CN111370676B - 一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法 - Google Patents

一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法 Download PDF

Info

Publication number
CN111370676B
CN111370676B CN202010213679.8A CN202010213679A CN111370676B CN 111370676 B CN111370676 B CN 111370676B CN 202010213679 A CN202010213679 A CN 202010213679A CN 111370676 B CN111370676 B CN 111370676B
Authority
CN
China
Prior art keywords
lithium titanate
mixed solution
copper foil
coating
dimensional porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010213679.8A
Other languages
English (en)
Other versions
CN111370676A (zh
Inventor
唐辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010213679.8A priority Critical patent/CN111370676B/zh
Publication of CN111370676A publication Critical patent/CN111370676A/zh
Application granted granted Critical
Publication of CN111370676B publication Critical patent/CN111370676B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法,属于锂离子电池负极制备领域。包括:1)将钛源和氢氧化锂分散于去离子水中,得到混合液A;2)将高分子碳源分散于无水乙醇中,得到混合液B;3)将混合液B和混合液A混合,得到混合液C;4)将混合液C置于不锈钢槽体中,以铜箔作为阳极、不锈钢槽体作为阴极,采用液相等离子体氧化电源供电,在脉冲电压为700V~900V、频率为60Hz~1000Hz的条件下氧化3~8min,即可在铜箔表面形成三维多孔的碳掺杂钛酸锂复合涂层。本发明得到的碳掺杂钛酸锂涂层具有三维多孔的结构,有利于锂离子电池电解液的浸润,能够减少扩散传质的阻力。

Description

一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法
技术领域
本发明属于锂离子电池负极制备领域,具体涉及一种在铜箔表面原位生长三维多孔碳掺杂钛酸锂涂层的方法。
背景技术
钛酸锂材料(Li4Ti5O12,简称LTO)被认为是最有应用前景的负极材料之一。在Li+充放电的循环过程中基本没有体积上的变化,结构十分稳定,被称为“零应变”材料,使LTO表现出优异的循环性能和长寿命储能等优势。同时LTO的锂化电压平台在1.55V(Vs Li+/Li)左右,可以有效地抑制锂枝晶的形成,避免锂枝晶生长和电解液分解带来的安全隐患。但是,钛酸锂作为一种绝缘材料,导电率低,倍率性能差,此特性阻碍了LTO负极材料的广泛应用。目前通常采用碳掺杂来提高钛酸锂材料的导电性能和倍率性能。
同时,现有工业化钛酸锂负极的生产制备方法是将钛酸锂、导电剂、粘结剂和溶剂在高速搅拌下均匀混合,形成浆料;然后通过涂布、真空干燥、对辊等工艺制备得到。其工艺过程复杂,耗时长。
公开号为CN109103447A的中国发明专利公布了一种钛酸锂粉体的制备方法,其将锂源和钛源分别配成溶液,混合后经高温烧结,制备得到钛酸锂粉体。公开号为CN106876675A的中国发明专利公布了一种石墨碳和钛酸锂复合粉体的制备方法,其将石墨和钛酸锂粉体混合后经高速球磨制备得到石墨碳和钛酸锂的复合粉体材料。公开号为CN110459770A的中国发明专利公布了一种钛酸锂和碳复合电极的制备方法,其将锂源、钛源以及碳纳米管通过高速球磨混合,而后通过喷雾干燥和高温烧结制备了钛酸锂负极。公开号为CN106410146A的中国发明专利公布了一种通过碳复合提高钛酸锂电极倍率性能的方法,其将钛源、锂源混合形成钛酸锂前驱体溶液,而后将前驱体溶液和酮类、醇类等有机溶液混合,经过高温退火处理,形成碳掺杂的钛酸锂复合材料,该材料用于锂离子电池负极,能够改善钛酸锂的倍率性能。公开号为CN106450261B的中国发明专利公布了一种钛酸锂负极极片的制备方法,其利用EDOT单体与PSS溶液复合作为钛酸锂粉末材料的导电剂和粘结剂,通过聚合、涂布制备了钛酸锂电极极片。公开号为CN110176586A的中国发明专利公布了一种制备钛酸锂涂层极片的方法,其通过溅射沉积的方法形成钛酸锂涂层。然而,上述钛酸锂涂层的制备方法,存在工艺复杂、制备条件严苛、使用大量有机溶剂、得到的钛酸锂涂层电子导电性差等问题。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法。
本发明的另一目的在于,提供一种钛酸锂负极电极片,以替代现有钛酸锂负极极片制备过程中的制浆、涂布、真空干燥等过程。
为实现上述目的,本发明采用的技术方案如下:
一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法,其特征在于,包括以下步骤:
步骤1、将钛源和氢氧化锂分散于去离子水中,搅拌混合均匀,得到混合液A;
步骤2、将高分子碳源分散于无水乙醇中,搅拌混合均匀,得到混合液B;
步骤3、将混合液B加入混合液A中,搅拌混合均匀,得到混合液C;得到的混合液C中,钛源的浓度为3~20g/L,氢氧化锂的浓度为3~40g/L,高分子碳源的浓度为2~10g/L;
步骤4、将配制好的混合液C置于不锈钢槽体中,以铜箔作为阳极、不锈钢槽体作为阴极,采用液相等离子体氧化电源供电,在脉冲电压为700V~900V、频率为60Hz~1000Hz的条件下氧化3~8min,即可在铜箔表面形成三维多孔的碳掺杂钛酸锂复合涂层。
一种基于上述钛酸锂复合涂层制备复合电极片的方法,其特征在于,包括以下步骤:上述方法制备得到的钛酸锂复合涂层,经清洗、干燥,即可得到碳掺杂的钛酸锂复合电极片,其中电极片集流体为铜箔,活性物质为碳掺杂的钛酸锂。
采用四探针法测试该复合电极片的导电性;将该电极片作为负极电极片和金属锂组装成半电池,测试该极片材料的容量、倍率性能和循环稳定性。
进一步地,步骤1所述钛源为硫酸钛酰(TiOSO4)、氟钛酸钠中的一种。
进一步地,步骤2所述高分子碳源为PVP(分子量为5000~20000)、PEG(分子量为3000~20000)中的一种。
其中,随着高分子碳源浓度的增加,涂层中碳元素的含量增加,碳层的导电性增强。随着液相等离子体氧化电压的增大,涂层表面孔洞的孔径增加。随着液相等离子体处理时间的增加,涂层的厚度增加,得到的碳掺杂钛酸锂涂层的厚度为1μm~10μm之间。
与现有技术相比,本发明的有益效果为:
本发明提供了一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法,得到的碳掺杂钛酸锂涂层具有三维多孔的结构,有利于锂离子电池电解液的浸润,能够减少扩散传质的阻力。同时,这种自支撑电极,能够避免锂离子电池负极制备过程中混料、制浆、涂覆和干燥过程,简化锂离子电池负极材料的制备工艺,降低锂离子电池的制备成本。
附图说明
图1为实施例12制备得到的涂层的XRD图谱;
图2为实施例12制备得到的涂层表面的SEM图;
图3为实施例12制备得到的涂层截面的SEM图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例
一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法,包括以下步骤:
步骤1、将硫酸钛酰和氢氧化锂分散于去离子水中,搅拌混合均匀,得到混合液A;
步骤2、将PVP(分子量为5000~20000)或PEG(分子量为3000~20000)高分子碳源分散于无水乙醇中,搅拌混合均匀,得到混合液B;
步骤3、将混合液B加入混合液A中,搅拌混合均匀,得到混合液C;得到的混合液C中,钛源的浓度为5g/L,氢氧化锂的浓度为15g/L,高分子碳源的浓度为2~10g/L;
步骤4、将配制好的混合液C置于不锈钢槽体中,以铜箔作为阳极、不锈钢槽体作为阴极,采用液相等离子体氧化电源供电,在脉冲电压为700V~900V、频率为600Hz的条件下氧化3~8min,即可在铜箔表面形成三维多孔的碳掺杂钛酸锂复合涂层。
上述方法制备得到的钛酸锂复合涂层,经清洗、干燥,即可得到碳掺杂的钛酸锂复合电极片,其中电极片集流体为铜箔,活性物质为碳掺杂的钛酸锂。采用四探针法测试该复合电极片的导电性;将该电极片作为负极电极片和金属锂组装成半电池,测试该极片材料的容量、倍率性能和循环稳定性。
实施例选择的高分子碳源及其浓度、液相等离子体脉冲电压、氧化时间等参数条件,以及得到的涂层的性能如下表所示:
Figure BDA0002423684040000041
图1为实施例12制备得到的涂层的XRD图谱;由图1可知,得到的涂层主要由钛酸锂组成,铜的衍射峰来自基底铜箔;图2为实施例12制备得到的涂层表面的SEM图;由图2可知,得到的涂层为三维多孔结构;图3为实施例12制备得到的涂层截面的SEM图;由图3可知,得到的涂层与基体结合较好,界面清晰,没有明显的脱落和裂纹。

Claims (4)

1.一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法,其特征在于,包括以下步骤:
步骤1、将钛源和氢氧化锂分散于去离子水中,搅拌混合均匀,得到混合液A;
步骤2、将高分子碳源分散于无水乙醇中,搅拌混合均匀,得到混合液B;
步骤3、将混合液B加入混合液A中,搅拌混合均匀,得到混合液C;其中,混合液C中,钛源的浓度为3~20g/L,氢氧化锂的浓度为3~40g/L,高分子碳源的浓度为2~10g/L;
步骤4、将配制好的混合液C置于不锈钢槽体中,以铜箔作为阳极、不锈钢槽体作为阴极,采用液相等离子体氧化电源供电,在脉冲电压为700 V~900V、频率为60Hz~1000Hz的条件下氧化3~8 min,即可在铜箔表面形成三维多孔的碳掺杂钛酸锂复合涂层。
2.根据权利要求1所述的在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法,其特征在于,步骤1所述钛源为硫酸钛酰、氟钛酸钠中的一种。
3.根据权利要求1所述的在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法,其特征在于,步骤2所述高分子碳源为分子量5000~20000的PVP、分子量3000~20000的PEG中的一种。
4.一种基于权利要求1所述方法得到的钛酸锂复合涂层制备复合电极片的方法,其特征在于,权利要求1所述方法得到的钛酸锂复合涂层,经清洗、干燥,即可得到碳掺杂的钛酸锂复合电极。
CN202010213679.8A 2020-03-24 2020-03-24 一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法 Expired - Fee Related CN111370676B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010213679.8A CN111370676B (zh) 2020-03-24 2020-03-24 一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010213679.8A CN111370676B (zh) 2020-03-24 2020-03-24 一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法

Publications (2)

Publication Number Publication Date
CN111370676A CN111370676A (zh) 2020-07-03
CN111370676B true CN111370676B (zh) 2022-05-03

Family

ID=71209068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010213679.8A Expired - Fee Related CN111370676B (zh) 2020-03-24 2020-03-24 一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法

Country Status (1)

Country Link
CN (1) CN111370676B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294164A (ja) * 2006-04-24 2007-11-08 Gs Yuasa Corporation:Kk 非水電解質二次電池
CN107078266A (zh) * 2014-09-08 2017-08-18 通用汽车环球科技运作有限责任公司 涂布锂二次电池组的活性电极材料粒子
CN107732205A (zh) * 2017-10-18 2018-02-23 常州大学 一种制备硫‑氮共掺杂碳包覆纳米花状钛酸锂复合负极材料的方法
CN108975388A (zh) * 2018-07-20 2018-12-11 成都理工大学 一种一锅合成LiEuTiO4锂离子电池阳极材料的方法
CN109524656A (zh) * 2018-11-26 2019-03-26 天津师范大学 一种锂离子电池氧化钛/氧化硅负极材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9531004B2 (en) * 2013-12-23 2016-12-27 GM Global Technology Operations LLC Multifunctional hybrid coatings for electrodes made by atomic layer deposition techniques
US20190288272A1 (en) * 2018-03-17 2019-09-19 Jingzeng Zhang Method of making active electrode and ceramic separator in battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294164A (ja) * 2006-04-24 2007-11-08 Gs Yuasa Corporation:Kk 非水電解質二次電池
CN107078266A (zh) * 2014-09-08 2017-08-18 通用汽车环球科技运作有限责任公司 涂布锂二次电池组的活性电极材料粒子
CN107732205A (zh) * 2017-10-18 2018-02-23 常州大学 一种制备硫‑氮共掺杂碳包覆纳米花状钛酸锂复合负极材料的方法
CN108975388A (zh) * 2018-07-20 2018-12-11 成都理工大学 一种一锅合成LiEuTiO4锂离子电池阳极材料的方法
CN109524656A (zh) * 2018-11-26 2019-03-26 天津师范大学 一种锂离子电池氧化钛/氧化硅负极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Micron-sized,carbon-coated liti5o12 as high power anode material for advanced lithium batteries;Jung HG等;《JOURNAL OF POWER SOURCES》;20110915;第196卷(第18期);第7763-7766页 *

Also Published As

Publication number Publication date
CN111370676A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
CN110649267B (zh) 一种复合金属锂负极、制备方法及金属锂电池
Jing et al. Protected lithium anode with porous Al 2 O 3 layer for lithium–sulfur battery
Chen et al. MoS 2 nanoflowers encapsulated into carbon nanofibers containing amorphous SnO 2 as an anode for lithium-ion batteries
Wang et al. Designing of multifunctional and flame retardant separator towards safer high-performance lithium-sulfur batteries
CN109216686A (zh) 一种锂离子电池硅碳复合材料及其制备方法
CN113054183A (zh) 一种CoNi双金属有机框架衍生碳硫复合材料的制备方法
Wu et al. Suppressing lithium dendrite growth by a synergetic effect of uniform nucleation and inhibition
CN104282896A (zh) 一种掺氮碳包覆石墨负极材料及其制备方法
Li et al. Carbon-coated aluminum foil as current collector for improving the performance of lithium sulfur batteries
Zheng et al. A Functional Janus Ag Nanowires/Bacterial Cellulose Separator for High‐Performance Dendrite‐Free Zinc Anode Under Harsh Conditions
Lai et al. Lithium dendrites suppressed by low temperature in-situ anti-perovskite coated garnet solid-state electrolyte
Liu et al. Boosting the performance of lithium metal capacitors with a Li composite anode
CN112952292B (zh) 一种可用于金属锂电池和金属钠电池的复合隔膜及其制备方法以及应用
CN111705315B (zh) 一种改性铜三维骨架的制备方法及其在锂电池中的应用
CN117497723A (zh) 一种锂离子电池MOF衍生碳包覆硅纳米颗粒限制于MXene复合负极材料制备方法
CN111370676B (zh) 一种在铜箔表面制备三维多孔碳掺杂钛酸锂涂层的方法
CN107069041A (zh) 一种锂离子电池及其制备方法
CN105226251A (zh) 一种纯碳复合负极材料及其制备方法
CN111755696B (zh) 复合负极材料、其制备方法和用途
CN114583161A (zh) 一种复合石墨负极材料及其制备方法和应用
He et al. Dual-functional 3D carbon fibers decorated with Co nanoparticles and Co-N x sites for rechargeable aprotic Li–O 2 batteries
Algethami et al. Preparation of RuO2/CNTs by Atomic Layer Deposition and its application as binder free Cathode for polymer based Li-O2 battery
Sun et al. Hydroxyl‐Decorated Carbon Cloth with High Potassium Affinity Enables Stable Potassium Metal Anodes
He et al. In Situ Reaction Fabrication of a Mixed‐Ion/Electron‐Conducting Skeleton Toward Stable Lithium Metal Anodes
Li et al. Catalytic anode surface enabling in situ polymerization of gel polymer electrolyte for stable Li metal batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220503

CF01 Termination of patent right due to non-payment of annual fee