CN111359677A - 选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法 - Google Patents

选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法 Download PDF

Info

Publication number
CN111359677A
CN111359677A CN202010173381.9A CN202010173381A CN111359677A CN 111359677 A CN111359677 A CN 111359677A CN 202010173381 A CN202010173381 A CN 202010173381A CN 111359677 A CN111359677 A CN 111359677A
Authority
CN
China
Prior art keywords
tio
dibutyl phthalate
polypyrrole
nanotube array
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010173381.9A
Other languages
English (en)
Other versions
CN111359677B (zh
Inventor
戴高鹏
刘素芹
周京慧
李尊
刘力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Arts and Science
Original Assignee
Hubei University of Arts and Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Arts and Science filed Critical Hubei University of Arts and Science
Priority to CN202010173381.9A priority Critical patent/CN111359677B/zh
Publication of CN111359677A publication Critical patent/CN111359677A/zh
Application granted granted Critical
Publication of CN111359677B publication Critical patent/CN111359677B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法,首先制备TiO2纳米管阵列并高温晶化,合成Fe(LS)3Cl3晶体;然后将吡咯和邻苯二甲酸二丁酯加入到盛有甲醇的烧杯中,再将TiO2纳米管阵列浸入到上述溶液,随后迅速加入Fe(LS)3Cl3晶体,超声12h,即得到含有邻苯二甲酸二丁酯模板的聚吡咯/TiO2纳米管阵列,然后置于纯水中浸泡;随后将浸泡后的聚吡咯/TiO2纳米管阵列作为工作电极,以铂电极为辅助电极,以饱和甘汞电极为参比电极,在Na2SO4溶液中、恒电位下电解,以去除邻苯二甲酸二丁酯模板,即得到能识别邻苯二甲酸二丁酯的分子印迹聚吡咯/TiO2纳米管阵列。通过本发明提供的方法制备得到的分子印迹聚吡咯/TiO2纳米管阵对邻苯二甲酸二丁酯的降解具有很高的选择性。

Description

选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法
技术领域
本发明涉及一种选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法,属于环境污染处理技术领域。
背景技术
邻苯二甲酸酯是一种广泛使用的塑化剂,用于改善塑料产品的柔韧性、延展性和弹性。由于邻苯二甲酸酯与塑料之间是通过物理结合,它在应用过程中很容易被释放到环境中,能再水体和土壤中被广泛发现。邻苯二甲酸酯已被证明是内分泌干扰化合物,能再生物体内累积,长期接触会对生物机体产生致畸、致癌、致突变等危害。中国国家环境监测中心,美国环境保护署和欧盟已将邻苯二甲酸酯列为优先污染物。因此,迫切需要对水体和土壤中所含的邻苯二甲酸酯进行有效的环保处理。
二氧化钛具有成本低、化学性质稳定、活性高等优点,因而利用它光催化降解污染物在环保应用上备受关注。TiO2纳米管阵列的比表面积大,制备方法简单,高度有序的结构有利于电荷传输,有利于光生电子空穴分离,光催化性能稳定,且易于回收,因而被广泛研究,是最有前途的光催化材料之一。然而,有机物在TiO2上的光催化降解是没有选择性的。在水体和土壤中,低浓度的有毒邻苯二甲酸酯与高浓度的其他有益有机物共存,光催化反应过程中,有益有机物因浓度高而在光催化剂表面吸附更多而更易降解,而有毒的低浓度污染物却得不到有效去除。因此,需要开发一种对邻苯二甲酸酯降解具有高选择性的光催化剂。
发明内容
目的:为了克服现有技术中存在的不足,本发明提供一种选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法,解决了现有光催化剂无法高选择性地降解目标污染物、降解效率低的技术问题。
技术方案:为解决上述技术问题,本发明采用的技术方案为:
一种选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法,包括如下步骤:
(1)制备TiO2纳米管阵列,在500℃下煅烧2h使TiO2纳米管阵列晶化;
(2)合成Fe(LS)3Cl3晶体:称取适量十二烷基硫酸钠加入到已配置好的FeCl3溶液中,搅拌2-6h,至混合溶液全部变成黄色,静置,抽滤,干燥后得到黄色的Fe(LS)3Cl3晶体;
(3)将吡咯和邻苯二甲酸二丁酯加入到盛有甲醇的水热釜中,再将步骤(1)所制备的TiO2纳米管阵列浸入前述水热釜内的溶液中,随后加入步骤(2)中所制备的Fe(LS)3Cl3晶体,超声8-20h,即得到含有邻苯二甲酸二丁酯模板的聚吡咯/TiO2纳米管阵列;
(4)取出步骤(3)完成后的聚吡咯/TiO2纳米管阵列,置于纯水中浸泡,以清洗聚吡咯/TiO2纳米管阵列中的甲醇等杂质;
(5)以步骤(4)中所制备的聚吡咯/TiO2纳米管阵列为工作电极,以铂电极为辅助电极,以饱和甘汞电极为参比电极,在NaSO4溶液中、恒电位下电解以去除邻苯二甲酸二丁酯模板,即得到能识别邻苯二甲酸二丁酯的分子印迹聚吡咯/TiO2纳米管阵列。
进一步地,所述步骤(1)中,通过阳极氧化法制备TiO2纳米管阵列。
进一步地,所述步骤(2)中,FeCl3溶液的浓度为0.005 g/mL -0.0375g/mL,十二烷基硫酸钠与溶质FeCl3的质量比为(5-15):(1-3)。
进一步地,所述步骤(2)中,干燥条件为60℃,干燥时长10h。
进一步地,所述步骤(3)中,吡咯和邻苯二甲酸二丁酯的体积比为(0.5-2):(0.1-1.5)。
进一步地,所述步骤(4)中,聚吡咯/TiO2纳米管阵列置于纯水中浸泡20-80min。
进一步地,所述步骤(5)中,NaSO4溶液浓度为0.05-0.2mol/L,电解的条件为:0.8-1.5V恒电位、电解20-60min。
有益效果:本发明提供的一种选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法,操作简单,可广泛应用于邻苯二甲酸酯污染物的治理中;本方法采用TiO2纳米管阵列作为光催化剂,与TiO2粉末相比,在降解污染物中TiO2纳米管阵列更容易分离再利用。利用本发明提供的方法制备得到的分子印迹聚吡咯/TiO2纳米管阵列,光电催化降解邻苯二甲酸二丁酯和2,4-二氯苯酚的混合溶液,降解5小时后,分子印迹聚吡咯/TiO2纳米管阵对邻苯二甲酸二丁酯能降解87%,而2,4-二氯苯酚仅降解47%,非分子印迹聚吡咯/TiO2纳米管阵对邻苯二甲酸二丁酯能降解46%,而2,4-二氯苯酚却降解59%,由此说明分子印迹聚吡咯/TiO2纳米管阵对邻苯二甲酸二丁酯的降解具有很高的选择性。
附图说明
图1为TiO2纳米管阵列(a,b)、非分子印迹聚吡咯/TiO2纳米管阵列(c,d)和分子印迹聚吡咯/TiO2纳米管阵列(e,f)的扫描电镜图(其中a,c,e为表面,b,d,f为截面);
图2为TiO2纳米管阵列(a)、非分子印迹聚吡咯/TiO2纳米管阵列(b)和分子印迹聚吡咯/TiO2纳米管阵列(c)的XRD图;
图3为去掉邻苯二甲酸二丁酯模板前(a)和后(b)的分子印迹聚吡咯/TiO2纳米管阵列的红外光谱图;
图4为邻苯二甲酸二丁酯(A)和2,4-二氯苯酚(B)在非分子印迹聚吡咯/TiO2纳米管阵列和分子印迹聚吡咯/TiO2纳米管阵列上的降解活性比较。
具体实施方式
下面结合附图对本发明作更进一步的说明。
一种选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法,包括如下步骤:
(1)通过阳极氧化法制备TiO2纳米管阵列,在500℃下煅烧2h使TiO2纳米管阵列晶化。
(2)合成Fe(LS)3Cl3晶体:称取5-15g十二烷基硫酸钠加入到已配置好的FeCl3溶液中,搅拌2-6h,至混合溶液全部变成黄色,静置,抽滤,60℃下干燥10h后得到黄色的Fe(LS)3Cl3晶体;所述FeCl3溶液的配比为:1-3g FeCl3溶于80-200ml水中,形成的FeCl3溶液浓度为0.005 g/mL -0.0375g/mL。
(3)将0.5-2mL吡咯和0.1-1.5mL邻苯二甲酸二丁酯加入到盛有50-150mL甲醇的水热釜中,再将步骤(1)所制备的TiO2纳米管阵列浸入前述水热釜内的溶液中,随后迅速加入步骤(2)中所制备的Fe(LS)3Cl3晶体,超声8-20h,即得到含有邻苯二甲酸二丁酯模板的聚吡咯/TiO2纳米管阵列。
(4)取出步骤(3)完成后的聚吡咯/TiO2纳米管阵列,置于纯水中浸泡20-80min,以清洗聚吡咯/TiO2纳米管阵列中的甲醇等杂质。
(5)以步骤(4)中所制备的聚吡咯/TiO2纳米管阵列为工作电极,以铂电极为辅助电极,以饱和甘汞电极为参比电极,在浓度为0.05-0.2mol/L的Na2SO4溶液中、在0.8-1.5V的恒电位下电解20-60min,以去除邻苯二甲酸二丁酯模板,即得到能识别邻苯二甲酸二丁酯的分子印迹聚吡咯/TiO2纳米管阵列。
实施例1
阳极氧化法制备TiO2纳米管阵列,在500℃下煅烧2h使其晶化;将10g十二烷基硫酸钠加入到已配置好的FeCl3溶液(2gFeCl3溶于160mL水)中,搅拌4h,至白色十二烷基硫酸钠全部变成黄色,静置,抽滤,在60℃条件下干燥10h,即得到黄色的Fe(LS)3Cl3晶体。将1mL吡咯和0.1-1mL邻苯二甲酸二丁酯加入到盛有100mL甲醇的水热釜中,再将TiO2纳米管阵列浸入到上述溶液,随后迅速加入Fe(LS)3Cl3晶体,超声12h,即得到含有邻苯二甲酸二丁酯模板的聚吡咯/TiO2纳米管阵列。然后取出含有邻苯二甲酸二丁酯模板聚吡咯/TiO2纳米管阵列,并置于纯水中浸泡30min。随后将浸泡后的聚吡咯/TiO2纳米管阵列作为工作电极,以铂电极为辅助电极,以饱和甘汞电极为参比电极,在浓度为0.1mol/L的NaSO4溶液中,在1.3V的恒电位下电解30min,以去除邻苯二甲酸二丁酯模板,即得到能识别邻苯二甲酸二丁酯的分子印迹聚吡咯/TiO2纳米管阵列。
从图1中可以看出,TiO2纳米管阵列是由孔径约100nm的有序纳米管组成的,截面图中可看到孔道里没有物质,孔壁光滑。非分子印迹聚吡咯/TiO2纳米管阵列和分子印迹聚吡咯/TiO2纳米管阵列具有相同的形貌,TiO2纳米管阵列表面覆盖满了聚吡咯,截面图中可看到聚吡咯填满了TiO2纳米管孔道。
从图2中可看出,所有样品的XRD图中都出现了锐钛矿TiO2和金属钛的衍射峰。没有明显的聚吡咯的衍射峰,这是因为聚吡咯的衍射峰很弱,在这里显示不出来。
图3比较了去掉邻苯二甲酸二丁酯模板前(a)和后(b)的分子印迹聚吡咯/TiO2纳米管阵列的红外光谱。从图中可看出,两种样品都在500cm-1处有明显的宽峰,这是TiO2中Ti-O的伸缩振动峰,3420 cm-1处的宽峰为N-H的伸缩振动峰,1630cm-1为N-H的面内弯曲振动吸收峰,1560cm-1对应于吡咯环中C=C的吸收峰,1463cm-1和1320cm-1为C-N的伸缩和弯曲振动吸收峰,位于1070 cm-1属于C-H面内弯曲振动峰。去除邻苯二甲酸二丁酯模板的分子印迹聚吡咯/TiO2纳米管阵列的FT-IR光谱中除了含有聚吡咯有更多的吸收峰, 其中1366,1651的两个峰对应苯环骨架的振动吸收峰,1723 cm-1处的峰是羰基的伸缩振动峰。1124和1282 cm-1的强峰属于酯基的红外特征峰。这些结果表明去除邻苯二甲酸二丁酯模板前,样品中含有TiO2、聚吡咯和邻苯二甲酸二丁酯,邻苯二甲酸二丁酯嵌入到了聚吡咯/TiO2纳米管阵列中,去除模板后,样品中只有TiO2和聚吡咯,嵌入的邻苯二甲酸二丁酯完全去除了。
选择性光电催化降解邻苯二甲酸二丁酯实验:
通过对邻苯二甲酸二丁酯和2,4-二氯苯酚在Na2SO4溶液(0.05M)中的降解,检测了分子印迹TiO2纳米管阵列的选择性光电催化活性。光电催化降解是在带标准三电极体系的电化学分析仪上进行的。其中,以分子印迹聚吡咯/TiO2纳米管阵为光阳极,铂片为对电极,Ag/AgCl电极为参比电极。光阳极的几何面积为2cm2,在光阳极上施加0.5V偏压。
通过在模拟太阳光下降解邻苯二甲酸二丁酯和2,4-二氯苯酚的混合溶液来检测分子印迹聚吡咯/TiO2纳米管阵列的选择性光电催化活性。图4比较了不同样品的选择性光电催化活性。在0.5V的偏压下,经过5h的降解,分子印迹聚吡咯/TiO2纳米管阵列能降解87%的邻苯二甲酸二丁酯,而非分子印迹聚吡咯/TiO2纳米管阵列NM-TNA只能降解47%的邻苯二甲酸二丁酯。相应的,2,4-二氯苯酚在分子印迹聚吡咯/TiO2纳米管阵列和非分子印迹聚吡咯/TiO2纳米管阵列降解5h的去除率分别为46%和59%,非分子印迹型的光电催化降解2,4-二氯苯酚活性反而略高。上面的结果表明,分子印迹聚吡咯/TiO2纳米管阵列对2,4-二氯苯酚的降解没有选择性,但对邻苯二甲酸二丁酯的降解具有较高的选择性。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法,其特征在于:包括如下步骤:
(1)制备TiO2纳米管阵列,在500℃下煅烧2h使TiO2纳米管阵列晶化;
(2)合成Fe(LS)3Cl3晶体:称取适量十二烷基硫酸钠加入到已配置好的FeCl3溶液中,搅拌2-6h,至混合溶液全部变成黄色,静置,抽滤,干燥后得到黄色的Fe(LS)3Cl3晶体;
(3)将吡咯和邻苯二甲酸二丁酯加入到盛有甲醇的烧杯中,再将步骤(1)所制备的TiO2纳米管阵列浸入前述水热釜内的溶液中,随后加入步骤(2)中所制备的Fe(LS)3Cl3晶体,超声8-20h,即得到含有邻苯二甲酸二丁酯模板的聚吡咯/TiO2纳米管阵列;
(4)取出步骤(3)完成后的聚吡咯/TiO2纳米管阵列,置于纯水中浸泡,以清洗聚吡咯/TiO2纳米管阵列中的甲醇等杂质;
(5)以步骤(4)中所制备的聚吡咯/TiO2纳米管阵列为工作电极,以铂电极为辅助电极,以饱和甘汞电极为参比电极,在Na2SO4溶液中、恒电位下电解以去除邻苯二甲酸二丁酯模板,即得到能识别邻苯二甲酸二丁酯的分子印迹聚吡咯/TiO2纳米管阵列。
2.根据权利要求1所述的选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法,其特征在于:所述步骤(1)中,通过阳极氧化法制备TiO2纳米管阵列。
3.根据权利要求1所述的选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法,其特征在于:所述步骤(2)中,FeCl3溶液的浓度为0.005 g/mL -0.0375g/mL,十二烷基硫酸钠与溶质FeCl3的质量比为(5-15):(1-3)。
4.根据权利要求1所述的选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法,其特征在于:所述步骤(2)中,干燥条件为60℃,干燥时长10h。
5.根据权利要求1所述的选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法,其特征在于:所述步骤(3)中,吡咯和邻苯二甲酸二丁酯的体积比为(0.5-2):(0.1-1.5)。
6.根据权利要求1所述的选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法,其特征在于:所述步骤(4)中,聚吡咯/TiO2纳米管阵列置于纯水中浸泡20-80min。
7.根据权利要求1所述的选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法,其特征在于:所述步骤(5)中,Na2SO4溶液浓度为0.05-0.2mol/L,电解的条件为:0.8-1.5V恒电位、电解20-60min。
CN202010173381.9A 2020-03-13 2020-03-13 选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法 Active CN111359677B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010173381.9A CN111359677B (zh) 2020-03-13 2020-03-13 选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010173381.9A CN111359677B (zh) 2020-03-13 2020-03-13 选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN111359677A true CN111359677A (zh) 2020-07-03
CN111359677B CN111359677B (zh) 2023-03-28

Family

ID=71200415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010173381.9A Active CN111359677B (zh) 2020-03-13 2020-03-13 选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN111359677B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225937A (zh) * 2021-12-16 2022-03-25 南京卡佛科学仪器有限公司 赤铁矿纳米材料在邻苯二甲酸酯降解中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101519233A (zh) * 2009-03-26 2009-09-02 上海交通大学 利用短TiO2纳米管阵列薄膜电极光电催化降解有机物的方法
US20100048737A1 (en) * 2006-09-19 2010-02-25 Basf Se Cosmetic preparations based on molecularly imprinted polymers
CN101798126A (zh) * 2010-04-23 2010-08-11 四川大学 一种光电催化处理工业废水的方法
CN102814172A (zh) * 2012-08-21 2012-12-12 华南师范大学 一种分子印迹型光催化剂的制备方法及其应用
CN104910324A (zh) * 2015-07-03 2015-09-16 武汉工程大学 制备林可霉素分子印迹聚合物的方法
CN105597823A (zh) * 2016-01-06 2016-05-25 南昌航空大学 一种吡咯-苯胺共聚物/TiO2纳米管复合光催化剂的制备方法
CN110684143A (zh) * 2019-09-30 2020-01-14 广东省石油与精细化工研究院 一种盐酸克伦特罗分子印迹聚合物微球的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100048737A1 (en) * 2006-09-19 2010-02-25 Basf Se Cosmetic preparations based on molecularly imprinted polymers
CN101519233A (zh) * 2009-03-26 2009-09-02 上海交通大学 利用短TiO2纳米管阵列薄膜电极光电催化降解有机物的方法
CN101798126A (zh) * 2010-04-23 2010-08-11 四川大学 一种光电催化处理工业废水的方法
CN102814172A (zh) * 2012-08-21 2012-12-12 华南师范大学 一种分子印迹型光催化剂的制备方法及其应用
CN104910324A (zh) * 2015-07-03 2015-09-16 武汉工程大学 制备林可霉素分子印迹聚合物的方法
CN105597823A (zh) * 2016-01-06 2016-05-25 南昌航空大学 一种吡咯-苯胺共聚物/TiO2纳米管复合光催化剂的制备方法
CN110684143A (zh) * 2019-09-30 2020-01-14 广东省石油与精细化工研究院 一种盐酸克伦特罗分子印迹聚合物微球的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. E. CASTILLO-REYES ET AL.: "TiO2/polypyrrole nanocomposites photoactive under visible light synthesized by heterophase polymerization in the presence of different surfactants", 《RES CHEM INTERMED》 *
黄婷婷: "水中邻苯二甲酸二丁酯的光催化降解研究", 《江苏大学 硕士学位论文》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225937A (zh) * 2021-12-16 2022-03-25 南京卡佛科学仪器有限公司 赤铁矿纳米材料在邻苯二甲酸酯降解中的应用
CN114225937B (zh) * 2021-12-16 2024-02-27 南京卡佛科学仪器有限公司 赤铁矿纳米材料在邻苯二甲酸酯降解中的应用

Also Published As

Publication number Publication date
CN111359677B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
Tang et al. Preparation of floating porous g-C3N4 photocatalyst via a facile one-pot method for efficient photocatalytic elimination of tetracycline under visible light irradiation
Elgarahy et al. Recent advances in greenly synthesized nanoengineered materials for water/wastewater remediation: an overview
Yuan et al. Highly efficient sunlight-driven reduction of Cr (VI) by TiO2@ NH2-MIL-88B (Fe) heterostructures under neutral conditions
Liu et al. Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from water by carbonaceous nanomaterials: A review
CN104959141B (zh) 一种负载Cu/Cu2O光催化剂的还原氧化石墨烯/无定形碳复合材料及其制备方法和应用
CN109772454B (zh) 光催化膜及其制备方法和对消毒副产物前体物的降解应用
CN101798126A (zh) 一种光电催化处理工业废水的方法
CN101993043A (zh) BiOBr微米球可见光光催化剂及其制备方法
Li et al. Synthesis of MoS2/Pg-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of uranium (VI)
CN109499573A (zh) 一种磁性木基材料的原位制备方法
US20190308231A1 (en) A novel method and a sand/water remediation system with a photocatalytic fuel cell
CN110756163A (zh) 一种纳米CoFe2O4/碳纤维毡复合材料及其制备方法和应用
CN111359677B (zh) 选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法
Chen et al. Lanthanum/titanium dioxide immobilized onto industrial waste with enhanced photocatalytic activity, and the degradation of dimethyl phthalate
Zhan et al. Tailoring the three-phase microenvironment surface to induce carbon nitride oxide generating· O2–with 100% selectivity for ultrafast photodegradation tetracycline under visible light
CN101708464B (zh) 一种阳离子树脂基负载CdS复合材料及其制备方法
Fei et al. Facile preparation of visible light-sensitive layered g-C3N4 for photocatalytic removal of organic pollutants
Lal et al. Enhancing photocatalytic, photoelectrochemical hydrogen evolution, and dye degradation using p-type NiCo2O4 spinel photocatalyst synthesized via tapioca leaf extract mediated process
Fan et al. Synthesis and immobilization of HC/BiVO4 catalyst particles with PTFE for photocatalytic tetracycline degradation: Preparation, performance and mechanism
Hu et al. Hollow Fe3+-doped anatase titanium dioxide nanosphere for photocatalytic degradation of organic dyes
Shan et al. A novel readily recyclable Fe3O4/ZnO/loofah biochar composite for efficient degradation of organic pollutants under visible light
Han et al. Microtubular carbonized cotton fiber modified g-C3N4 for the enhancement of visible-light-driven photocatalytic activity
CN109078644B (zh) 石墨烯负载Bi-BiOCl-TiO2光催化剂及制法
Malekabadi et al. Electrocatalytic membrane containing CuFeO2/nanoporous carbon for organic dye removal application
CN109939697A (zh) 一种CdS/TOC光催化剂、Pd/CdS/TOC光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant