应用程序提供应用编程接口(applicationprogramming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图6所示,应用程序框架层可以包括窗口管理器,内容提供器,视图系统,电话管理器,资源管理器,通知管理器等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供手机的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,终端设备振动,指示灯闪烁等。
Android Runtime包括核心库和虚拟机。Android runtime负责安卓系统的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是安卓的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
系统库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),2D图形引擎(例如:SGL)等。
表面管理器用于对显示子系统进行管理,并且为多个应用程序提供了2D和3D图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现三维图形绘图,图像渲染,合成,和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动。
图7示例性地示出了传统MPTCP建立过程示意图。假设Wi-Fi网络信号弱的时候,手机与应用服务器之间一次信息传输所需要的数据传输时延是200ms,在LTE网络信号强的时候,手机与应用服务器之间一次信息传输所需要的数据传输时延是20ms。图7中,步骤a1,手机在Wi-Fi网络与应用服务器进行三次握手,完成Wi-Fi网络对应的第一条TCP连接的建立需要600ms。步骤b1,当第一条TCP连接建立成功后,应用服务器通过第一条TCP连接向手机发送数据。步骤c1,然后手机通过第一条TCP连接向应用服务器发送增加第二IP地址的报文,这一过程耗时200ms。步骤d1,应用服务器在LTE网络使用第二IP地址向手机发送确认信息,也就是说手机与应用服务器通过第二IP地址建立与LTE网络对应的第二条TCP连接,这一过程耗时20ms。最终手机同时通过这两条TCP连接与应用服务器进行数据传输。
可见,上述MPTCP建立过程如果发生在视频起始播放时段,就意味着耗费了600ms还没有开始传输视频流数据,起始播放时延较长。如果手机所连接的路由器信号不稳定,当前无法上网的话,则可能导致第一条TCP连接建立不成功,进而导致MPTCP创建失败,最终导致视频无法正常播放。也就是说,传统MPTCP建立方式存在第一条TCP连接的数据传输时延较长的问题。
针对上述MPTCP建立方式所存在问题,本申请实施例提供一种连接建立方法,该方法对图7中MPTCP建立方式进行了优化,示例性地,优化之后的MPTCP建立方式如图8所示。图8中,步骤a2,手机优先选择在LTE网络中与应用服务器进行三次握手,这样完成LTE网络对应的第一条TCP连接的建立仅需要60ms。步骤b2,当第一条TCP连接建立成功后,应用服务器通过第一条TCP连接向手机发送数据。步骤c2,接着手机通过第一条TCP连接向应用服务器发送增加第二IP地址的报文,这一过程耗时20ms。步骤d2,然后应用服务器在Wi-Fi网络使用第二IP地址向手机发送确认信息,也就是说手机与应用服务器通过第二IP地址建立与Wi-Fi网络对应的第二条TCP连接,这一过程耗时200ms。最终手机同时通过这两条TCP连接与应用服务器进行数据传输。
可见,图8中第一条TCP连接的建立只需要60ms,相较图7的600ms而言,节省了540ms,可以起到缩短起始播放时延,提升用户体验的目的。
换句话说,本申请实施例提供一种连接建立方法,该方法包括:当终端设备监控到Wi-Fi网络的接口和所述蜂窝网络的接口均可用时(例如蜂窝网络和Wi-Fi网络的功能开关均打开),终端设备可以先通过数据传输时延较小的网络的接口与应用服务器建立第一条TCP连接。当第一条TCP连接建立成功后,终端设备再通过另一网络的接口与应用服务器建立第二条TCP连接。具体而言,终端设备可以根据历史数据所记载的MPTCP的各个TCP连接的数据传输时延,确定出数据传输时延较小的目标网络。终端设备可以优先在该目标网络中建立第一条TCP连接。例如,当历史数据记载的Wi-Fi网络对应的TCP连接的数据传输时延的第一平均值和两个标准差的和值小于LTE网络对应的TCP连接的数据传输时延的第二平均值时,则终端优先通过Wi-Fi网络的接口与应用服务器建立第一条TCP连接,当第一条TCP连接建立成功后,再通过LTE网络的接口与应用服务器建立第二条TCP连接。
以下将结合附图和应用场景,对本申请实施例提供的连接建立方法进行详细介绍。
参见图9,示例性的示出了本申请实施例提供的一种连接建立方法的流程,该方法是由终端设备执行,该方法包括如下步骤。
步骤301,终端设备获取终端设备与应用服务器之间所建立的MPTCP连接的历史数据。
其中,历史数据包括Wi-Fi网络对应的TCP连接的数据传输时延和蜂窝网络对应的TCP连接的数据传输时延。
比如说,手机当前在播放华为视频应用中的视频的过程中,同时接入了Wi-Fi网络和LTE网络,那么手机可以获取该视频在十分钟的播放时长中最近一分钟内手机与华为视频应用服务器之间所建立的3次MPTCP的历史数据。例如,3次MPTCP的历史数据的具体内容如表1所示。
表1
Figure BDA0001920855120000121
步骤302,终端设备根据该历史数据,从Wi-Fi网络和蜂窝网络中确定TCP连接的数据传输时延较小的目标网络。
在一种可能的设计中,如果TCP连接的数据传输时延符合正态分布,则终端设备按照公式一、公式二和公式三可以计算Wi-Fi网络对应的TCP连接的数据传输时延的第一平均值和标准差,以及蜂窝网络对应的TCP连接的数据传输时延的第二平均值。
Figure BDA0001920855120000131
Figure BDA0001920855120000132
Figure BDA0001920855120000133
其中,μ1为第一平均值,μ2为第二平均值,σ为标准差,x1至xN为Wi-Fi网络对应的TCP连接的数据传输时延,N为Wi-Fi网络对应的TCP连接的数据传输时延的个数,y1至yM为蜂窝网络对应的TCP连接的数据传输时延,M为蜂窝网络对应的TCP连接的数据传输时延的个数。
若μ2≤μ1+2×σ,则所述终端设备确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi-Fi网络对应的TCP连接的数据传输时延;若μ2>μ1+2×σ,则所述终端设备确定所述蜂窝网络对应的TCP连接的数据传输时延大于所述Wi-Fi网络对应的TCP连接的数据传输时延。
需要说明的是,标准差主要是反映Wi-Fi网络对应的TCP连接的数据传输时延的抖动性。因为Wi-Fi网络可能因同频干扰、接入用户的个数、限速等原因造成Wi-Fi网络的丢包率较大,以及不同时刻的数据传输时延差异较大,所以在选择目标网络时不仅要考虑Wi-Fi网络对应的TCP连接的数据传输时延的平均值,还要结合标准差进行综合判断。需要说明的是,因蜂窝网络的抖动性较小,所以本申请实施例可以不考虑蜂窝网络对应的TCP连接的数据传输时延的标准差。
例如,手机可以按照公式1计算表1中3个Wi-Fi网络对应的TCP连接的数据传输时延的第一平均值μ1,以及按照公式2计算标准差σ,另外按照公式2计算3个LTE网络对应的TCP连接的数据传输时延的第二平均值μ2。如果μ1+2σ小于或等于第二平均值μ2时,则手机确定Wi-Fi网络为目标网络,否则确定LTE网络为目标网络。
Figure BDA0001920855120000134
Figure BDA0001920855120000135
Figure BDA0001920855120000136
在一种可能的设计中,终端设备也可以设置不同时刻所建立的MPTCP连接的权重值,其中,蜂窝网络对应的TCP连接中越早建立的TCP连接,该TCP连接的数据传输时延的权重越低。这样终端设备还可以按照公式四进一步计算历史数据中LTE网络对应的TCP连接的数据传输时延的第二加权均值。
Figure BDA0001920855120000137
其中,μ2′为第二加权均值,ω1至ωM为蜂窝网络对应的TCP连接的数据传输时延的权重值,y1至yM为蜂窝网络对应的TCP连接的数据传输时延,M为蜂窝网络对应的TCP连接的数据传输时延的个数。
这时,若μ2′≤μ1+2×σ,则所述终端设备确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi-Fi网络对应的TCP连接的数据传输时延;若μ2′>μ1+2×σ,则所述终端设备确定所述蜂窝网络对应的TCP连接的数据传输时延大于所述Wi-Fi网络对应的TCP连接的数据传输时延。
示例性地,假设表1中蜂窝网络对应的TCP连接的数据传输时延中b1、b2、b3的权重值分别为ω1、ω2、ω3,终端设备还可以按照公式4进一步计算3个LTE网络对应的TCP连接的数据传输时延的第二加权平均值μ2′。如果μ1+2σ小于或等于第二平均值μ2,且μ1+2σ小于或等于第二加权均值μ2′时,则手机确定Wi-Fi网络为目标网络,否则确定LTE网络为目标网络。
Figure BDA0001920855120000141
步骤303,确定出目标网络之后,终端设备通过目标网络的接口与应用服务器建立第一条TCP连接,当第一条TCP连接建立成功后,终端设备通过另一网络的接口与应用服务器建立第二条TCP连接。
换句话说,如果终端设备确定Wi-Fi网络为目标网络后,先通过Wi-Fi网络的接口与应用服务器建立第一条TCP连接,然后当第一条TCP连接建立成功后,再通过LTE网络的接口与该应用服务器建立第二条TCP连接。又或者,如果终端设备确定蜂窝网络为目标网络后,先通过蜂窝网络的接口与应用服务器建立第一条TCP连接,然后当第一条TCP连接建立成功后,再通过Wi-Fi网络的接口与该应用服务器建立第二条TCP连接。
考虑到历史数据中可能包括不同应用的MPTCP连接的历史数据,而且如果终端设备前后的位置发生移动,终端设备当前接入的基站可能与历史数据中蜂窝网络对应的TCP连接所接入的基站不同,或者终端设备当前接入的SSID可能与历史数据中Wi-Fi网络对应的TCP连接所接入的SSID不同,那么这一TCP连接的数据传输时延则不可用。如果历史数据中还包括应用标识、蜂窝网络的标识和Wi-Fi网络的标识,那么在一种可能的设计中,在执行步骤302时,终端设备可以先从历史数据中确定,与应用服务器所对应的应用的标识相同的目标TCP连接的数据传输时延集合。然后从目标TCP连接的数据传输时延集合中,确定与当前蜂窝网络的标识相同的第一数据传输时延;以及根据所述Wi-Fi网络的标识,从所述目标TCP连接的数据传输时延集合中,确定与当前Wi-Fi网络的标识相同的第二数据传输时延。终端设备根据所述第一数据传输时延和所述第二数据传输时延,按照上述公式一至公式四计算第一均值和标准差、第二均值、第二加权均值。
例如,手机当前在播放华为视频应用中的视频的过程中,同时接入了Wi-Fi网络和LTE网络,那么手机可以获取该视频在十分钟的播放时长中最近一分钟内手机与华为视频应用服务器之间所建立的3次MPTCP的历史数据。例如,3次MPTCP的历史数据的具体内容如表2所示。
表2
Figure BDA0001920855120000142
Figure BDA0001920855120000151
假设手机当前运行的应用的标识是001,当前接入的SSID是myhome,小区ID是100,那么手机可以仅利用a1、a2和b1、b2计算第一均值和标准差、第二均值、第二加权均值。具体计算方式如上述公式所示,在此不再赘述。
在另一种可能的设计中,终端设备可以设置一个老化时间,将距离当前时刻设定时长之前发生的历史数据清除,仅保留最近发生的MPTCP连接的历史数据,例如终端设备将距离当前时刻1分钟之前MPTCP连接的历史数据清除,仅保留距离当前时刻1分钟内的MPTCP连接的历史数据。这样的历史数据可以准确地反映Wi-Fi网络和蜂窝网络的TCP连接的数据传输时延的大小,有利于确定目标网络。
在一种可能的设计中,如果终端设备的位置发生变化或者终端处于两个小区的临界位置,则终端设备当前接入的蜂窝基站或者无线路由器的接入点会发生变化,也就是当前接入的蜂窝网络和Wi-Fi网络的接口与历史数据中MPTCP连接的接口不同,那么可能从历史数据中无法查找到与当前接入的蜂窝网络的接口和第一应用标识对应TCP连接的第一数据传输时延,以及与当前接入的Wi-Fi网络的接口和第一应用标识对应TCP连接的第二数据传输时延。这时,当Wi-Fi网络的接口和蜂窝网络的接口均可用时,那么终端设备可以判断当前接入的蜂窝网络是否是LTE网络,且信号强度是否大于设定阈值,如果均满足,则终端设备确定目标网络LTE网络,先通过LTE网络的接口与应用服务器建立第一条TCP连接,否则的话,终端设备则先通过Wi-Fi网络的接口与应用服务器建立第一条TCP连接。之所以优先选择蜂窝网络中的LTE网络,是因为当前LTE网络与2G网络、3G网络相比数据传输时延较小。
考虑到终端设备在使用蜂窝网络与应用服务器建立第一条TCP连接时,可能需要耗时200ms才能激活蜂窝网络,因此终端设备在使用蜂窝网络与应用服务器建立第一条TCP连接之前,可以先向终端设备所接入的蜂窝基站发送一个报文,用于激活终端设备的蜂窝网络。之所以这样做,是因为终端设备的蜂窝网络在未被使用时处于休眠状态,唤醒过程大概需要200ms的时长,若终端设备在建立蜂窝网络对应的TCP连接之前发生一个报文,则可以提前蜂窝网络,节省了将近200ms的时间。在实际设计时,终端设备所发送的报文可以是UDP报文,蜂窝基站收到这一报文并不需要返回信息。另外,报文对应的目标IP地址可以是一个并不存在的接收方的IP地址,这样做是为了防止用于激活蜂窝网络的报文被识别成攻击报文。
以下将结合图10所示的方法流程图,主要以手机在播放来自视频应用服务器的流媒体时如何建立MPTCP为例,对图9所示的连接建立方法进行详细介绍。
步骤401,手机响应于用户在华为视频应用中的操作指令,与华为视频应用服务器建立网络连接。手机判断当前Wi-Fi网络和LTE网络是否同时可用。若否,则执行步骤402,否则执行步骤403。
步骤402,若手机确定当前仅有一个网络可用,则直接选择该网络创建TCP连接。
步骤403,若手机确定当前Wi-Fi网络和LTE网络均可用,则判断是否存在历史数据,例如前一分钟是否有历史建立的MPTCP的数据。若不存在,则执行步骤404a,否则执行步骤404b。
步骤404a,如果手机前后时刻位置发生变动,则不存在与当前接入的小区和SSID相同的历史数据,这时手机判断当前接入的蜂窝网络是否是LTE网络,若是,则执行步骤405a,否的话,则执行步骤408a。
步骤405a,手机判断LTE网络的RSSI大于设定值,若是则执行步骤406a,则否则执行408a。
步骤406a,手机向接入的LTE网络的基站发送一个UDP报文,该UDP报文用于激活LTE网络。
步骤407a,手机使用LTE网络的接口建立第一条TCP连接,当第一条TCP连接建立成功后,手机再使用Wi-Fi网络的接口与该应用服务器建立第二条TCP连接。
步骤408a,若手机判断当前接入的蜂窝网络是2G网络或3G网络,或者是手机当前接入的LTE网络的接收的信号强度指示(Received Signal Strength Indication,RSSI)小于等于设定值(例如信号格小于等于3格),则使用Wi-Fi网络的接口建立第一条TCP连接,当第一条TCP连接建立成功后,手机再使用蜂窝网络的接口与应用服务器建立第二条TCP连接。
步骤404b,若历史数据中存在与当前手机接入的小区和SSID相同的历史数据,则手机获取蜂窝网络对应的TCP连接的数据传输时和Wi-Fi网络对应的TCP连接的数据传输时延,若TCP连接的数据传输时延符合正态分布,则手机计算Wi-Fi网络对应的TCP连接的往返时延(Round-Trip Time,RTT)的第一均值和标准差,以及蜂窝网络对应的TCP连接的RTT的第二加权均值和第二均值。
步骤405b,手机判断第一均值是否小于第二均值,若小于,则执行步骤406b,否则执行408b。
步骤406b,手机再判断第一均值与两个标准差的和值是否小于第二加权均值,若小于,则执行步骤407b,否则执行步骤408b。
步骤407b,手机使用LTE网络的接口建立第一条TCP连接,当第一条TCP连接建立成功后,手机再使用Wi-Fi网络的接口与该应用服务器建立第二条TCP连接。
步骤408b,手机使用蜂窝网络的接口建立第一条TCP连接,当第一条TCP连接建立成功后,手机再使用Wi-Fi网络的接口与应用服务器建立第二条TCP连接。
最终,手机记录两条TCP连接建立所用的RTT,然后保存下来,以作为后续建立MPTCP的历史数据。
总结来说,因为终端设备每次建立MPTCP之后,就可以记录该次MPTCP的各条TCP连接的数据传输时延,所以终端设备并不需要时延探测手段或者再发送别的报文来获取历史TCP连接的数据传输时延信息,可用性较强,另外终端设备优先选择在数据传输时延较小的网络建立第一条TCP连接,可以明显地减小起始播放时延。目前通过测试发现,如果在手机启动爱奇艺播放视频时,如果当前手机接入的LTE网络和Wi-Fi网络信号较好,与传统MPTCP建立方式相比,本申请可以节省约0.32秒的起始播放时延;如果当前手机接入的LTE网络信号较好,但Wi-Fi网络信号偏弱时,本申请可以节省约0.25秒的起始播放时延。本申请实施例所提供的方法可以完全由终端设备执行,不需要从服务侧获取数据,即仅对终端侧进行优化,所以优化成本较低。
本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质包括计算机程序,当计算机程序在终端设备上运行时,使得所述终端设备执行上述连接建立方法任意一种可能的实现。
本申请实施例还提供一种包含计算机程序产品,当所述计算机程序产品在终端设备上运行时,使得所述终端设备执行上述连接建立方法任意一种可能的实现。
在本申请的一些实施例中,本申请实施例公开了一种连接建立装置,如图11所示,该数据传输装置用于实现以上各个方法实施例中记载的方法,其包括:处理模块1101、收发模块1102。处理模块1101用于支持终端设备执行图9中步骤301至步骤303,图10中步骤401至步骤408b。收发模块1102用于支持终端设备执行向接入的蜂窝网络的基站发送报文,以激活终端设备的蜂窝网络。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请的另一些实施例中,本申请实施例公开了一种终端设备,如图12所示,该终端设备可以包括:一个或多个处理器1201;存储器1202;显示器1203;一个或多个应用程序(未示出);以及一个或多个计算机程序1204,上述各器件可以通过一个或多个通信总线1205连接。其中该一个或多个计算机程序1204被存储在上述存储器1202中并被配置为被该一个或多个处理器1201执行,该一个或多个计算机程序1204包括指令,上述指令可以用于执行如图9和图10及相应实施例中的各个步骤。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何在本申请实施例揭露的技术范围内的变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (17)

1.一种连接建立方法,其特征在于,包括:
终端设备获取所述终端设备与应用服务器之间所建立的多路径传输控制协议MPTCP连接的历史数据,所述历史数据包括Wi-Fi网络对应的TCP连接的数据传输时延和蜂窝网络对应的TCP连接的数据传输时延;
所述终端设备根据所述历史数据,确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi-Fi网络对应的TCP连接的数据传输时延时,通过蜂窝网络的接口与所述应用服务器建立第一条TCP连接;
当所述第一条TCP连接建立成功后,所述终端设备通过Wi-Fi网络的接口与所述应用服务器建立第二条TCP连接。
2.根据权利要求1所述的方法,其特征在于,还包括:
所述终端设备根据所述历史数据,确定所述蜂窝网络对应的TCP连接的数据传输时延大于所述Wi-Fi网络对应的TCP连接的数据传输时延时,通过所述Wi-Fi网络的接口与所述应用服务器建立所述第一条TCP连接;
当所述第一条TCP连接建立成功后,所述终端设备通过所述蜂窝网络的接口与所述应用服务器建立所述第二条TCP连接。
3.根据权利要求1或2所述的方法,其特征在于,所述终端设备获取所述终端设备与应用服务器之间所建立的MPTCP连接的历史数据之后,还包括:
所述终端设备利用所述历史数据,按照公式一至公式三计算所述Wi-Fi网络对应的TCP连接的数据传输时延的第一平均值和标准差,以及所述蜂窝网络对应的TCP连接的数据传输时延的第二平均值;
若μ2≤μ1+2×σ,则所述终端设备确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi-Fi网络对应的TCP连接的数据传输时延;
若μ2>μ1+2×σ,则所述终端设备确定所述蜂窝网络对应的TCP连接的数据传输时延大于所述Wi-Fi网络对应的TCP连接的数据传输时延;
Figure FDA0003472526460000011
Figure FDA0003472526460000012
Figure FDA0003472526460000013
其中,μ1为第一平均值,μ2为第二平均值,σ为标准差,x1至xN为Wi-Fi网络对应的TCP连接的数据传输时延,N为Wi-Fi网络对应的TCP连接的数据传输时延的个数,y1至yM为蜂窝网络对应的TCP连接的数据传输时延,M为蜂窝网络对应的TCP连接的数据传输时延的个数。
4.根据权利要求1或2所述的方法,其特征在于,所述终端设备获取所述终端设备与应用服务器之间所建立的MPTCP连接的历史数据之后,还包括:
所述终端设备利用所述历史数据,按照公式一至公式三计算所述蜂窝网络对应的TCP连接的数据传输时延的第二加权均值,以及所述Wi-Fi网络对应的TCP连接的数据传输时延的第一平均值和标准差;
若μ2′≤μ1+2×σ,则所述终端设备确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi-Fi网络对应的TCP连接的数据传输时延;
若μ2′>μ1+2×σ,则所述终端设备确定所述蜂窝网络对应的TCP连接的数据传输时延大于所述Wi-Fi网络对应的TCP连接的数据传输时延;
Figure FDA0003472526460000021
Figure FDA0003472526460000022
Figure FDA0003472526460000023
其中,μ1为第一平均值,μ2′为第二加权均值,σ为标准差,x1至xN为Wi-Fi网络对应的TCP连接的数据传输时延,N为Wi-Fi网络对应的TCP连接的数据传输时延的个数,y1至yM为蜂窝网络对应的TCP连接的数据传输时延,M为蜂窝网络对应的TCP连接的数据传输时延的个数,ω1至ωM为蜂窝网络对应的TCP连接的数据传输时延的权重值,其中建立时间越早的TCP连接的第二数据传输时延的权重越低。
5.根据权利要求1或2所述的方法,其特征在于,所述历史数据还包括应用的标识、蜂窝网络的标识和Wi-Fi网络的标识;
该方法还包括:
所述终端设备从所述历史数据中确定,与所述应用服务器所对应的应用的标识相同的目标TCP连接的数据传输时延集合;
所述终端设备根据所述蜂窝网络的标识,从所述目标TCP连接的数据传输时延集合中,确定与当前蜂窝网络的标识相同的第一数据传输时延;
所述终端设备根据所述Wi-Fi网络的标识,从所述目标TCP连接的数据传输时延集合中,确定与当前Wi-Fi网络的标识相同的第二数据传输时延;
所述终端设备根据所述第一数据传输时延和所述第二数据传输时延,确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi-Fi网络对应的TCP连接的数据传输时延。
6.根据权利要求1或2所述的方法,其特征在于,所述蜂窝网络是LTE网络。
7.根据权利要求1或2所述的方法,其特征在于,所述终端设备通过Wi-Fi网络的接口与所述应用服务器建立第二条TCP连接之后,还包括:
所述终端设备保存当前所建立的两条TCP连接的数据传输时延。
8.根据权利要求1或2所述的方法,其特征在于,所述终端设备通过所述蜂窝网络的接口与所述应用服务器建立第一条TCP连接之前,还包括:
所述终端设备向所述终端设备所接入的蜂窝网络的基站发送报文,所述报文用于激活所述终端设备的蜂窝网络。
9.一种终端设备,其特征在于,包括处理器和存储器;
所述存储器用于存储一个或多个计算机程序;
当所述存储器存储的一个或多个计算机程序被所述处理器执行时,使得所述终端设备执行:
获取所述终端设备与应用服务器之间所建立的多路径传输控制协议MPTCP连接的历史数据,所述历史数据包括Wi-Fi网络对应的TCP连接的数据传输时延和蜂窝网络对应的TCP连接的数据传输时延;
根据所述历史数据,确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi-Fi网络对应的TCP连接的数据传输时延时,通过蜂窝网络的接口与所述应用服务器建立第一条TCP连接;
当所述第一条TCP连接建立成功后,通过Wi-Fi网络的接口与所述应用服务器建立第二条TCP连接。
10.根据权利要求9所述的终端设备,其特征在于,当所述存储器存储的一个或多个计算机程序被所述处理器执行时,还使得所述终端设备执行:
根据所述历史数据,确定所述蜂窝网络对应的TCP连接的数据传输时延大于所述Wi-Fi网络对应的TCP连接的数据传输时延时,通过所述Wi-Fi网络的接口与所述应用服务器建立所述第一条TCP连接;
当所述第一条TCP连接建立成功后,通过所述蜂窝网络的接口与所述应用服务器建立所述第二条TCP连接。
11.根据权利要求9或10所述的终端设备,其特征在于,当所述存储器存储的一个或多个计算机程序被所述处理器执行时,还使得所述终端设备执行:
利用所述历史数据,按照公式一至公式三计算所述Wi-Fi网络对应的TCP连接的数据传输时延的第一平均值和标准差,以及所述蜂窝网络对应的TCP连接的数据传输时延的第二平均值;
若μ2≤μ1+2×σ,则确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi-Fi网络对应的TCP连接的数据传输时延;
若μ2>μ1+2×σ,则确定所述蜂窝网络对应的TCP连接的数据传输时延大于所述Wi-Fi网络对应的TCP连接的数据传输时延;
Figure FDA0003472526460000031
Figure FDA0003472526460000032
Figure FDA0003472526460000033
其中,μ1为第一平均值,μ2为第二平均值,σ为标准差,x1至xN为Wi-Fi网络对应的TCP连接的数据传输时延,N为Wi-Fi网络对应的TCP连接的数据传输时延的个数,y1至yM为蜂窝网络对应的TCP连接的数据传输时延,M为蜂窝网络对应的TCP连接的数据传输时延的个数。
12.根据权利要求9或10所述的终端设备,其特征在于,当所述存储器存储的一个或多个计算机程序被所述处理器执行时,还使得所述终端设备执行:
利用所述历史数据,按照公式一至公式三计算所述蜂窝网络对应的TCP连接的数据传输时延的第二加权均值,以及所述Wi-Fi网络对应的TCP连接的数据传输时延的第一平均值和标准差;
若μ2′≤μ1+2×σ,则确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi-Fi网络对应的TCP连接的数据传输时延;
若μ2′>μ1+2×σ,则确定所述蜂窝网络对应的TCP连接的数据传输时延大于所述Wi-Fi网络对应的TCP连接的数据传输时延;
Figure FDA0003472526460000034
Figure FDA0003472526460000035
Figure FDA0003472526460000036
其中,μ1为第一平均值,μ2′为第二加权均值,σ为标准差,x1至xN为Wi-Fi网络对应的TCP连接的数据传输时延,N为Wi-Fi网络对应的TCP连接的数据传输时延的个数,y1至yM为蜂窝网络对应的TCP连接的数据传输时延,M为蜂窝网络对应的TCP连接的数据传输时延的个数,ω1至ωM为蜂窝网络对应的TCP连接的数据传输时延的权重值,其中建立时间越早的TCP连接的第二数据传输时延的权重越低。
13.根据权利要求9或10所述的终端设备,其特征在于,当所述存储器存储的一个或多个计算机程序被所述处理器执行时,还使得所述终端设备执行:
所述历史数据还包括应用的标识、蜂窝网络的标识和Wi-Fi网络的标识;
从所述历史数据中确定,与所述应用服务器所对应的应用的标识相同的目标TCP连接的数据传输时延集合;
根据所述蜂窝网络的标识,从所述目标TCP连接的数据传输时延集合中,确定与当前蜂窝网络的标识相同的第一数据传输时延;
根据所述Wi-Fi网络的标识,从所述目标TCP连接的数据传输时延集合中,确定与当前Wi-Fi网络的标识相同的第二数据传输时延;
根据所述第一数据传输时延和所述第二数据传输时延,确定所述蜂窝网络对应的TCP连接的数据传输时延小于等于所述Wi-Fi网络对应的TCP连接的数据传输时延。
14.根据权利要求9或10所述的终端设备,其特征在于,所述蜂窝网络是LTE网络。
15.根据权利要求9或10所述的终端设备,其特征在于,当所述存储器存储的一个或多个计算机程序被所述处理器执行时,还使得所述终端设备执行:
保存当前所建立的两条TCP连接的数据传输时延。
16.根据权利要求9或10所述的终端设备,其特征在于,当所述存储器存储的一个或多个计算机程序被所述处理器执行时,还使得所述终端设备执行:
在通过所述蜂窝网络的接口与所述应用服务器建立第一条TCP连接之前,向所述终端设备所接入的蜂窝网络的基站发送报文,所述报文用于激活所述终端设备的蜂窝网络。
17.一种计算机存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当计算机程序在终端设备上运行时,使得所述终端设备执行如权利要求1至8任一项所述的连接建立方法。
CN201811593656.3A 2018-12-25 2018-12-25 一种连接建立方法及终端设备 Active CN111372329B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201811593656.3A CN111372329B (zh) 2018-12-25 2018-12-25 一种连接建立方法及终端设备
KR1020217020094A KR102524305B1 (ko) 2018-12-25 2019-11-30 연결 구축 방법 및 단말 장치
AU2019416232A AU2019416232B2 (en) 2018-12-25 2019-11-30 Connection establishment method, and terminal apparatus
US17/418,689 US20220094748A1 (en) 2018-12-25 2019-11-30 Connection establishment method and terminal device
PCT/CN2019/122230 WO2020134868A1 (zh) 2018-12-25 2019-11-30 一种连接建立方法及终端设备
EP19901904.3A EP3883331A4 (en) 2018-12-25 2019-11-30 CONNECTION ESTABLISHMENT METHOD, AND TERMINAL APPARATUS
JP2021537146A JP7193647B2 (ja) 2018-12-25 2019-11-30 接続確立方法および端末デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811593656.3A CN111372329B (zh) 2018-12-25 2018-12-25 一种连接建立方法及终端设备

Publications (2)

Publication Number Publication Date
CN111372329A CN111372329A (zh) 2020-07-03
CN111372329B true CN111372329B (zh) 2022-08-19

Family

ID=71127491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811593656.3A Active CN111372329B (zh) 2018-12-25 2018-12-25 一种连接建立方法及终端设备

Country Status (7)

Country Link
US (1) US20220094748A1 (zh)
EP (1) EP3883331A4 (zh)
JP (1) JP7193647B2 (zh)
KR (1) KR102524305B1 (zh)
CN (1) CN111372329B (zh)
AU (1) AU2019416232B2 (zh)
WO (1) WO2020134868A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112333690B (zh) * 2020-11-13 2022-08-16 Oppo广东移动通信有限公司 数据传输方法、装置、存储介质、终端及网络接入点设备
CN112954765B (zh) * 2021-02-24 2022-12-09 四川速宝网络科技有限公司 一种基于网络状态监控的动态算子选路方法
CN116667875B (zh) * 2022-09-29 2024-03-08 荣耀终端有限公司 上网通路的切换方法、装置和终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856934A (zh) * 2012-11-30 2014-06-11 汤姆逊许可公司 建立多路径连接的方法和多归属设备
CN104702527A (zh) * 2015-03-24 2015-06-10 大连理工大学 多路径tcp中面向多优先级连接的拥塞时间窗控制方法
CN105656875A (zh) * 2015-10-21 2016-06-08 乐卡汽车智能科技(北京)有限公司 基于mptcp的主流连接建立方法及装置
CN107071834A (zh) * 2016-12-28 2017-08-18 山东省计算中心(国家超级计算济南中心) 基于多路径可靠传输的农机高精度定位通讯方法
CN107113285A (zh) * 2015-04-24 2017-08-29 华为技术有限公司 Mptcp子流的建立方法及设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339886A1 (en) * 2008-10-15 2011-06-29 NEC Corporation Wireless base station device and power supply control method therefor
US9456464B2 (en) * 2013-06-06 2016-09-27 Apple Inc. Multipath TCP subflow establishment and control
US10362148B2 (en) * 2014-01-27 2019-07-23 International Business Machines Corporation Path selection using TCP handshake in a multipath environment
CN103905463B (zh) * 2014-04-21 2017-02-15 北京邮电大学 一种适用于多路径传输的连接管理与控制方法
CN109921988B (zh) * 2014-07-21 2021-08-03 华为技术有限公司 链路控制节点、链路控制方法及通信系统
CN105873097B (zh) * 2016-03-28 2019-06-11 努比亚技术有限公司 终端设备及数据传输控制方法
JP6619763B2 (ja) * 2017-03-30 2019-12-11 Kddi株式会社 通信端末、通信システム、通信方法及び通信プログラム
JP6882673B2 (ja) * 2017-06-02 2021-06-02 富士通株式会社 通信経路管理プログラム、通信経路管理方法、および通信経路管理装置
US20180352057A1 (en) * 2017-06-05 2018-12-06 Smartiply, Inc. Application-Level Mechanism for Multi-Path Transport
CN108696449B (zh) * 2018-05-09 2020-10-09 清华大学 一种数据调度方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856934A (zh) * 2012-11-30 2014-06-11 汤姆逊许可公司 建立多路径连接的方法和多归属设备
CN104702527A (zh) * 2015-03-24 2015-06-10 大连理工大学 多路径tcp中面向多优先级连接的拥塞时间窗控制方法
CN107113285A (zh) * 2015-04-24 2017-08-29 华为技术有限公司 Mptcp子流的建立方法及设备
CN105656875A (zh) * 2015-10-21 2016-06-08 乐卡汽车智能科技(北京)有限公司 基于mptcp的主流连接建立方法及装置
CN107071834A (zh) * 2016-12-28 2017-08-18 山东省计算中心(国家超级计算济南中心) 基于多路径可靠传输的农机高精度定位通讯方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于MPTCP的多路径传输优化技术综述;薛开平等人;《计算机研究与发展》;20161115;全文 *

Also Published As

Publication number Publication date
EP3883331A4 (en) 2022-01-19
WO2020134868A1 (zh) 2020-07-02
KR20210094059A (ko) 2021-07-28
AU2019416232A1 (en) 2021-07-01
EP3883331A1 (en) 2021-09-22
JP2022515446A (ja) 2022-02-18
CN111372329A (zh) 2020-07-03
AU2019416232B2 (en) 2022-11-10
KR102524305B1 (ko) 2023-04-20
JP7193647B2 (ja) 2022-12-20
US20220094748A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
CN114449599B (zh) 基于电子设备位置的网络链路切换方法和电子设备
CN112492193B (zh) 一种回调流的处理方法及设备
CN115442452A (zh) 一种数据传输方法及电子设备
CN115696483B (zh) 基于电子设备状态的网络链路切换方法和电子设备
CN113691842A (zh) 一种跨设备的内容投射方法及电子设备
CN110636554B (zh) 数据传输方法及装置
CN111316604B (zh) 一种数据传输方法及电子设备
CN111372329B (zh) 一种连接建立方法及终端设备
CN111356222A (zh) 发射功率调整方法、终端、存储介质及电子设备
CN113448382B (zh) 多屏幕显示电子设备和电子设备的多屏幕显示方法
CN114125793A (zh) 一种蓝牙数据传输方法及相关装置
CN114258671A (zh) 通话方法及装置
CN113490291B (zh) 数据下载方法、装置和终端设备
CN114338913B (zh) 故障诊断方法、电子设备及可读存储介质
CN113810451B (zh) 点对点链路的建立方法、装置、第一终端设备和存储介质
CN114006712A (zh) 一种获取验证码的方法、电子设备和系统
EP4293997A1 (en) Display method, electronic device, and system
WO2022152167A1 (zh) 一种网络选择方法及设备
CN113923372B (zh) 曝光调整方法及相关设备
CN114827098A (zh) 合拍的方法、装置、电子设备和可读存储介质
CN114828098A (zh) 数据传输方法和电子设备
CN114489876A (zh) 一种文本输入的方法、电子设备和系统
CN113678481A (zh) 无线音频系统、音频通讯方法及设备
CN113271577B (zh) 媒体数据播放系统、方法及相关装置
WO2023226881A1 (zh) 一种设备注册方法、系统和设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40028988

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant