CN111337221A - Tower type multifunctional automatic soil body accelerating device for geotechnical centrifugal test - Google Patents
Tower type multifunctional automatic soil body accelerating device for geotechnical centrifugal test Download PDFInfo
- Publication number
- CN111337221A CN111337221A CN202010111268.8A CN202010111268A CN111337221A CN 111337221 A CN111337221 A CN 111337221A CN 202010111268 A CN202010111268 A CN 202010111268A CN 111337221 A CN111337221 A CN 111337221A
- Authority
- CN
- China
- Prior art keywords
- acceleration
- baffle
- motor
- type multifunctional
- tower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002689 soil Substances 0.000 title claims abstract description 54
- 238000012360 testing method Methods 0.000 title claims abstract description 25
- 230000001133 acceleration Effects 0.000 claims abstract description 77
- 238000005119 centrifugation Methods 0.000 claims abstract description 4
- 230000003993 interaction Effects 0.000 claims abstract description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000005484 gravity Effects 0.000 description 6
- 238000009434 installation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 229920005372 Plexiglas® Polymers 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013401 experimental design Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M10/00—Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Remote Sensing (AREA)
- Geology (AREA)
- Medicinal Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Fluid Mechanics (AREA)
- Centrifugal Separators (AREA)
Abstract
本发明涉及一种用于土工离心试验的塔式多功能自动化土体加速装置,包括:设置在离心机吊篮上的底板;模型箱,设置在底板上,用于模拟流体‑结构相互作用;加速装置,包括加速通道、挡板、多功能电机,加速通道竖直设置且下端与模型箱的顶部连通,挡板可转动的设置在加速通道中,用于初始承载土样,多功能电机的电机丝杆控制挡板的开合;图像采集装置,包括高速相机和光源,高速相机通过相机架设置在底板上。与现有技术相比,本发明不仅可以还原大变形土体流动地质灾害的高速特征,还具备不同的加速等级,有利于研究冲击速度对致灾机制的影响,可以不借助外部荷载进行加速,充分利用离心机营造的超重力离心场,因此经济性好且操作简便。
The invention relates to a tower-type multifunctional automatic soil acceleration device for geotechnical centrifugation test, comprising: a bottom plate arranged on a basket of a centrifuge; a model box arranged on the bottom plate for simulating fluid-structure interaction; The acceleration device includes an acceleration channel, a baffle, and a multi-function motor. The acceleration channel is vertically arranged and the lower end communicates with the top of the model box. The baffle is rotatably arranged in the acceleration channel for initially carrying soil samples. The motor screw controls the opening and closing of the baffle; the image acquisition device includes a high-speed camera and a light source, and the high-speed camera is arranged on the base plate through the camera frame. Compared with the prior art, the present invention can not only restore the high-speed characteristics of large deformation soil flow geological disasters, but also have different acceleration levels, which is beneficial to study the impact of impact speed on the disaster-causing mechanism, and can be accelerated without external loads. It makes full use of the supergravity centrifugal field created by the centrifuge, so it is economical and easy to operate.
Description
技术领域technical field
本发明涉及工程地质领域,尤其是涉及一种用于土工离心试验的塔式多功能自动化土体加速装置。The invention relates to the field of engineering geology, in particular to a tower-type multifunctional automatic soil acceleration device used for a geotechnical centrifugal test.
背景技术Background technique
近年来,泥石流、碎屑流、高速远程滑坡等地质灾害频发,造成了严重的人员伤亡和经济损失。此类大变形土体流动型灾害一个显著的特点在于超高的运动速度,例如2015年深圳光明新区重大滑坡,最大速度超过20m/s;青川东河口高速远程滑坡平均运动速度超过25m/s。超高的运动速度携带着巨大的冲击能量,因此破坏力极大,造成运动路径上的工程结构大量被冲毁。关于其防治理论与技术一直是全世界范围内的一大难题。基于常规重力的物理模型试验是目前研究此类地质灾害的主要手段,但是存在两个问题:其一,1g重力条件下的缩尺模型难以再现大变形土体流动的高速特征或实现难度较大;其二,常规重力模型试验难以有效反映岩土材料与应力相关的变形特征。离心模型试验通过虚拟的高倍重力场不仅可以还原原型的空间维度,还可以提供与原型相似的应力场,因此有效解决了上述两个问题。但是离心试验目前并未在这一方面得到有效利用,其中一个重要的原因在于缺少用以还原大变形土体流动地质灾害的高速特征的土体加速装置。In recent years, geological disasters such as debris flows, debris flows, high-speed and long-distance landslides have occurred frequently, causing serious casualties and economic losses. A notable feature of such large-deformation soil flow disasters is the ultra-high movement speed. For example, the major landslide in Guangming New District, Shenzhen in 2015, the maximum speed exceeded 20m/s; the average movement speed of Qingchuan Donghekou high-speed remote landslide exceeded 25m/s. The ultra-high movement speed carries huge impact energy, so the destructive force is extremely large, causing a large number of engineering structures on the movement path to be washed away. The theory and technology of its control has always been a major problem in the world. The physical model test based on conventional gravity is the main method to study such geological disasters, but there are two problems: First, the scaled model under the condition of 1g gravity is difficult to reproduce the high-speed characteristics of large deformation soil flow or is difficult to realize ; Second, conventional gravity model tests are difficult to effectively reflect the deformation characteristics of geotechnical materials related to stress. The centrifugal model test can not only restore the spatial dimension of the prototype through the virtual high-power gravity field, but also provide a stress field similar to the prototype, thus effectively solving the above two problems. But the centrifugal test has not been effectively used in this aspect, one of the important reasons is the lack of soil acceleration device to restore the high-speed characteristics of large deformation soil flow geological disasters.
此类装置的难点在于:The difficulty with this type of device is:
(1)目前,世界范围内正在服役的离心机可搭载的模型箱大都较小,在狭小的空间内,土体加速行程十分有限,因此要获得不同水平的土体运动速度难度较大,即功能性比较差;(1) At present, most of the model boxes that can be carried by centrifuges in service around the world are small. In a small space, the acceleration stroke of soil is very limited, so it is difficult to obtain different levels of soil movement speed, that is, poor functionality;
(2)离心机运转时,土体受到巨大的离心力,对土体加速时,附加荷载必须满足几个条件:其一,加载速度要足够快且要自动化控制,挡板开启的同时,荷载瞬间施加;其二,加速完成后,附加荷载要能及时解除;其三,附加荷载的量级至少要与离心力在一个水平。满足以上三个条件要求的加载方式大都实现代价比较大,即经济性不足;(2) When the centrifuge is running, the soil is subjected to a huge centrifugal force. When accelerating the soil, the additional load must meet several conditions: First, the loading speed must be fast enough and automatically controlled. When the baffle is opened, the load is instantaneous. Second, after the acceleration is completed, the additional load must be released in time; third, the magnitude of the additional load must be at least at the same level as the centrifugal force. Most of the loading methods that meet the requirements of the above three conditions are relatively expensive, that is, the economy is insufficient;
(3)高倍重力环境下,对离心机吊篮上的附加装置安全性的要求也会大幅增加,因此,附加装置的固定至关重要,即如何满足安全性要求;(3) In a high-gravity environment, the requirements for the safety of the additional devices on the centrifuge basket will also increase significantly. Therefore, the fixation of the additional devices is very important, that is, how to meet the safety requirements;
(4)超重力环境下,初始状态时土体对挡板的压力较1g重力下呈几十倍的增加,巨大的压力下,如何固定挡板保持其紧锁状态是一大技术难题,而且如何快速开启挡板,防止挡板开启速度过慢影响土体运动是另一大技术难题;(4) Under the super-gravity environment, the pressure of the soil on the baffle in the initial state is dozens of times higher than that under 1 g of gravity. Under the huge pressure, how to fix the baffle to keep its locked state is a major technical problem, and How to quickly open the baffle to prevent the baffle opening speed from affecting the soil movement is another major technical problem;
(5)全封闭的试验环境下,土体加速过程如何实现远程自动化操作也是一项技术难题。(5) In the fully enclosed test environment, how to realize remote automatic operation of soil acceleration process is also a technical problem.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了克服上述现有技术存在的难以还原大变形土体流动地质灾害的高速特征的缺陷而提供一种用于土工离心试验的塔式多功能自动化土体加速装置。The purpose of the present invention is to provide a tower-type multifunctional automatic soil acceleration device for geotechnical centrifugal test in order to overcome the above-mentioned defect of the prior art that it is difficult to restore the high-speed characteristics of large deformation soil flow geological disasters.
本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:
一种用于土工离心试验的塔式多功能自动化土体加速装置,包括设置在离心机吊篮上的底板,还包括:A tower-type multifunctional automatic soil acceleration device for geotechnical centrifugation test, comprising a bottom plate arranged on a basket of a centrifuge, and further comprising:
模型箱,设置在所述底板上,用于模拟流体-结构相互作用;a model box, disposed on the base plate, for simulating fluid-structure interaction;
加速装置,包括加速通道、挡板、多功能电机,所述加速通道竖直设置且下端与所述模型箱的顶部连通,所述挡板可转动的设置在加速通道中,用于初始承载土样,所述多功能电机的电机丝杆控制所述挡板的开合;The acceleration device includes an acceleration channel, a baffle, and a multi-function motor. The acceleration channel is vertically arranged and the lower end communicates with the top of the model box. The baffle is rotatably arranged in the acceleration channel for initially carrying soil. In the same way, the motor screw of the multi-function motor controls the opening and closing of the baffle;
图像采集装置,包括高速相机和光源,所述高速相机通过相机架设置在所述底板上。The image acquisition device includes a high-speed camera and a light source, and the high-speed camera is arranged on the base plate through a camera frame.
优选的,所述挡板设有多个,多个挡板在加速通道中上下依次间隔一定距离设置。Preferably, a plurality of the baffles are provided, and the plurality of baffles are arranged up and down in the acceleration channel at a certain distance in sequence.
优选的,所述多功能电机通过电机承载装置固定在加速通道的一侧,所述电机承载装置上设有若干个不同高度的承载平台。Preferably, the multifunctional motor is fixed on one side of the acceleration channel through a motor carrying device, and a plurality of carrying platforms with different heights are arranged on the motor carrying device.
优选的,所述加速通道在挡板位置的下侧设有用于电多功能电机的电机丝杆通过的开口,在挡板位置的上侧设有投料口。Preferably, the acceleration channel is provided with an opening on the lower side of the baffle position for the motor screw rod of the electric multi-function motor to pass through, and a feeding port is provided on the upper side of the baffle position.
优选的,所述电机丝杆与挡板接触部分为平面。Preferably, the contact portion of the motor lead screw and the baffle is flat.
优选的,所述高速相机通过相机固定装置固定在相机架上,所述相机固定装置包括将高速相机完全包裹的外壳。Preferably, the high-speed camera is fixed on the camera frame by a camera fixing device, and the camera fixing device includes a casing that completely wraps the high-speed camera.
优选的,所述相机架包括竖直方向和水平方向设置的槽钢。Preferably, the camera frame includes channel steel arranged in a vertical direction and a horizontal direction.
优选的,所述光源采用球状或面状光源。Preferably, the light source is a spherical or planar light source.
优选的,所述模型箱上设有透明面,所述模型箱内设有滑面和工程结构。Preferably, the model box is provided with a transparent surface, and the model box is provided with a sliding surface and an engineering structure.
优选的,所述加速装置通过立柱固定在所述底板上,所述立柱与底板之间设有斜撑柱。Preferably, the acceleration device is fixed on the bottom plate through a vertical column, and a diagonal brace is provided between the vertical column and the bottom plate.
与现有技术相比,本发明可用于获得不同流动速度的土体,用以模拟大变形土体高速流动下的冲击致灾过程,为研发此类地质灾害的防灾技术提供理论依据,具有以下优点:Compared with the prior art, the present invention can be used to obtain soil bodies with different flow velocities, used to simulate the impact-induced disaster process under the high-speed flow of large-deformed soil bodies, and provides a theoretical basis for the research and development of disaster prevention technologies for such geological disasters. The following advantages:
1、经济性:本发明充分利用离心机营造的超重力场,通过改变土体加速行程以达到加速效果,避免了使用附加荷载,有效控制了装置的成本;1. Economy: The present invention makes full use of the hypergravity field created by the centrifuge, and achieves the acceleration effect by changing the acceleration stroke of the soil body, avoiding the use of additional loads, and effectively controlling the cost of the device;
2、简便性:本发明所涉及的装置全部通过子部件组装而成,方便拆卸、运输;2. Simplicity: all the devices involved in the present invention are assembled by sub-components, which is convenient for disassembly and transportation;
3、多功能:本发明自主设计了多功能电机以及电机承载装置,通过不同的组合方式控制位于不同高度处的挡板,以获得不同的土体加速效果;3. Multi-function: The invention independently designs a multi-function motor and a motor carrying device, and controls the baffles at different heights through different combinations to obtain different soil acceleration effects;
4、全自动:本发明通过电机丝杆控制挡板的状态,电机可远程控制,一键即可控制开启挡板投料,然后完成加速,以此还原大变形土体流动灾害的高速特性;4. Fully automatic: The present invention controls the state of the baffle through the motor screw, the motor can be controlled remotely, and one key can control the opening of the baffle and feeding, and then complete the acceleration, so as to restore the high-speed characteristics of large deformation soil flow disasters;
5、开门速度快:本发明中挡板在开启时完全依靠离心力,不需要任何辅助措施,因为超重力环境下,挡板受到巨大的引力,开启的瞬间即快速翻转,开启速度可达1g重力下的几十倍。5. Fast opening speed: in the present invention, the baffle completely relies on centrifugal force when opening, and does not require any auxiliary measures, because under the supergravity environment, the baffle is subject to huge gravitational force, and the baffle is turned over quickly at the moment of opening, and the opening speed can reach 1g gravity dozens of times lower.
附图说明Description of drawings
图1为本发明装置整体结构的左侧示意图;Fig. 1 is the left side schematic diagram of the overall structure of the device of the present invention;
图2为本发明装置整体结构的右侧示意图;Fig. 2 is the right side schematic diagram of the overall structure of the device of the present invention;
图3为本发明中多功能电机示意图;3 is a schematic diagram of a multifunctional motor in the present invention;
图4为本发明中电机承载装置示意图;4 is a schematic diagram of a motor carrying device in the present invention;
图5为本发明中加速通道的正面示意图;5 is a schematic front view of an acceleration channel in the present invention;
图6为本发明中加速通道的背面示意图;Fig. 6 is the backside schematic diagram of the acceleration channel in the present invention;
图7为本发明中挡板控制示意图;7 is a schematic diagram of baffle control in the present invention;
图8为本发明中多功能电机与电机承载装置配合使用示意图,其中(a)~(d)分别为控制1~4号挡板时的组合方式;FIG. 8 is a schematic diagram of the multi-functional motor and the motor carrying device in the present invention, wherein (a) to (d) are the combination modes when controlling the No. 1 to No. 4 baffles, respectively;
图9为本发明中投料口的拆分图。FIG. 9 is a disassembled view of the feeding port in the present invention.
图中标注说明:Notes on the figure:
1、底板;2、模型箱;3、滑面;4、工程结构;5、透明面;6、光源固定装置;7、光源;8、相机架;9、相机固定装置;10、高速相机;11A、1号挡板;11B、2号挡板;11C、3号挡板;11D、4号挡板;12、开口;13、立柱;14、斜撑柱;15、立柱固定装置;16、斜撑柱固定装置;17、第一固定条;18、第二固定条;19、加速通道;20、电机承载装置;21、多功能电机;22、电机主机;23、电机丝杆;24、远端连接板;25、近端连接板;26、转轴;27、第一承载平台;28、第二承载平台;29、第三承载平台;30、投料口。1. Bottom plate; 2. Model box; 3. Slip surface; 4. Engineering structure; 5. Transparent surface; 6. Light source fixing device; 7. Light source; 8. Camera stand; 9. Camera fixing device; 10. High-speed camera; 11A, No. 1 bezel; 11B, No. 2 bezel; 11C, No. 3 bezel; 11D, No. 4 bezel; 12, opening; 13, column; 14, diagonal support column; 15, column fixing device; 16, Fixing device for diagonal struts; 17. First fixing strip; 18. Second fixing strip; 19. Acceleration channel; 20. Motor carrying device; 21. Multi-function motor; 22. Motor host; 23. Motor screw; Distal connecting plate; 25, proximal connecting plate; 26, rotating shaft; 27, first bearing platform; 28, second bearing platform; 29, third bearing platform; 30, feeding port.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. This embodiment is implemented on the premise of the technical solution of the present invention, and provides a detailed implementation manner and a specific operation process, but the protection scope of the present invention is not limited to the following embodiments.
如图1、2所示,本申请提出一种用于土工离心试验的塔式多功能自动化土体加速装置,包括设置在离心机吊篮上的底板1,一方面用以固定上部加速装置,另一方面用以扩大离心机吊篮的尺寸;模型箱2,设置在底板1上,包含采用有机玻璃制成的透明面5,用以观察大变形土体流动状态,模型箱2内主要承载滑面3和工程结构4,用以模拟流体-结构相互作用;加速装置,包括加速通道19、挡板(11A~11D)、多功能电机21,加速通道19竖直设置且下端伸入模型箱2内部一定距离,用以约束土样和安装挡板,挡板可转动的设置在加速通道19中,用于初始承载土样,挡板设有多个,多个挡板在加速通道19中上下依次间隔一定距离设置,多功能电机21的电机丝杆23控制挡板的开合状态;图像采集装置,包括高速相机10和光源7,高速相机10用于捕捉模型箱2中大变形土体流动冲击致灾过程,高速相机10通过相机架8设置在底板1上,光源7用于为高速相机10补光。As shown in Figures 1 and 2, the present application proposes a tower-type multifunctional automatic soil acceleration device for geotechnical centrifugation tests, comprising a bottom plate 1 arranged on the centrifuge basket, on the one hand, used to fix the upper acceleration device, On the other hand, it is used to expand the size of the basket of the centrifuge; the model box 2 is arranged on the bottom plate 1 and includes a
底板1可采用高强度铝板制成,能够降低其重量,避免因为重量太大而导致装置安装困难。底板1主要用于固定上部加速装置,固定方式采用高强度螺栓将上部装置锚固在铝板上,此种方式保证了装置的灵活性,可方便拆装。底板1的尺寸可根据实际中使用的离心机吊篮尺寸进行选择,如吊篮尺寸不足,可增大底板1尺寸,用以扩大离心机吊篮的尺寸,增大相机物距,降低对相机镜头的要求,也能避免因镜头选择不当造成焦距较小,如鱼眼镜头所捕捉的图像出现畸变现象,影响结果分析。The bottom plate 1 can be made of high-strength aluminum plate, which can reduce its weight and avoid the difficulty in installation of the device due to its heavy weight. The bottom plate 1 is mainly used to fix the upper acceleration device. The fixing method adopts high-strength bolts to anchor the upper device to the aluminum plate. This method ensures the flexibility of the device and facilitates disassembly and assembly. The size of the bottom plate 1 can be selected according to the size of the centrifuge basket used in practice. If the size of the basket is insufficient, the size of the bottom plate 1 can be increased to expand the size of the centrifuge basket, increase the camera object distance, and reduce the impact on the camera. The requirements of the lens can also avoid the small focal length caused by improper lens selection, such as the distortion of the image captured by the fisheye lens, which affects the analysis of the results.
模型箱2尽量选择长度较大的,保证土体有足够的运动空间,使得一些动力特征如颗粒分选等能够充分表现出来;宽度选择以不影响大变形土体流态为准,一般不宜过大。模型箱2的一侧采用透明有机玻璃制成的透明面5,方便观察大变形土体流动状态。模型箱2内设有滑面3和工程结构4,滑面3固定于模型箱2底部,避免出现晃动的情况;工程结构4可采用微粒混凝土制作,用以研究结构在大变形土体流动冲击作用下的破坏机制。Model box 2 should be selected as long as possible to ensure that the soil has enough movement space, so that some dynamic characteristics such as particle sorting can be fully displayed; big. One side of the model box 2 adopts a
如图3所示,多功能电机21包括电机主机22、电机丝杆23以及连接线若干。电机主机22的上下两侧分别设有电机连接板,距离电机主机22较远的为远端连接板24,距离电机主机22较近的为近端连接板25。圆柱形电机丝杆23头部与挡板的接触部分适当削平为平面,保证能够和挡板紧密贴合。电机主机22可通过导线接入离心机自带的转接系统,然后在控制室可控制电机的运转。为保证经济性与简便性,电机应当方便拆卸,因此采用电机承载装置20辅助进行电机的固定,因此不同位置的挡板都可以使用同一个电机进行控制。As shown in FIG. 3 , the
多功能电机21通过电机承载装置20固定在加速通道19的一侧。如图4所示,电机承载装置20采用钢材制成,保证足够的强度。电机承载装置20设置有若干个不同高度的承载平台,用以固定多功能电机21。电机承载装置20最底部为第一承载平台27,设置在模型箱2的顶部;第一承载平台27之上设有两个相隔一定距离的第二承载平台28,两个第二承载平台28之间设有两个第三承载平台29,第三承载平台29中间设有可让电机主机22穿过的空隙。承载平台与电机连接板进行组合即可控制不同高度位置处的挡板。The
如图5、6所示,加速装置以安全性、经济性、多功能、全自动为设计目标,充分利用离心机营造的超重力离心场作为加速荷载,改变土体在离心场中的运动行程,从而使土体获得不同的速度。通过加速通道19控制土体的运动路径,使其始终与最大离心力的方向一致以获得最佳加速效果。挡板通过转轴26与加速通道19的侧面连接,保证挡板能够绕转轴26自由旋转。加速通道19正面在挡板位置的下侧开有适当大小的开口12,使电机丝杆23能够自由出入,以此控制挡板状态。加速通道19背面在挡板位置的上侧设置投料口30,方便填料。加速通道19的高度可根据实际采用离心机的配置进行确定,挡板的安装位置也可根据试验设计的需要进行自主选择。As shown in Figures 5 and 6, the acceleration device is designed to be safe, economical, multi-functional, and fully automatic. It makes full use of the hypergravity centrifugal field created by the centrifuge as the acceleration load to change the movement of the soil in the centrifugal field. , so that the soil gets different velocities. The movement path of the soil is controlled by the
如图7所示,挡板初始状态时,通过投料口30关闭挡板然后伸长电机丝杆23,电机丝杆23穿过开口12,使挡板刚好压在电机丝杆23头部,重叠量应大于10mm。远程控制电机主机22工作使电机丝杆23收缩,以此控制挡板的开启。挡板和多功能电机21配合使用,安装在不同的高度处,释放土样后即可获得不同的速度。As shown in Fig. 7, when the baffle is in the initial state, the baffle is closed through the feeding
如图8所示,(a)中远端连接板24与第一承载平台27采用高强度螺栓进行固定,此为第一种配置,用以控制1号挡板11A;(b)中翻转多功能电机21,将近端连接板25固定于第一承载平台27可控制2号挡板11B;(c)中,拆下多功能电机21,将远端连接板24固定于较高位置的第三承载平台29,近端连接板25固定于位置较低的第二承载平台28,可控制3号挡板11C;(d)中将近端连接板25与位置较高的第二承载平台28连接,远端连接板24与位置较低的第三承载平台29连接,可控制4号挡板11D。As shown in FIG. 8 , (a) the distal
图像采集装置主要依靠高速相机10捕捉大变形土体流动性态演化过程。为避免高速相机10机身与镜头接口处在高倍重力环境下发生脱落,因此特制相机固定装置9,采用高强度高分子材料按照高速相机10的形状加工一外壳将高速相机10完全包裹,这样相机的整体性得到加强,各部分均与相机固定装置9紧密贴合,确保高速相机10各部分受力均匀。The image acquisition device mainly relies on the high-
相机架8采用槽钢制成,竖直部分直接锚固于底板1上,水平部分采用高强度螺栓与竖直部分连接,因此可自由调节,保证相机高度位置合适。高速相机10固定装置9采用螺栓固定于水平槽钢,可水平调节位置,保证相机水平位置合适。通过调节相机架8可获得最优的拍摄角度。The
光源7宜采用球状或面状光源7,保证光源7散射性较好,避免光线过于集中,影响图像质量。光源7通过光源固定装置6锚固于底板1。The light source 7 should preferably be a spherical or planar light source 7 to ensure good scattering of the light source 7 and avoid excessive concentration of light, which affects the image quality. The light source 7 is anchored to the base plate 1 through the light source fixing device 6 .
加速装置通过立柱13固定在底板1上,立柱13与底板1之间设有斜撑柱14,用来提高装置的整体性,保证试验过程的安全。加速通道19通过第一固定条17与立柱13连接。电机承载装置20的底部固定于模型箱2的顶部,侧面通过第二固定条18固定于立柱13,各部件之间均通过高强度螺栓连接。立柱13与斜撑柱14底部分别通过立柱固定装置15、斜撑柱固定装置16与底板1连接,连接部件采用高强度螺栓。The acceleration device is fixed on the bottom plate 1 through the
如图9所示,填料口包括在加速通道19表面开的凹槽及封盖片。凹槽大小以方便填料为准。封盖片尺寸与凹槽相匹配,保证加速通道19内壁和外壁的平整。As shown in FIG. 9 , the filling port includes a groove and a cover sheet opened on the surface of the
本发明装置的使用流程如下:The use flow of the device of the present invention is as follows:
(1)将底板1放置于离心机吊篮上合适位置固定牢固,再将模型箱2固定于底板1上,注意模型箱2放置位置应事先做好标记,避免模型箱2错位造成上部结构难以组装;(1) Place the bottom plate 1 on the centrifuge basket and fix it firmly, and then fix the model box 2 on the bottom plate 1. Note that the position of the model box 2 should be marked in advance to avoid the upper structure being difficult due to the dislocation of the model box 2. assemble;
(2)确定好滑面3的角度并固定好,保证滑面3侧面与模型箱2内壁紧密贴合,防止土样在滑动过程中发生泄漏,这样会导致后期图像处理过程中难以获得土体运动的真实速度信息;确定好工程结构4的类型、尺寸、放置位置等,然后固定牢固;(2) Determine the angle of the sliding
(3)将挡板先与加速通道19固定牢固,再将固定加速通道19的第一固定条17按照预留的螺栓孔固定在加速通道19上,螺栓全部拧到位,保证二者之间牢固连接;(3) Fix the baffle plate firmly with the
(4)为避免安装好加速通道19后导致固定电机承载装置20的第二固定条18难以安装,在安装立柱13之前,先将第二固定条18通过预留的螺栓孔安装在立柱13上,保证二者之间牢固连接;(4) In order to avoid difficulty in installing the second fixing
(5)为了提高装置的简便性,所有组件都通过螺栓拼接完成,因此为避免螺栓孔太多造成孔位难以精准控制,采用一部分孔位事先加工好,另一部分螺栓孔在安装拼接时根据实际位置的需要再行加工,因此接下来,应将拼接完成的立柱13与加速通道19组装起来,确定好螺栓孔位,现场施工,将二者固定牢固;(5) In order to improve the simplicity of the device, all components are completed by bolt splicing. Therefore, in order to avoid too many bolt holes and it is difficult to precisely control the hole positions, some of the holes are processed in advance, and the other part of the bolt holes are installed and spliced according to the actual situation. The position needs to be processed again, so next, the spliced
(6)确定好立柱13安装的位置,做好标记,然后安装斜撑柱14,并做好斜撑柱14固定端螺栓孔位的标记,接着现场施工加工螺栓孔位,将立柱13与斜撑柱14固定于底板1之上,螺栓全部拧到位;(6) Determine the installation position of the
(7)关闭挡板,根据挡板的位置及电机丝杆23的长度,确定电机承载装置20的位置,做好标记,然后将电机承载装置20放于预定位置,先将底部用螺栓与模型箱2固定牢固,再加工安装侧面的第二固定条18的螺栓孔位,加工完成后将全部螺栓拧到位,保证装置的整体性,至此,加速装置组装完毕;(7) Close the baffle, determine the position of the
(8)关闭1号挡板11A,将多功能电机21按照控制1号挡板11A的方式在预定位置安装完成,检查1号挡板11A与电机丝杆23之间的贴合情况,确认没有问题之后梳理好导线,并将导线接入离心机自带的转接系统,将电机控制端转移至离心机控制室内;(8) Close the No. 1
(9)调试加速装置的运行情况,并做必要的改进;(9) Debug the operation of the acceleration device and make necessary improvements;
(10)安装相机架8、高速相机10以及光源7,并反复调试直至获得最优的拍摄角度和光亮程度;(10) Install the
(11)打开1号挡板11A对应的投料口30,将事先准备好的土样按照落砂法填入加速通道19内,并分层击实直至达到试验设计的密实度,然后关闭投料口30;(11) Open the feeding
(12)检查试验环境,确认无任何安全问题后,启动离心机开始试验,实验结束后,改变多功能电机21的位置,按照上述步骤控制相应位置的挡板,然后即可模拟不同流动速度的大变形土体流动地质灾害。(12) Check the test environment, after confirming that there is no safety problem, start the centrifuge to start the test. After the test is over, change the position of the
本装置具有多功能、全自动特性,安全性较高,不仅可以还原大变形土体流动地质灾害的高速特征,还具备不同的加速等级,有利于研究冲击速度对致灾机制的影响,此外此装置不借助外部荷载进行加速,充分利用离心机营造的超重力离心场,因此具有经济性好且操作简便的特征。The device has the characteristics of multi-function, automatic and high safety. It can not only restore the high-speed characteristics of large-deformed soil flow geological disasters, but also have different acceleration levels, which is beneficial to study the impact of impact speed on the disaster-causing mechanism. The device does not use external loads for acceleration, and makes full use of the hypergravity centrifugal field created by the centrifuge, so it is economical and easy to operate.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010111268.8A CN111337221A (en) | 2020-02-24 | 2020-02-24 | Tower type multifunctional automatic soil body accelerating device for geotechnical centrifugal test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010111268.8A CN111337221A (en) | 2020-02-24 | 2020-02-24 | Tower type multifunctional automatic soil body accelerating device for geotechnical centrifugal test |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111337221A true CN111337221A (en) | 2020-06-26 |
Family
ID=71181754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010111268.8A Pending CN111337221A (en) | 2020-02-24 | 2020-02-24 | Tower type multifunctional automatic soil body accelerating device for geotechnical centrifugal test |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111337221A (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2439524C2 (en) * | 2009-05-21 | 2012-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") | Centrifugal test setup itsu40 |
CN103063403A (en) * | 2012-12-26 | 2013-04-24 | 东北大学 | Adjustable multifunctional circulation test groove platform |
CN106768846A (en) * | 2017-01-23 | 2017-05-31 | 成都理工大学 | Chip flow field simulation experimental rig and chip flow model pilot system |
CN106836321A (en) * | 2017-03-22 | 2017-06-13 | 长江水利委员会长江科学院 | A kind of side slope geotechnical centrifugal model test surface relief arrangement |
US20180087945A1 (en) * | 2016-09-28 | 2018-03-29 | Institute Of Mountain Hazards And Environment, Chinese Academy Of Sciences | Experimental device for debris flow simulation |
CN108387714A (en) * | 2018-03-21 | 2018-08-10 | 河南理工大学 | A kind of high-speed shadowgraph technique simulation test device and test method |
CN208060514U (en) * | 2018-05-09 | 2018-11-06 | 西北综合勘察设计研究院 | A kind of landslide simulation experimental device |
CN109827749A (en) * | 2019-04-11 | 2019-05-31 | 中国工程物理研究院总体工程研究所 | An experimental device for simulating landslides and debris flows applied to geotechnical centrifuges |
CN110160457A (en) * | 2019-04-29 | 2019-08-23 | 清华大学 | Geotechnical centrifugal model test three-dimensional whole field deformation measuring device and method |
CN209387648U (en) * | 2018-09-22 | 2019-09-13 | 浙江大学 | Debris flow experimental device suitable for high hypergravity environment |
-
2020
- 2020-02-24 CN CN202010111268.8A patent/CN111337221A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2439524C2 (en) * | 2009-05-21 | 2012-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") | Centrifugal test setup itsu40 |
CN103063403A (en) * | 2012-12-26 | 2013-04-24 | 东北大学 | Adjustable multifunctional circulation test groove platform |
US20180087945A1 (en) * | 2016-09-28 | 2018-03-29 | Institute Of Mountain Hazards And Environment, Chinese Academy Of Sciences | Experimental device for debris flow simulation |
CN106768846A (en) * | 2017-01-23 | 2017-05-31 | 成都理工大学 | Chip flow field simulation experimental rig and chip flow model pilot system |
CN106836321A (en) * | 2017-03-22 | 2017-06-13 | 长江水利委员会长江科学院 | A kind of side slope geotechnical centrifugal model test surface relief arrangement |
CN108387714A (en) * | 2018-03-21 | 2018-08-10 | 河南理工大学 | A kind of high-speed shadowgraph technique simulation test device and test method |
CN208060514U (en) * | 2018-05-09 | 2018-11-06 | 西北综合勘察设计研究院 | A kind of landslide simulation experimental device |
CN209387648U (en) * | 2018-09-22 | 2019-09-13 | 浙江大学 | Debris flow experimental device suitable for high hypergravity environment |
CN109827749A (en) * | 2019-04-11 | 2019-05-31 | 中国工程物理研究院总体工程研究所 | An experimental device for simulating landslides and debris flows applied to geotechnical centrifuges |
CN110160457A (en) * | 2019-04-29 | 2019-08-23 | 清华大学 | Geotechnical centrifugal model test three-dimensional whole field deformation measuring device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11215542B2 (en) | Rock impact loading-unloading confining pressure test system and usage method therefor | |
CN107313470B (en) | The experimental rig that the preconsolidation simulation Piled-box foundaton Long-term Cyclic Loading that pressurizes acts on | |
CN109613210B (en) | Soil body flowing model test system for large-scale vibration table experiment platform | |
AU2021277732B2 (en) | Large visual direct shear experiment platform for solid filling materials | |
CN108254205A (en) | Tunnel danger stone collapses indoor large comprehensive simulation test platform and method | |
CN104032776B (en) | Centrifugal field Support of Foundation Pit Excavation analog machine | |
CN109100109A (en) | A kind of analog simulation experimental device that can apply controllable shock loading | |
CN118015907B (en) | A fault dislocation simulation test system and test method coupling multiple factors | |
CN105258965B (en) | A kind of dynamic loading test equipment of tunnel dynamic experiment system | |
CN111337646B (en) | A simulation test system for the whole process of dynamic evolution of dam-breaking debris flow | |
CN204266260U (en) | A kind of experimental rig pile foundation being applied to load obliquely on centrifuge | |
JP2008185410A (en) | Centrifuge model test apparatus | |
CN108630085B (en) | A system for simulating house collapse | |
CN111337221A (en) | Tower type multifunctional automatic soil body accelerating device for geotechnical centrifugal test | |
CN110568159A (en) | A Surrounding Rock Failure Simulator for Shallow Tunnels | |
CN116558792B (en) | Testing device and testing method for offshore wind turbine earthquake-wave coupling effect | |
CN217738738U (en) | Simple silt sampling device | |
CN114486145B (en) | A simulation platform and test method for the impact of ultra-high-speed debris flow under weak Coriolis effect | |
CN111127993A (en) | A simplified centrifugal simulation device for reverse fault dislocation | |
CN202649081U (en) | Testing apparatus used for testing motion state of liquefied particles | |
CN116840077A (en) | A test device for simulating the impact damage of layered surrounding rock and its use method | |
CN109030781A (en) | Friction pile soil arching effect evolution mechanism visible model testing device and test method | |
CN214200556U (en) | Translucent Shear Model Box for Seismic Shaker Model Testing | |
CN104675432B (en) | Rigid-flexible-guiding buffering explosion-proof device of vertical air shaft | |
CN209349008U (en) | A medicine sorting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200626 |