CN111348223A - 一种控制弹道顶点高度的闭路制导方法、装置及设备 - Google Patents

一种控制弹道顶点高度的闭路制导方法、装置及设备 Download PDF

Info

Publication number
CN111348223A
CN111348223A CN202010445798.6A CN202010445798A CN111348223A CN 111348223 A CN111348223 A CN 111348223A CN 202010445798 A CN202010445798 A CN 202010445798A CN 111348223 A CN111348223 A CN 111348223A
Authority
CN
China
Prior art keywords
position point
point
height
ballistic
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010445798.6A
Other languages
English (en)
Other versions
CN111348223B (zh
Inventor
彭小波
郑立伟
时剑波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Interstellar Glory Technology Co Ltd
Beijing Star Glory Space Technology Co Ltd
Original Assignee
Beijing Interstellar Glory Space Technology Co Ltd
Beijing Interstellar Glory Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Interstellar Glory Space Technology Co Ltd, Beijing Interstellar Glory Technology Co Ltd filed Critical Beijing Interstellar Glory Space Technology Co Ltd
Priority to CN202010445798.6A priority Critical patent/CN111348223B/zh
Publication of CN111348223A publication Critical patent/CN111348223A/zh
Application granted granted Critical
Publication of CN111348223B publication Critical patent/CN111348223B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/22Aiming or laying means for vehicle-borne armament, e.g. on aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种控制弹道顶点高度的闭路制导方法、装置及设备,其中,该方法包括:获取当前位置点的位置参数、目标位置点的位置参数以及当前位置点到目标位置点的飞行时间以及目标弹道顶点高度;利用预先设置的第一迭代函数进行迭代计算,得到最高点约束条件的当前点弹道倾角;利用预先设置的第二迭代函数进行迭代计算,得到满足迭代截止条件的制导参数;利用计算得到的制导参数进行制导控制。通过实施该方法,将弹道顶点高度引入闭路制导中,直接约束弹道顶点高度,无需进行弹道倾角与弹道顶点高度的转换,简化了计算过程,由于弹道顶点高度可以实时修正直至满足最高点约束条件,因此可以准确的控制顶点高度,保证了制导参数的精准性。

Description

一种控制弹道顶点高度的闭路制导方法、装置及设备
技术领域
本发明涉及闭路制导控制技术领域,具体涉及一种控制弹道顶点高度的闭路制导方法、装置及设备。
背景技术
传统的闭路制导一般采用控制再入参考点(落点)的弹道倾角的方式进行闭路制导控制,然而对于弹道高度有要求的飞行试验或火箭回收,通过控制再入参考点(落点)的弹道倾角的方法不能直接约束弹道远地点高度,需要完成再入参考点(落点)的弹道倾角到弹道远地点高度的转换,且计算过程复杂。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中的闭路制导控制方法不能直接约束弹道远地点高度的缺陷,从而提供一种控制弹道顶点高度的闭路制导方法、装置及设备。
根据第一方面,本发明实施例提供了一种控制弹道顶点高度的闭路制导方法,包括:获取当前位置点的位置参数、目标位置点的位置参数以及所述当前位置点到所述目标位置点的飞行时间以及目标弹道顶点高度;利用预先设置的第一迭代函数基于当前位置点的位置参数、目标位置点的位置参数以及所述当前位置点到所述目标位置点的飞行时间进行迭代计算,得到满足最高点约束条件的当前点弹道倾角,其中,所述最高点约束条件为计算得到的弹道顶点高度与所述目标弹道顶点高度相等;利用预先设置的第二迭代函数基于当前位置点的位置参数、目标位置点的位置参数、所述当前位置点到所述目标位置点的飞行时间以及多个所述满足最高点约束条件的当前点弹道倾角进行迭代计算,得到满足迭代截止条件的制导参数;利用计算得到的制导参数进行制导控制。
结合第一方面,在第一方面的第一实施方式中,所述第一迭代函数为所述第二迭代函数的子函数,所述制导参数包括转移轨道焦距,所述转移轨道焦距由所述第一迭代函数计算得到,所述迭代截止条件为当次迭代计算得到的转移轨道焦距与前一次迭代计算得到的转移轨道焦距的差值小于预设值。
结合第一方面第一实施方式,在第一方面的第二实施方式中,所述当前位置点的位置参数包括所述当前位置点的地心距、地心纬度和地理经度,所述目标位置点的位置参数包括所述目标位置点的地心距、地心纬度和地理经度,其中,所述利用预先设置的第一迭代函数基于当前位置点的位置参数、目标位置点的位置参数以及所述当前位置点到所述目标位置点的飞行时间进行迭代计算包括:利用所述当前位置点的地心纬度和地理经度以及所述目标位置点的地心纬度和地理经度计算得到所述当前位置点地心矢量与所述目标位置点地心矢量的夹角;利用所述当前位置点的地心距、所述目标位置点的地心距、所述夹角以及给定弹道倾角计算得到转移轨道焦距;利用所述当前位置点的地心距、所述给定弹道倾角和转移轨道焦距计算得到转移轨道偏心率;利用所述转移轨道焦距和所述转移轨道偏心率计算得到弹道顶点高度;判断计算得到的弹道顶点高度与所述目标弹道顶点高度是否相等;当计算得到的弹道顶点高度与所述目标弹道顶点高度相等时,将所述给定弹道倾角作为所述满足最高点约束条件的当前点弹道倾角。
结合第一方面第二实施方式,在第一方面的第三实施方式中,所述利用所述当前位置点的地心距、所述给定弹道倾角和转移轨道焦距计算得到转移轨道偏心率,包括:根据所述给定弹道倾角以及所述转移轨道焦距,确定第一中间变量;根据所述第一中间变量以及所述转移轨道焦距,确定转移轨道偏心率。
结合第一方面第二实施方式,在第一方面的第四实施方式中,所述利用预先设置的第二迭代函数基于当前位置点的位置参数、目标位置点的位置参数、所述当前位置点到所述目标位置点的飞行时间以及多个所述满足最高点约束条件的当前点弹道倾角进行迭代计算,包括:根据所述第一中间变量以及所述当前位置点地心矢量与目标位置点地心矢量的夹角,确定第二中间变量;根据所述第一中间变量、所述第二中间变量以及所述转移轨道偏心率,分别确定与所述第一中间变量和所述第二中间变量对应的第三中间变量和第四中间变量;根据所述转移轨道焦距、所述转移轨道偏心率、所述第三中间变量以及所述第四中间变量,确定迭代飞行时间;根据所述迭代飞行时间,确定所述迭代飞行时间对应的当次迭代计算得到的转移轨道焦距;判断所述当次迭代计算得到的转移轨道焦距与前一次迭代计算得到的转移轨道焦距的差值是否小于预设值;若所述当次迭代计算得到的转移轨道焦距与所述前一次迭代计算得到的转移轨道焦距的差值小于预设值,则将所述当次迭代计算得到的转移轨道焦距对应的参数作为制导参数。
结合第一方面,在第一方面的第五实施方式中,通过以下公式计算得到弹道顶点高度:
Figure 738197DEST_PATH_IMAGE001
其中,
Figure 295080DEST_PATH_IMAGE002
为弹道顶点高度;
Figure 909251DEST_PATH_IMAGE003
为转移轨道焦距;
Figure 576993DEST_PATH_IMAGE004
为转移轨道偏心率。
根据第二方面,本发明实施例提供了一种控制弹道顶点高度的闭路制导装置,包括:获取模块,用于获取当前位置点的位置参数、目标位置点的位置参数以及所述当前位置点到所述目标位置点的飞行时间以及目标弹道顶点高度;第一迭代计算模块,用于利用预先设置的第一迭代函数基于当前位置点的位置参数、目标位置点的位置参数以及所述当前位置点到所述目标位置点的飞行时间进行迭代计算,得到满足最高点约束条件的当前点弹道倾角,其中,所述最高点约束条件为计算得到的弹道顶点高度与所述目标弹道顶点高度相等;第二迭代计算模块,用于利用预先设置的第二迭代函数基于当前位置点的位置参数、目标位置点的位置参数、所述当前位置点到所述目标位置点的飞行时间以及多个所述满足最高点约束条件的当前点弹道倾角进行迭代计算,得到满足迭代截止条件的制导参数;制导模块,用于利用计算得到的制导参数进行制导控制。
结合第二方面第一实施方式,在第二方面的第二实施方式中,所述第一迭代计算模块,包括:夹角计算子模块,用于利用所述当前位置点的地心纬度和地理经度以及所述目标位置点的地心纬度和地理经度计算得到所述当前位置点地心矢量与所述目标位置点地心矢量的夹角;转移轨道焦距计算子模块,用于利用所述当前位置点的地心距、所述目标位置点的地心距、所述夹角以及给定弹道倾角计算得到转移轨道焦距;偏心率计算子模块,用于利用所述当前位置点的地心距、所述给定弹道倾角和转移轨道焦距计算得到转移轨道偏心率;顶点高度计算子模块,用于利用所述转移轨道焦距和所述转移轨道偏心率计算得到弹道顶点高度;第一判断子模块,用于判断计算得到的弹道顶点高度与所述目标弹道顶点高度是否相等;弹道倾角确定子模块,用于当计算得到的弹道顶点高度与所述目标弹道顶点高度相等时,将所述给定弹道倾角作为所述满足最高点约束条件的当前点弹道倾角。
结合第二方面第二实施方式,在第二方面的第三实施方式中,所述偏心率计算子模块,包括:中间变量确定子模块,用于根据所述给定弹道倾角以及所述转移轨道焦距,确定第一中间变量;偏心率确定子模块,用于根据所述第一中间变量以及所述转移轨道焦距,确定转移轨道偏心率。
结合第二方面第三实施方式,在第二方面的第四实施方式中,所述第二迭代计算模块,包括:第一确定子模块,用于根据所述第一中间变量以及所述当前位置点地心矢量与目标位置点地心矢量的夹角,确定第二中间变量;第二确定子模块,用于根据所述第一中间变量、所述第二中间变量以及所述转移轨道偏心率,分别确定与所述第一中间变量和所述第二中间变量对应的第三中间变量和第四中间变量;第三确定子模块,用于根据所述转移轨道焦距、所述转移轨道偏心率、所述第三中间变量以及所述第四中间变量,确定迭代飞行时间;第四确定子模块,用于根据所述迭代飞行时间,确定所述迭代飞行时间对应的当次迭代计算得到的转移轨道焦距;第二判断子模块,用于判断所述当次迭代计算得到的转移轨道焦距与前一次迭代计算得到的转移轨道焦距的差值是否小于预设值;制导参数确定子模块,用于若所述当次迭代计算得到的转移轨道焦距与所述前一次迭代计算得到的转移轨道焦距的差值小于预设值,则将所述当次迭代计算得到的转移轨道焦距对应的参数作为制导参数。
根据第三方面,本发明实施例提供了一种计算机设备,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行第一方面或第一方面任一实施方式所述的控制弹道顶点高度的闭路制导方法。
根据第三方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行第一方面或第一方面任一实施方式所述的控制弹道顶点高度的闭路制导方法。
本发明技术方案,具有如下优点:
本发明提供的控制弹道顶点高度的闭路制导方法、装置及设备,通过获取当前位置点的位置参数、目标位置点的位置参数以及当前位置点到目标位置点的飞行时间以及目标弹道顶点高度;利用预先设置的第一迭代函数基于当前位置点的位置参数、目标位置点的位置参数以及当前位置点到目标位置点的飞行时间进行迭代计算,得到满足最高点约束条件的当前点弹道倾角,其中,所述最高点约束条件为计算得到的弹道顶点高度与所述目标弹道顶点高度相等;利用预先设置的第二迭代函数基于当前位置点的位置参数、目标位置点的位置参数、当前位置点到所述目标位置点的飞行时间以及多个满足最高点约束条件的当前点弹道倾角进行迭代计算,得到满足迭代截止条件的制导参数;利用计算得到的制导参数进行制导控制。通过将弹道顶点高度引入闭路制导计算过程中,直接约束弹道顶点高度,无需进行弹道倾角与弹道顶点高度的转换,简化了计算过程,由于弹道顶点高度可以实时修正直至满足最高点约束条件,因此可以准确的控制顶点高度,保证了制导参数的精准性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中控制弹道顶点高度的闭路制导方法的流程图;
图2为本发明实施例中控制弹道顶点高度的闭路制导方法的流程图;
图3为本发明实施例中第一迭代函数迭代计算的流程图;
图4为本发明实施例中第二迭代函数迭代计算的流程图;
图5为本发明实施例中控制弹道顶点高度的闭路制导装置的原理框图;
图6为本发明实施例中计算机设备的结构示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例提供一种控制弹道顶点高度的闭路制导方法,应用于对返程飞行顶点高度有约束要求的飞行设备上,如图1所示,该方法包括如下步骤:
S11,获取当前位置点的位置参数、目标位置点的位置参数以及当前位置点到目标位置点的飞行时间以及目标弹道顶点高度。
示例性地,当前位置点的位置参数可以由飞行设备上的定位系统获取,目标位置点的位置参数由当前飞行设备所要到达的位置进行预先设定,当前位置点到目标位置点的飞行时间可以根据当前位置点的位置参数和目标位置点的位置参数进行确定,具体地,可以根据飞行设备的飞行速度以及当前位置点与目标位置点之间的地理距离对飞行设备的飞行时间进行预估。目标弹道顶点高度为弹道顶点地心距离。本申请对当前位置点的位置参数、目标位置点的位置参数以及当前位置点到目标位置点的飞行时间的获取方式不作限定,本领域技术人员可以根据实际需要确定。飞行设备可以为运载火箭,也可以为亚轨道飞行器,本申请对飞行设备不作限定,本申请实施例以运载火箭为例。
S12,利用预先设置的第一迭代函数基于当前位置点的位置参数、目标位置点的位置参数以及当前位置点到目标位置点的飞行时间进行迭代计算,得到满足最高点约束条件的当前点弹道倾角,其中,最高点约束条件为计算得到的弹道顶点高度与目标弹道顶点高度相等。
示例性地,当前位置点的位置参数包括当前位置点的地心距、地心纬度和地理经度。目标位置点的位置参数包括目标位置点的地心距、地心纬度和地理经度。如图2所示,根据第一迭代函数进行迭代计算,确定满足最高点约束条件的当前点弹道倾角,其中,最高点约束条件为计算得到的弹道顶点高度与目标弹道顶点高度相等。具体计算步骤如下:
S121,利用当前位置点的地心纬度和地理经度以及目标位置点的地心纬度和地理经度计算得到当前位置点地心矢量与所述目标位置点地心矢量的夹角。当前位置点地心矢量与目标位置点地心矢量的夹角的表达式如下:
Figure 839347DEST_PATH_IMAGE005
其中,
Figure 380180DEST_PATH_IMAGE006
为当前位置点地心矢量与目标位置点地心矢量的夹角;
Figure 868931DEST_PATH_IMAGE007
为当前位置点的 地心维度;
Figure 199418DEST_PATH_IMAGE008
为目标位置点的地心纬度;
Figure 191645DEST_PATH_IMAGE009
为目标位置点的地心经度;
Figure 965697DEST_PATH_IMAGE010
当前位置点的地 心经度;
Figure 4060DEST_PATH_IMAGE011
为地球的自转角速度;
Figure 748025DEST_PATH_IMAGE012
为当前时刻;
Figure 735704DEST_PATH_IMAGE013
当前位置点到目标位置点的飞行时间。
S122,利用当前位置点的地心距、目标位置点的地心距、当前位置点地心矢量与目标位置点地心矢量的夹角以及给定弹道倾角计算得到转移轨道焦距。转移轨道焦距的表达式如下:
Figure 539712DEST_PATH_IMAGE014
其中,
Figure 127688DEST_PATH_IMAGE015
为转移轨道焦距;
Figure 675344DEST_PATH_IMAGE016
为目标位置点的地心距;
Figure 717862DEST_PATH_IMAGE006
为当前位置点地心矢量与目 标位置点地心矢量的夹角;
Figure 82984DEST_PATH_IMAGE017
为当前位置点的地心距;
Figure 502464DEST_PATH_IMAGE018
为当前位置点的弹道倾角,在第 一次迭代计算时给定初始值
Figure 729177DEST_PATH_IMAGE019
,j和i分别表示第一迭代函数迭代次数和第二迭代函数的 迭代次数。
S123,利用当前位置点的地心距、给定弹道倾角和转移轨道焦距计算得到转移轨道偏心率。具体计算步骤如下:
首先,根据给定弹道倾角以及转移轨道焦距,确定第一中间变量。第一中间变量的表达式如下:
Figure 816082DEST_PATH_IMAGE020
其中,
Figure 555368DEST_PATH_IMAGE021
为第一中间变量;
Figure 337510DEST_PATH_IMAGE022
为确定的当前点弹道倾角;
Figure 492548DEST_PATH_IMAGE003
为前一次迭代计算得到 的转移轨道焦距;
Figure 558593DEST_PATH_IMAGE023
为当前位置点的地心距。
其次,根据第一中间变量以及转移轨道焦距,确定转移轨道偏心率。转移轨道偏心率的表达式如下:
Figure 140884DEST_PATH_IMAGE024
其中,
Figure 613585DEST_PATH_IMAGE004
为转移轨道偏心率;
Figure 431368DEST_PATH_IMAGE003
为前一次迭代计算得到的转移轨道焦距;
Figure 961706DEST_PATH_IMAGE023
为当前位 置点的地心距;
Figure 870493DEST_PATH_IMAGE021
为第一中间变量。
S124,利用转移轨道焦距和转移轨道偏心率计算得到弹道顶点高度。弹道顶点高度的表达式如下:
Figure 751861DEST_PATH_IMAGE025
其中,
Figure 576597DEST_PATH_IMAGE002
为弹道顶点高度;
Figure 102388DEST_PATH_IMAGE004
为转移轨道偏心率;
Figure 760902DEST_PATH_IMAGE003
为前一次迭代计算得到的转移轨 道焦距。
S125,判断计算得到的弹道顶点高度与目标弹道顶点高度是否相等。通过计算弹 道顶点高度与目标弹道顶点高度之间的差值,可以确定弹道顶点高度
Figure 519780DEST_PATH_IMAGE002
与目标弹道顶点 高度
Figure 554732DEST_PATH_IMAGE026
是否相等。通过判断
Figure 403870DEST_PATH_IMAGE027
,的值是否为0,进而确定弹道顶点高度与目标弹道 顶点高度是否相等。
S126,当计算得到的弹道顶点高度与目标弹道顶点高度相等时,将给定弹道倾角作为满足最高点约束条件的当前点弹道倾角。若计算弹道顶点高度与目标弹道顶点高度之间的差值为0,此时,可以判定弹道顶点高度与目标弹道顶点高度相等,即满足最高点约束条件。
Figure 623499DEST_PATH_IMAGE028
,当弹道顶点高度与目标弹道顶点高度相等 时,则
Figure 558088DEST_PATH_IMAGE029
。此时可以将当前迭代计算的给定弹道倾角作为满足最高点约束条件 的当前点弹道倾角。
S13,利用预先设置的第二迭代函数基于当前位置点的位置参数、目标位置点的位置参数、当前位置点到目标位置点的飞行时间以及多个满足最高点约束条件的当前点弹道倾角进行迭代计算,得到满足迭代截止条件的制导参数。
示例性地,当前位置点的位置参数包括当前位置点的地心距、地心纬度和地理经度。目标位置点的位置参数包括目标位置点的地心距、地心纬度和地理经度。根据第二迭代函数进行迭代计算,可以确定满足迭代截止条件的制导参数。
其中,迭代截止条件为当次迭代计算得到的转移轨道焦距与前一次迭代计算得到的转移轨道焦距的差值小于预设值。第一迭代函数为第二迭代函数的子函数,制导参数包括转移轨道焦距,转移轨道焦距由第一迭代函数计算得到。
如图3所示,根据第二迭代函数进行迭代计算,确定满足迭代截止条件的制导参数的具体步骤如下:
S131,根据第一中间变量以及当前位置点地心矢量与目标位置点地心矢量的夹角,确定第二中间变量。第二中间变量的表达式如下:
Figure 662310DEST_PATH_IMAGE030
其中,
Figure 349644DEST_PATH_IMAGE031
为第二中间变量;
Figure 753556DEST_PATH_IMAGE021
为第一中间变量;
Figure 159129DEST_PATH_IMAGE032
为当前位置点地心矢量与目标位置 点地心矢量的夹角。
S132,根据第一中间变量、第二中间变量以及转移轨道偏心率,分别确定与第一中间变量和第二中间变量对应的第三中间变量和第四中间变量。其中,第三中间变量的表达式如下:
Figure 67042DEST_PATH_IMAGE033
其中,
Figure 421931DEST_PATH_IMAGE034
为第三中间变量;
Figure 186625DEST_PATH_IMAGE004
为转移轨道偏心率;
Figure 751599DEST_PATH_IMAGE021
为第一中间变量。
第四中间变量的表达式如下:
Figure 72990DEST_PATH_IMAGE035
其中,
Figure 407019DEST_PATH_IMAGE036
为第四中间变量;
Figure 342614DEST_PATH_IMAGE004
为转移轨道偏心率;
Figure 270250DEST_PATH_IMAGE031
为第二中间变量。
S133,根据转移轨道焦距、转移轨道偏心率、第三中间变量以及第四中间变量,确定迭代飞行时间。迭代飞行时间的表达式如下:
Figure 988807DEST_PATH_IMAGE037
其中,
Figure 833135DEST_PATH_IMAGE038
为迭代飞行时间;
Figure 693294DEST_PATH_IMAGE039
为第三中间变量;
Figure 498439DEST_PATH_IMAGE040
为第四中间变量;
Figure 614162DEST_PATH_IMAGE041
为转移轨道 偏心率;
Figure 1412DEST_PATH_IMAGE042
为地心引力常数。
S134,根据迭代飞行时间,确定迭代飞行时间对应的当次迭代计算得到的转移轨 道焦距。根据迭代飞行时间,可以计算得到对应该迭代飞行时间的当次迭代的转移轨道焦 距
Figure 341127DEST_PATH_IMAGE043
S135,判断当次迭代计算得到的转移轨道焦距与前一次迭代计算得到的转移轨道 焦距的差值是否小于预设值。通过计算当次迭代计算得到的转移轨道焦距与前一次迭代计 算得到的转移轨道焦距之间的差值,即
Figure 181038DEST_PATH_IMAGE044
<预设值△P。其中,预设值可以根据飞 行设备的硬件参数确定,本申请对此不作限定,本领域技术人员可以根据实际需要的经验 值进行确定。
S136,若当次迭代计算得到的转移轨道焦距与前一次迭代计算得到的转移轨道焦 距的差值小于预设值,则将当次迭代计算得到的转移轨道焦距对应的参数作为制导参数。 若满足迭代截止条件
Figure 506977DEST_PATH_IMAGE045
<预设值△P,则将当次迭代计算得到的转移轨道焦距对应 的参数作为制导参数。
S14,利用计算得到的制导参数进行制导控制。
示例性地,结合步骤S11、S12、S13的依次计算可以确定最终的制导参数,其迭代表 达式可以整合为式(1),其计算流程如图4所示。在每一轮迭代计算过程中,通过第一迭代函 数迭代计算出满足最高点约束条件要求的
Figure 60318DEST_PATH_IMAGE018
值,然后通过第二迭代函数进行迭代计算, 直至满足迭代截止条件:
Figure 180721DEST_PATH_IMAGE046
<预设值△P,至此完成闭路制导参数计算。根据计算得 到的制导参数对返程的运载火箭进行制导控制。
Figure 773507DEST_PATH_IMAGE047
(1)
本实施例提供的控制弹道顶点高度的闭路制导方法,通过获取当前位置点的位置参 数、目标位置点的位置参数以及当前位置点到目标位置点的飞行时间以及目标弹道顶点高 度;利用预先设置的第一迭代函数基于当前位置点的位置参数、目标位置点的位置参数以 及当前位置点到目标位置点的飞行时间进行迭代计算,得到满足最高点约束条件的当前点 弹道倾角,其中,所述最高点约束条件为计算得到的弹道顶点高度与所述目标弹道顶点高 度相等;利用预先设置的第二迭代函数基于当前位置点的位置参数、目标位置点的位置参 数、当前位置点到所述目标位置点的飞行时间以及多个满足最高点约束条件的当前点弹道 倾角进行迭代计算,得到满足迭代截止条件的制导参数;利用计算得到的制导参数进行制 导控制。由式(1)可知,从式(1)的第二式至第八式,通过修正
Figure 27771DEST_PATH_IMAGE022
的值,通过第一迭代函数迭 代计算出满足最高点约束条件要求的
Figure 45406DEST_PATH_IMAGE022
值,然后通过第二迭代函数进行迭代计算,直至满 足迭代截止条件:
Figure 474726DEST_PATH_IMAGE045
<预设值△P,至此完成闭路制导参数计算。又由于式(1)中的第 八式中的
Figure 538497DEST_PATH_IMAGE048
是根据弹道顶点高度要求计算的弹道倾角,即可以实现对弹道顶点高度的满 足。通过实施该控制弹道顶点高度的闭路制导方法,将弹道顶点高度引入闭路制导计算过 程中,直接约束弹道顶点高度,无需进行弹道倾角与弹道顶点高度的转换,简化了计算过 程,由于弹道顶点高度可以实时修正直至满足最高点约束条件,因此可以准确的控制顶点 高度,保证了制导参数的精准性。
实施例2
本施例提供一种控制弹道顶点高度的闭路制导装置,应用于对返程飞行顶点高度有约束要求的飞行设备上,如图5所示,包括:
获取模块21,用于获取当前位置点的位置参数、目标位置点的位置参数以及当前位置点到所述目标位置点的飞行时间以及目标弹道顶点高度。详细内容参见上述方法实施例中步骤S11的相关描述,在此不再赘述。
第一迭代计算模块22,用于利用预先设置的第一迭代函数基于当前位置点的位置参数、目标位置点的位置参数以及当前位置点到目标位置点的飞行时间进行迭代计算,得到满足最高点约束条件的当前点弹道倾角,其中,最高点约束条件为计算得到的弹道顶点高度与目标弹道顶点高度相等。详细内容参见上述方法实施例中步骤S12的相关描述,在此不再赘述。
第二迭代计算模块23,用于利用预先设置的第二迭代函数基于当前位置点的位置参数、目标位置点的位置参数、当前位置点到目标位置点的飞行时间以及多个满足最高点约束条件的当前点弹道倾角进行迭代计算,得到满足迭代截止条件的制导参数。详细内容参见上述方法实施例中步骤S13的相关描述,在此不再赘述。
制导模块24,用于利用计算得到的制导参数进行制导控制。详细内容参见上述方法实施例中步骤S14的相关描述,在此不再赘述。
本实施例提供的控制弹道顶点高度的闭路制导装置,通过获取模块对当前位置点的位置参数、目标位置点的位置参数以及当前位置点到目标位置点的飞行时间以及目标弹道顶点高度进行获取;利用第一迭代计算模块中预先设置的第一迭代函数基于当前位置点的位置参数、目标位置点的位置参数以及当前位置点到目标位置点的飞行时间进行迭代计算,得到满足最高点约束条件的当前点弹道倾角,其中,最高点约束条件为计算得到的弹道顶点高度与所述目标弹道顶点高度相等;利用第二迭代计算模块中预先设置的第二迭代函数基于当前位置点的位置参数、目标位置点的位置参数、当前位置点到所述目标位置点的飞行时间以及多个满足最高点约束条件的当前点弹道倾角进行迭代计算,得到满足迭代截止条件的制导参数;利用制导模块计算得到的制导参数进行制导控制。通过将弹道顶点高度引入闭路制导计算过程中,直接约束弹道顶点高度,无需进行弹道倾角与弹道顶点高度的转换,简化了计算过程,由于弹道顶点高度可以实时修正直至满足最高点约束条件,因此可以准确的控制顶点高度,保证了制导参数的精准性。
作为本申请一个可选的实施方式,上述第一迭代计算模块22,包括:
夹角计算子模块,用于利用当前位置点的地心纬度和地理经度以及目标位置点的地心纬度和地理经度计算得到当前位置点地心矢量与目标位置点地心矢量的夹角。详细内容参见上述方法实施例的相关描述,在此不再赘述。
转移轨道焦距计算子模块,用于利用当前位置点的地心距、目标位置点的地心距、夹角以及给定弹道倾角计算得到转移轨道焦距。详细内容参见上述方法实施例的相关描述,在此不再赘述。
偏心率计算子模块,用于利用当前位置点的地心距、给定弹道倾角和转移轨道焦距计算得到转移轨道偏心率。详细内容参见上述方法实施例的相关描述,在此不再赘述。
顶点高度计算子模块,用于利用转移轨道焦距和转移轨道偏心率计算得到弹道顶点高度。详细内容参见上述方法实施例的相关描述,在此不再赘述。
第一判断子模块,用于判断计算得到的弹道顶点高度与目标弹道顶点高度是否相等。详细内容参见上述方法实施例的相关描述,在此不再赘述。
弹道倾角确定子模块,用于当计算得到的弹道顶点高度与目标弹道顶点高度相等时,将给定弹道倾角作为满足最高点约束条件的当前点弹道倾角。详细内容参见上述方法实施例的相关描述,在此不再赘述。
作为本申请一个可选的实施方式,上述偏心率计算子模块,包括:
中间变量确定子模块,用于根据给定弹道倾角以及转移轨道焦距,确定第一中间变量。详细内容参见上述方法实施例的相关描述,在此不再赘述。
偏心率确定子模块,用于根据第一中间变量以及转移轨道焦距,确定转移轨道偏心率。详细内容参见上述方法实施例的相关描述,在此不再赘述。
作为本申请一个可选的实施方式,上述第二迭代计算模块23,包括:
第一确定子模块,用于根据第一中间变量以及当前位置点地心矢量与目标位置点地心矢量的夹角,确定第二中间变量。详细内容参见上述方法实施例的相关描述,在此不再赘述。
第二确定子模块,用于根据第一中间变量、第二中间变量以及转移轨道偏心率,分别确定与第一中间变量和第二中间变量对应的第三中间变量和第四中间变量。详细内容参见上述方法实施例的相关描述,在此不再赘述。
第三确定子模块,用于根据转移轨道焦距、转移轨道偏心率、第三中间变量以及第四中间变量,确定迭代飞行时间。详细内容参见上述方法实施例的相关描述,在此不再赘述。
第四确定子模块,用于根据迭代飞行时间,确定迭代飞行时间对应的当次迭代计算得到的转移轨道焦距。详细内容参见上述方法实施例的相关描述,在此不再赘述。
第二判断子模块,用于判断当次迭代计算得到的转移轨道焦距与前一次迭代计算得到的转移轨道焦距的差值是否小于预设值。详细内容参见上述方法实施例的相关描述,在此不再赘述。
制导参数确定子模块,用于若当次迭代计算得到的转移轨道焦距与前一次迭代计算得到的转移轨道焦距的差值小于预设值,则将当次迭代计算得到的转移轨道焦距对应的参数作为制导参数。详细内容参见上述方法实施例的相关描述,在此不再赘述。
实施例3
本发明实施例还提供了一种计算机设备,如图6所示,该设备包括处理器31和存储器32,其中处理器31和存储器32可以通过总线或者其他方式连接,图6中以通过总线30连接为例。
处理器31可以为中央处理器(Central Processing Unit,CPU)。处理器31还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、图形处理器(Graphics Processing Unit,GPU)、嵌入式神经网络处理器(Neural-network ProcessingUnit,NPU)或者其他专用的深度学习协处理器、专用集成电路(Application SpecificIntegrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器32作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本发明实施例中的控制弹道顶点高度的闭路制导方法对应的程序指令/模块(例如,图5所示的获取模块21、第一迭代计算模块22、第二迭代计算模块23和制导模块24)。处理器31通过运行存储在存储器32中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的控制弹道顶点高度的闭路制导方法。
存储器32可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器31所创建的数据等。此外,存储器32可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器32可选包括相对于处理器31远程设置的存储器,这些远程存储器可以通过网络连接至处理器31。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器32中,当被所述处理器31执行时,执行如图1-图4所示实施例中的控制弹道顶点高度的闭路制导方法。
通过获取当前位置点的位置参数、目标位置点的位置参数以及当前位置点到目标位置点的飞行时间以及目标弹道顶点高度;利用预先设置的第一迭代函数基于当前位置点的位置参数、目标位置点的位置参数以及当前位置点到目标位置点的飞行时间进行迭代计算,得到满足最高点约束条件的当前点弹道倾角,其中,所述最高点约束条件为计算得到的弹道顶点高度与所述目标弹道顶点高度相等;利用预先设置的第二迭代函数基于当前位置点的位置参数、目标位置点的位置参数、当前位置点到所述目标位置点的飞行时间以及多个满足最高点约束条件的当前点弹道倾角进行迭代计算,得到满足迭代截止条件的制导参数;利用计算得到的制导参数进行制导控制。通过将弹道顶点高度引入闭路制导计算过程中,直接约束弹道顶点高度,无需进行弹道倾角与弹道顶点高度的转换,简化了计算过程,由于弹道顶点高度可以实时修正直至满足最高点约束条件,因此可以准确的控制顶点高度,保证了制导参数的精准性。
上述计算机设备具体细节可以对应参阅图1至图5所示的实施例中对应的相关描述和效果进行理解,此处不再赘述。
本发明实施例还提供一种非暂态计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的控制弹道顶点高度的闭路制导方法。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-OnlyMemory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(FlashMemory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (12)

1.一种控制弹道顶点高度的闭路制导方法,其特征在于,包括:
获取当前位置点的位置参数、目标位置点的位置参数以及所述当前位置点到所述目标位置点的飞行时间以及目标弹道顶点高度;
利用预 先设置的第一迭代函数基于当前位置点的位置参数、目标位置点的位置参数以及所述当前位置点到所述目标位置点的飞行时间进行迭代计算,得到满足最高点约束条件的当前点弹道倾角,其中,所述最高点约束条件为计算得到的弹道顶点高度与所述目标弹道顶点高度相等;
利用预先设置的第二迭代函数基于当前位置点的位置参数、目标位置点的位置参数、所述当前位置点到所述目标位置点的飞行时间以及多个所述满足最高点约束条件的当前点弹道倾角进行迭代计算,得到满足迭代截止条件的制导参数;
利用计算得到的制导参数进行制导控制。
2.根据权利要求1所述的控制弹道顶点高度的闭路制导方法,其特征在于,所述第一迭代函数为所述第二迭代函数的子函数,所述制导参数包括转移轨道焦距,所述转移轨道焦距由所述第一迭代函数计算得到,所述迭代截止条件为当次迭代计算得到的转移轨道焦距与前一次迭代计算得到的转移轨道焦距的差值小于预设值。
3.根据权利要求1所述的控制弹道顶点高度的闭路制导方法,其特征在于,所述当前位置点的位置参数包括所述当前位置点的地心距、地心纬度和地理经度,所述目标位置点的位置参数包括所述目标位置点的地心距、地心纬度和地理经度,其中,
所述利用预先设置的第一迭代函数基于当前位置点的位置参数、目标位置点的位置参数以及所述当前位置点到所述目标位置点的飞行时间进行迭代计算包括:
利用所述当前位置点的地心纬度和地理经度以及所述目标位置点的地心纬度和地理经度计算得到所述当前位置点地心矢量与所述目标位置点地心矢量的夹角;
利用所述当前位置点的地心距、所述目标位置点的地心距、所述夹角以及给定弹道倾角计算得到转移轨道焦距;
利用所述当前位置点的地心距、所述给定弹道倾角和转移轨道焦距计算得到转移轨道偏心率;
利用所述转移轨道焦距和所述转移轨道偏心率计算得到弹道顶点高度;
判断计算得到的弹道顶点高度与所述目标弹道顶点高度是否相等;
当计算得到的弹道顶点高度与所述目标弹道顶点高度相等时,将所述给定弹道倾角作为所述满足最高点约束条件的当前点弹道倾角。
4.根据权利要求3所述的控制弹道顶点高度的闭路制导方法,其特征在于,所述利用所述当前位置点的地心距、所述给定弹道倾角和转移轨道焦距计算得到转移轨道偏心率,包括:
根据所述给定弹道倾角以及所述转移轨道焦距,确定第一中间变量;
根据所述第一中间变量以及所述转移轨道焦距,确定转移轨道偏心率。
5.根据权利要求4所述的控制弹道顶点高度的闭路制导方法,其特征在于,所述利用预先设置的第二迭代函数基于当前位置点的位置参数、目标位置点的位置参数、所述当前位置点到所述目标位置点的飞行时间以及多个所述满足最高点约束条件的当前点弹道倾角进行迭代计算,包括:
根据所述第一中间变量以及所述当前位置点地心矢量与目标位置点地心矢量的夹角,确定第二中间变量;
根据所述第一中间变量、所述第二中间变量以及所述转移轨道偏心率,分别确定与所述第一中间变量和所述第二中间变量对应的第三中间变量和第四中间变量;
根据所述转移轨道焦距、所述转移轨道偏心率、所述第三中间变量以及所述第四中间变量,确定迭代飞行时间;
根据所述迭代飞行时间,确定所述迭代飞行时间对应的当次迭代计算得到的转移轨道焦距;
判断所述当次迭代计算得到的转移轨道焦距与前一次迭代计算得到的转移轨道焦距的差值是否小于预设值;
若所述当次迭代计算得到的转移轨道焦距与所述前一次迭代计算得到的转移轨道焦距的差值小于预设值,则将所述当次迭代计算得到的转移轨道焦距对应的参数作为制导参数。
6.根据权利要求1所述的控制弹道顶点高度的闭路制导方法,其特征在于,通过以下公式计算得到弹道顶点高度:
Figure 848858DEST_PATH_IMAGE001
其中,
Figure 359474DEST_PATH_IMAGE002
为弹道顶点高度;
Figure 873632DEST_PATH_IMAGE003
为转移轨道焦距;
Figure 613049DEST_PATH_IMAGE004
为转移轨道偏心率,j为第一迭代函 数的迭代次数。
7.一种控制弹道顶点高度的闭路制导装置,其特征在于,包括:
获取模块,用于获取当前位置点的位置参数、目标位置点的位置参数以及所述当前位置点到所述目标位置点的飞行时间以及目标弹道顶点高度;
第一迭代计算模块,用于利用预先设置的第一迭代函数基于当前位置点的位置参数、目标位置点的位置参数以及所述当前位置点到所述目标位置点的飞行时间进行迭代计算,得到满足最高点约束条件的当前点弹道倾角,其中,所述最高点约束条件为计算得到的弹道顶点高度与所述目标弹道顶点高度相等;
第二迭代计算模块,用于利用预先设置的第二迭代函数基于当前位置点的位置参数、目标位置点的位置参数、所述当前位置点到所述目标位置点的飞行时间以及多个所述满足最高点约束条件的当前点弹道倾角进行迭代计算,得到满足迭代截止条件的制导参数;
制导模块,用于利用计算得到的制导参数进行制导控制。
8.根据权利要求7所述的控制弹道顶点高度的闭路制导装置,其特征在于,所述第一迭代计算模块,包括:
夹角计算子模块,用于利用所述当前位置点的地心纬度和地理经度以及所述目标位置点的地心纬度和地理经度计算得到所述当前位置点地心矢量与所述目标位置点地心矢量的夹角;
转移轨道焦距计算子模块,用于利用所述当前位置点的地心距、所述目标位置点的地心距、所述夹角以及给定弹道倾角计算得到转移轨道焦距;
偏心率计算子模块,用于利用所述当前位置点的地心距、所述给定弹道倾角和转移轨道焦距计算得到转移轨道偏心率;
顶点高度计算子模块,用于利用所述转移轨道焦距和所述转移轨道偏心率计算得到弹道顶点高度;
第一判断子模块,用于判断计算得到的弹道顶点高度与所述目标弹道顶点高度是否相等;
弹道倾角确定子模块,用于当计算得到的弹道顶点高度与所述目标弹道顶点高度相等时,将所述给定弹道倾角作为所述满足最高点约束条件的当前点弹道倾角。
9.根据权利要求8所述的控制弹道顶点高度的闭路制导装置,其特征在于,所述偏心率计算子模块,包括:
中间变量确定子模块,用于根据所述给定弹道倾角以及所述转移轨道焦距,确定第一中间变量;
偏心率确定子模块,用于根据所述第一中间变量以及所述转移轨道焦距,确定转移轨道偏心率。
10.根据权利要求9所述的控制弹道顶点高度的闭路制导装置,其特征在于,所述第二迭代计算模块,包括:
第一确定子模块,用于根据所述第一中间变量以及所述当前位置点地心矢量与目标位置点地心矢量的夹角,确定第二中间变量;
第二确定子模块,用于根据所述第一中间变量、所述第二中间变量以及所述转移轨道偏心率,分别确定与所述第一中间变量和所述第二中间变量对应的第三中间变量和第四中间变量;
第三确定子模块,用于根据所述转移轨道焦距、所述转移轨道偏心率、所述第三中间变量以及所述第四中间变量,确定迭代飞行时间;
第四确定子模块,用于根据所述迭代飞行时间,确定所述迭代飞行时间对应的当次迭代计算得到的转移轨道焦距;
第二判断子模块,用于判断所述当次迭代计算得到的转移轨道焦距与前一次迭代计算得到的转移轨道焦距的差值是否小于预设值;
制导参数确定子模块,用于若所述当次迭代计算得到的转移轨道焦距与所述前一次迭代计算得到的转移轨道焦距的差值小于预设值,则将所述当次迭代计算得到的转移轨道焦距对应的参数作为制导参数。
11.一种计算机设备,其特征在于,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行权利要求1-6中任一项所述的控制弹道顶点高度的闭路制导方法。
12.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行权利要求1-6中任一项所述的控制弹道顶点高度的闭路制导方法。
CN202010445798.6A 2020-05-25 2020-05-25 一种控制弹道顶点高度的闭路制导方法、装置及设备 Active CN111348223B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010445798.6A CN111348223B (zh) 2020-05-25 2020-05-25 一种控制弹道顶点高度的闭路制导方法、装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010445798.6A CN111348223B (zh) 2020-05-25 2020-05-25 一种控制弹道顶点高度的闭路制导方法、装置及设备

Publications (2)

Publication Number Publication Date
CN111348223A true CN111348223A (zh) 2020-06-30
CN111348223B CN111348223B (zh) 2020-08-21

Family

ID=71191738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010445798.6A Active CN111348223B (zh) 2020-05-25 2020-05-25 一种控制弹道顶点高度的闭路制导方法、装置及设备

Country Status (1)

Country Link
CN (1) CN111348223B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927851A (zh) * 2012-11-20 2013-02-13 北京理工大学 一种基于轨迹在线规划的末制导方法
CN104392047A (zh) * 2014-11-25 2015-03-04 北京航空航天大学 一种基于平稳滑翔弹道解析解的快速弹道规划方法
CN104615144A (zh) * 2015-01-30 2015-05-13 天津大学 基于目标规划的高超声速飞行器再入轨迹在线优化方法
WO2015162873A1 (ja) * 2014-04-25 2015-10-29 日本電気株式会社 位置姿勢推定装置、画像処理装置及び位置姿勢推定方法
CN105740506A (zh) * 2016-01-21 2016-07-06 中国工程物理研究院总体工程研究所 沿临近空间大范围机动弹道空间包络的扰动引力逼近方法
CN106021628A (zh) * 2015-07-03 2016-10-12 中国运载火箭技术研究院 一种运载火箭垂直返回弹道设计方法
CN107992074A (zh) * 2017-12-07 2018-05-04 大连理工大学 一种基于飞行路径角规划的再入轨迹设计方法
CN109506517A (zh) * 2018-11-21 2019-03-22 中国人民解放军空军工程大学 一种带约束的中制导弹道优化方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927851A (zh) * 2012-11-20 2013-02-13 北京理工大学 一种基于轨迹在线规划的末制导方法
WO2015162873A1 (ja) * 2014-04-25 2015-10-29 日本電気株式会社 位置姿勢推定装置、画像処理装置及び位置姿勢推定方法
CN104392047A (zh) * 2014-11-25 2015-03-04 北京航空航天大学 一种基于平稳滑翔弹道解析解的快速弹道规划方法
CN104615144A (zh) * 2015-01-30 2015-05-13 天津大学 基于目标规划的高超声速飞行器再入轨迹在线优化方法
CN106021628A (zh) * 2015-07-03 2016-10-12 中国运载火箭技术研究院 一种运载火箭垂直返回弹道设计方法
CN105740506A (zh) * 2016-01-21 2016-07-06 中国工程物理研究院总体工程研究所 沿临近空间大范围机动弹道空间包络的扰动引力逼近方法
CN107992074A (zh) * 2017-12-07 2018-05-04 大连理工大学 一种基于飞行路径角规划的再入轨迹设计方法
CN109506517A (zh) * 2018-11-21 2019-03-22 中国人民解放军空军工程大学 一种带约束的中制导弹道优化方法

Also Published As

Publication number Publication date
CN111348223B (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
US10928838B2 (en) Method and device of determining position of target, tracking device and tracking system
US10970873B2 (en) Method and device to determine the camera position and angle
US20210271269A1 (en) Unmanned aerial vehicle path planning method and apparatus and unmanned aerial vehicle
WO2018090308A1 (en) Enhanced localization method and apparatus
CN114679540A (zh) 拍摄方法和无人机
JP7241057B2 (ja) 車両測位方法、装置、電子機器、車両及び記憶媒体
CN108326845B (zh) 基于双目相机和激光雷达的机器人定位方法、装置及系统
CN110969145B (zh) 一种遥感图像匹配优化方法、装置、电子设备及存储介质
US20210376918A1 (en) Satellite control method and apparatus
US20180348766A1 (en) System and Method for Mission Planning and Flight Automation for Unmanned Aircraft
JP2022166248A (ja) 車両の測位方法、装置及び自動運転車両
CN115439531A (zh) 一种获取目标对象的目标空间位置信息的方法与设备
CN112985391B (zh) 一种基于惯性和双目视觉的多无人机协同导航方法和装置
CN115439528A (zh) 一种获取目标对象的图像位置信息的方法与设备
CN109073398B (zh) 一种建立地图的方法、定位方法、装置、终端及存储介质
CN111348223B (zh) 一种控制弹道顶点高度的闭路制导方法、装置及设备
CN114111776A (zh) 定位方法及相关装置
CN111582296B (zh) 一种遥感图像综合匹配方法、装置、电子设备及存储介质
CN117058209B (zh) 一种基于三维地图的飞行汽车视觉图像深度信息计算方法
CN111932637B (zh) 一种车身相机外参自适应标定方法和装置
CN110411449B (zh) 一种航空侦察载荷目标定位方法、系统及终端设备
CN111400902A (zh) 火箭残骸落区的估计方法、装置、电子设备及存储介质
CN111536835B (zh) 一种控制弹道动压的闭路制导方法、装置及设备
CN112163562B (zh) 一种影像重叠区域计算方法、装置、电子设备及存储介质
WO2020202421A1 (ja) 走行経路生成装置および走行経路生成方法、並びに車両制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 100045 1-14-214, 2nd floor, 136 Xiwai street, Xicheng District, Beijing

Patentee after: Beijing Star glory Space Technology Co.,Ltd.

Patentee after: Beijing Star glory Technology Co.,Ltd.

Address before: 329, floor 3, building 1, No. 9, Desheng South Street, Daxing Economic and Technological Development Zone, Beijing 100176

Patentee before: BEIJING XINGJIRONGYAO SPACE TECHNOLOGY Co.,Ltd.

Patentee before: Beijing Star glory Technology Co.,Ltd.

CP03 Change of name, title or address