CN111330646A - 一种高分子@Cu-MOF复合手性膜催化剂的制备方法和应用 - Google Patents

一种高分子@Cu-MOF复合手性膜催化剂的制备方法和应用 Download PDF

Info

Publication number
CN111330646A
CN111330646A CN202010171483.7A CN202010171483A CN111330646A CN 111330646 A CN111330646 A CN 111330646A CN 202010171483 A CN202010171483 A CN 202010171483A CN 111330646 A CN111330646 A CN 111330646A
Authority
CN
China
Prior art keywords
chi
ipdi
mof composite
mof
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010171483.7A
Other languages
English (en)
Inventor
侯莹
匡轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202010171483.7A priority Critical patent/CN111330646A/zh
Publication of CN111330646A publication Critical patent/CN111330646A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高分子@Cu‑MOF复合手性膜催化剂的制备方法及基于该催化剂作为同时电化学识别酪氨酸和色氨酸对映体的应用,属于纳米材料合成技术、电化学手性识别技术领域。其主要步骤是IPDI溶液与CHI凝胶共混,干燥制得高分子膜;将高分子膜于醋酸铜溶液和配体溶液中循环浸渍,烘箱55℃过夜活化,制得高分子@Cu‑MOF复合手性膜催化剂。该催化剂制备所用原料成本低,反应能耗低,具有很好的工业前景。将该催化剂作为同时电化学识别酪氨酸和色氨酸对映体的应用,具有灵敏度高、设备简单和电化学稳定性高等优势。

Description

一种高分子@Cu-MOF复合手性膜催化剂的制备方法和应用
技术领域
本发明公开了一种高分子@Cu-MOF复合手性膜催化剂的制备方法及基于该催化剂作为同时电化学识别酪氨酸和色氨酸对映体的应用,属于纳米材料合成技术、电化学手性识别技术领域。
背景技术
手性是不对称结构中一个重要的特征。研究不称结构对于理解以对映选择性方式起作用的活生物体中发生的过程至关重要。氨基酸、糖和蛋白质等生物活性化合物是参与这些生物中起作用的物质。药品或食品添加剂中的手性对映体对生物体的作用不同。例如,有机体对消旋药物的对映异构体的分化可能会引起不同的治疗活性,这通常由一种对映异构体的理想治疗活性来解释,而另一种对映异构体则无效或是起不良作用。另一个例子,手性化合物的对映体形式的确定可能是食品工业中质量保证和安全性的宝贵指标。天然产物中D-氨基酸的检测可以评估为细菌污染的迹象。样品中D-或L-乳酸的存在可指示着细菌种类。从另一个角度来看,临床测试结果表明,单一对映体的使用可降低药物剂量,并提高治疗效果。它为我们提供了避免与其他药物发生有害相互作用的机会,并减少了由于不符合预期的对映异构体产生的毒性。在这种情况下,现代药物的设计出现了新的趋势。所以,开发廉价且更方便的技术来进行手性识别以及手性分子的定量化是极为必要的。
电化学手性识别因其成本低、特异性高、灵敏度高、响应时间快和易还原的优点引起广泛的关注。然而,在电化学手性识别中,寻找高灵敏度、高稳定性的手性催化剂成为当前研究热点。
壳聚糖(CHI)是几丁质的脱乙酰基衍生物,是一种光学活性的天然多糖。 CHI的优异性能,如亲水性、生物相容性、生物降解性、抗菌性和无毒性,使其成为识别对映异构体的手性选择剂的理想选择。壳聚糖中葡萄糖胺单元的胺基是金属离子的重要螯合位点,可用于某些金属纳米材料的合成。壳聚糖基的MOF材料为为新兴生物纳米复合材料。该纳米复合材料的物理、光学和电子特性,与其尺寸、表面形貌均具有密切的关联。
发明内容
本发明的技术任务之一是为了弥补现有技术的不足,提供了一种高分子@Cu-MOF复合手性膜催化剂的制备方法,该催化剂制备所用原料成本低,反应能耗低,具有很好的工业前景。
本发明的技术任务之二是提供所述催化剂的用途,即将高分子@Cu-MOF复合手性膜催化剂作为同时电化学识别酪氨酸和色氨酸对映体的应用,具有灵敏度高、设备简单和电化学稳定性高等优势。
为实现上述目的,本发明采用的技术方案如下:
1. 一种高分子@Cu-MOF复合手性膜催化剂的制备方法
将0.18-0.22 mmol壳聚糖CHI和1.0-1.5 mmol的醋酸铜与7-10 mL 质量分数为2%的冰醋酸共混,搅拌25-30 min,得到CHI凝胶;
将0.18-0.22 μL异佛尔酮二异氰酸酯IPDI溶于由1-2mL水和8-9 mL N, N-二甲基甲酰胺DMF组成的混合溶剂中,180 W超声2-4 min,得到IPDI溶液;
将1.0-1.5 mmol的醋酸铜与10-12 mL水共混,180 W超声2-4 min,得到澄清的醋酸铜溶液;
将1.0-1.5 mmol 的配体H2sala和1.0-1.2 mmol 的LiOH加入到10-12 mL水中,搅拌25-30 min, 得到澄清的配体溶液;
将IPDI溶液与CHI凝胶共混,继续搅拌10 min,将混合液倒入2.0 cm × 4.0 cm
聚四氟乙烯模具中,55 ℃干燥12 h,得到CHI-IPDI膜;
将CHI-IPDI膜于醋酸铜溶液中浸渍3 min后,室温干燥3-10 min,再浸渍在配体溶液中浸渍3 min后,室温干燥3-10 min;按此顺序循环10-30 次,得到CHI-IPDI@Cu-MOF复合手性膜材料,将CHI-IPDI@Cu-MOF复合手性膜材料于烘箱55 ℃过夜活化,得到活化的CHI-IPDI@Cu-MOF复合手性膜材料,即高分子@Cu-MOF复合手性膜催化剂。
所述高分子,是CHI-IPDI膜,是IPDI中的高活性异氰酸酯基-NCO与CHI中的氨基和羟基化学反应生成的手性高分子交联膜基材复合材料。
所述高分子@Cu-MOF复合手性膜催化剂,是CHI-IPDI膜与Cu2+配位形成的高分子交联膜基材负载Cu-MOF纳米晶体的复合材料。
所述Cu-MOF,其基本结构单元为[{Cu(sala)(H2O)}2]·2H2O,是由一个Cu2+,一个配体sala2-,2个主体水分子和2个客体水分子构成;所述sala2-,其构造式如下:
Figure 978492DEST_PATH_IMAGE001
2.如上所述的制备方法制备的高分子@Cu-MOF复合手性膜催化剂作为同时电化学识别酪氨酸和色氨酸对映体的应用,步骤如下:
(1)配制标准溶液
采用浓度为0.5 M的KOH水溶液,分别配制系列浓度的D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸标准溶液;
(2)构建高分子@Cu-MOF复合手性膜电化学传感器
将高分子@Cu-MOF复合手性膜催化剂为工作电极、铂片为辅助电极、甘汞电极为参比电极,构建高分子@Cu-MOF复合手性膜电化学传感器;
(3)检测D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸对映体
采用线性扫描循环伏安法,分别测定步骤(1)中各浓度的D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸标准溶液的电流值,绘制基于高分子@Cu-MOF复合手性膜电化学传感器的D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸对映体的工作曲线;
将含有D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸混合物的待测样品溶液代替标准溶液,测得D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸对映体的识别效果和含量。
该手性传感器的电化学数据同时出现了D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸的氧化峰,实现了同时对酪氨酸和色氨酸对映体的电化学手性识别,对D-酪氨酸和L-酪氨酸对映体溶液的检测范围为0.1~2.3×10-8 g/L;对D-色氨酸和L-色氨酸对映体溶液的检测范围为0.1~3.2×10-6 g/L。
本发明有益的技术效果如下:
(1)本发明高分子@Cu-MOF复合手性膜催化剂的制备,是IPDI溶液与CHI凝胶共混,干燥制得CHI-IPDI膜;将CHI-IPDI膜于醋酸铜溶液和配体溶液中循环浸渍,烘箱55 ℃过夜活化,制得CHI-IPDI@Cu-MOF复合手性膜催化剂。该催化剂制备所用原料成本低,反应能耗低,具有很好的工业前景。
(2)本发明基于该高分子@Cu-MOF复合手性膜催化剂,含手性壳聚糖CHI分子中的多活性氨基、羟基位点,还含有因CHI-IPDI膜与Cu2+配位形成的负载Cu-MOF纳米晶手性位点。因IPDI中的高活性异氰酸酯基-NCO与CHI中的氨基和羟基化学反应生成的手性高分子交联,使得该复合手性膜不需要其他辅助材料例如玻碳电极、金属网等作为支撑电极,该CHI-IPDI@Cu-MOF复合手性膜作为同时电化学识别酪氨酸和色氨酸对映体的应用,电化学数据同时出现了D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸的氧化峰,实现了同时对酪氨酸和色氨酸对映体的电化学手性识别。该传感器具有灵敏度高、催化效率高、设备简单和电化学稳定性高等优势。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅局限于实施例,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
实施例1 一种高分子@Cu-MOF复合手性膜催化剂的制备方法
将0.18 mmol壳聚糖CHI和1.0 mmol的醋酸铜与7 mL 质量分数为2%的冰醋酸共混,搅拌2min,得到CHI凝胶;
将0.18 μL异佛尔酮二异氰酸酯IPDI溶于由1mL水和8 mL N, N-二甲基甲酰胺DMF组成的混合溶剂中,180 W超声2 min,得到IPDI溶液;
将1.0 mmol的醋酸铜与10 mL水共混,180 W超声2 min,得到澄清的醋酸铜溶液;
将1.0 mmol 的配体H2sala和1.0 mmol 的LiOH加入到10 mL水中,搅拌25 min, 得到澄清的配体溶液;
将IPDI溶液与CHI凝胶共混,继续搅拌10 min,将混合液倒入2.0 cm × 4.0 cm
聚四氟乙烯模具中,55 ℃干燥12 h,得到CHI-IPDI膜;
将CHI-IPDI膜于醋酸铜溶液中浸渍3 min后,室温干燥3 min,再浸渍在配体溶液中浸渍3 min后,室温干燥3 min;按此顺序循环10 次,得到CHI-IPDI@Cu-MOF复合手性膜材料,将CHI-IPDI@Cu-MOF复合手性膜材料于烘箱55 ℃过夜活化,得到活化的CHI-IPDI@Cu-MOF复合手性膜材料,即高分子@Cu-MOF复合手性膜催化剂。
实施例2一种高分子@Cu-MOF复合手性膜催化剂的制备方法
将0.20 mmol壳聚糖CHI和1.3 mmol的醋酸铜与8.5 mL 质量分数为2%的冰醋酸共混,搅拌27 min,得到CHI凝胶;
将0.20 μL异佛尔酮二异氰酸酯IPDI溶于由1.5 mL水和8.5 mL N, N-二甲基甲酰胺DMF组成的混合溶剂中,180 W超声3 min,得到IPDI溶液;
将1.2 mmol的醋酸铜与11 mL水共混,180 W超声3 min,得到澄清的醋酸铜溶液;
将1.2 mmol 的配体H2sala和1.1 mmol 的LiOH加入到11 mL水中,搅拌27 min, 得到澄清的配体溶液;
将IPDI溶液与CHI凝胶共混,继续搅拌10 min,将混合液倒入2.0 cm × 4.0 cm
聚四氟乙烯模具中,55 ℃干燥12 h,得到CHI-IPDI膜;
将CHI-IPDI膜于醋酸铜溶液中浸渍3 min后,室温干燥7 min,再浸渍在配体溶液中浸渍3 min后,室温干燥7 min;按此顺序循环20 次,得到CHI-IPDI@Cu-MOF复合手性膜材料,将CHI-IPDI@Cu-MOF复合手性膜材料于烘箱55 ℃过夜活化,得到活化的CHI-IPDI@Cu-MOF复合手性膜材料,即高分子@Cu-MOF复合手性膜催化剂。
实施例3一种高分子@Cu-MOF复合手性膜催化剂的制备方法
将0.22 mmol壳聚糖CHI和1.5 mmol的醋酸铜与10 mL 质量分数为2%的冰醋酸共混,搅拌30 min,得到CHI凝胶;
将0.22 μL异佛尔酮二异氰酸酯IPDI溶于由2mL水和9 mL N, N-二甲基甲酰胺DMF组成的混合溶剂中,180 W超声4 min,得到IPDI溶液;
将1.5 mmol的醋酸铜与12 mL水共混,180 W超声4 min,得到澄清的醋酸铜溶液;
将1.5 mmol 的配体H2sala和1.2 mmol 的LiOH加入到12 mL水中,搅拌30 min, 得到澄清的配体溶液;
将IPDI溶液与CHI凝胶共混,继续搅拌10 min,将混合液倒入2.0 cm × 4.0 cm
聚四氟乙烯模具中,55 ℃干燥12 h,得到CHI-IPDI膜;
将CHI-IPDI膜于醋酸铜溶液中浸渍3 min后,室温干燥10 min,再浸渍在配体溶液中浸渍3 min后,室温干燥10 min;按此顺序循环30 次,得到CHI-IPDI@Cu-MOF复合手性膜材料,将CHI-IPDI@Cu-MOF复合手性膜材料于烘箱55 ℃过夜活化,得到活化的CHI-IPDI@Cu-MOF复合手性膜材料,即高分子@Cu-MOF复合手性膜催化剂。
实施例4 CHI-IPDI膜构造
实施例1-3所述CHI-IPDI膜,是IPDI中的高活性异氰酸酯基-NCO与CHI中的氨基和羟基化学反应生成的手性高分子交联膜基材复合材料。
实施例5 高分子@Cu-MOF复合手性膜催化剂构造
实施例1-3所述高分子@Cu-MOF复合手性膜催化剂,是CHI-IPDI膜与Cu2+配位形成的高分子交联膜基材负载Cu-MOF纳米晶体的复合材料。
实施例6 Cu-MOF结构单元
实施例1-3所述Cu-MOF,其基本结构单元为[{Cu(sala)(H2O)}2]·2H2O,是由一个Cu2+,一个配体sala2-,2个主体水分子和2个客体水分子构成;所述sala2-,其构造式如下:
Figure 430333DEST_PATH_IMAGE002
实施例7
实施例1制备的高分子@Cu-MOF复合手性膜催化剂作为同时电化学识别酪氨酸和色氨酸对映体的应用,步骤如下:
(1)配制标准溶液
采用浓度为0.5 M的KOH水溶液,分别配制系列浓度的D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸标准溶液;
(2)构建高分子@Cu-MOF复合手性膜电化学传感器
将高分子@Cu-MOF复合手性膜催化剂为工作电极、铂片为辅助电极、甘汞电极为参比电极,构建高分子@Cu-MOF复合手性膜电化学传感器;
(3)检测D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸对映体
采用线性扫描循环伏安法,分别测定步骤(1)中各浓度的D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸标准溶液的电流值,绘制基于高分子@Cu-MOF复合手性膜电化学传感器的D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸对映体的工作曲线;
将含有D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸混合物的待测样品溶液代替标准溶液,测得D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸对映体的识别效果和含量。
实施例8
步骤同实施例7,仅将实施例1中的高分子@Cu-MOF复合手性膜催化剂替换为实施例2中的高分子@Cu-MOF复合手性膜催化剂。
实施例9
步骤同实施例7,仅将实施例1中的高分子@Cu-MOF复合手性膜催化剂替换为实施例3中的高分子@Cu-MOF复合手性膜催化剂。
实施例10
实施例7-9制得的手性传感器的电化学数据同时出现了D-酪氨酸、L-酪氨酸、D-色氨酸和L-色氨酸的氧化峰,实现了同时对酪氨酸和色氨酸对映体的电化学手性识别,对D-酪氨酸和L-酪氨酸对映体溶液的检测范围为0.1~2.3×10-8 g/L;对D-色氨酸和L-色氨酸对映体溶液的检测范围为0.1~3.2×10-6 g/L。

Claims (5)

1.一种高分子@Cu-MOF复合手性膜催化剂的制备方法,其特征在于,步骤如下:
将0.18-0.22 mmol壳聚糖CHI和1.0-1.5 mmol的醋酸铜与7-10 mL 质量分数为2%的冰醋酸共混,搅拌25-30 min,得到CHI凝胶;
将0.18-0.22 μL异佛尔酮二异氰酸酯IPDI溶于由1-2mL水和8-9 mL N, N-二甲基甲酰胺DMF组成的混合溶剂中,180 W超声2-4 min,得到IPDI溶液;
将1.0-1.5 mmol的醋酸铜与10-12 mL水共混,180 W超声2-4 min,得到澄清的醋酸铜溶液;
将1.0-1.5 mmol 的配体H2sala和1.0-1.2 mmol 的LiOH加入到10-12 mL水中,搅拌25-30 min, 得到澄清的配体溶液;
将IPDI溶液与CHI凝胶共混,继续搅拌10 min,将混合液倒入2.0 cm × 4.0 cm
聚四氟乙烯模具中,55 ℃干燥12 h,得到CHI-IPDI膜;
将CHI-IPDI膜于醋酸铜溶液中浸渍3 min后,室温干燥3-10 min,再浸渍在配体溶液中浸渍3 min后,室温干燥3-10 min;按此顺序循环10-30 次,得到CHI-IPDI@Cu-MOF复合手性膜材料,将CHI-IPDI@Cu-MOF复合手性膜材料于烘箱55 ℃过夜活化,得到活化的CHI-IPDI@Cu-MOF复合手性膜材料,即高分子@Cu-MOF复合手性膜催化剂。
2.根据权利要求1所述的一种高分子@Cu-MOF复合手性膜催化剂的制备方法,其特征在于,所述高分子,是CHI-IPDI膜,是IPDI中的高活性异氰酸酯基-NCO与CHI中的氨基和羟基化学反应生成的手性高分子交联膜基材复合材料。
3.根据权利要求1所述的一种高分子@Cu-MOF复合手性膜催化剂的制备方法,其特征在于,所述高分子@Cu-MOF复合手性膜催化剂,是CHI-IPDI膜与Cu2+配位形成的高分子交联膜基材负载Cu-MOF纳米晶体的复合材料。
4.根据权利要求1所述的一种高分子@Cu-MOF复合手性膜催化剂的制备方法,其特征在于,所述Cu-MOF,其基本结构单元为[{Cu(sala)(H2O)}2]·2H2O,是由一个Cu2+,一个配体sala2-,2个主体水分子和2个客体水分子构成;所述sala2-,其构造式如下:
Figure 620739DEST_PATH_IMAGE001
5.根据权利要求1所述的制备方法制备的高分子@Cu-MOF复合手性膜催化剂作为同时电化学识别酪氨酸和色氨酸对映体的应用。
CN202010171483.7A 2020-03-12 2020-03-12 一种高分子@Cu-MOF复合手性膜催化剂的制备方法和应用 Pending CN111330646A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010171483.7A CN111330646A (zh) 2020-03-12 2020-03-12 一种高分子@Cu-MOF复合手性膜催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010171483.7A CN111330646A (zh) 2020-03-12 2020-03-12 一种高分子@Cu-MOF复合手性膜催化剂的制备方法和应用

Publications (1)

Publication Number Publication Date
CN111330646A true CN111330646A (zh) 2020-06-26

Family

ID=71176307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010171483.7A Pending CN111330646A (zh) 2020-03-12 2020-03-12 一种高分子@Cu-MOF复合手性膜催化剂的制备方法和应用

Country Status (1)

Country Link
CN (1) CN111330646A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433234A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种膜催化剂,其制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250312A (zh) * 2013-06-28 2014-12-31 株式会社大赛璐 壳聚糖类苯基氨基甲酸酯-脲基衍生物的制备方法
US20170173572A1 (en) * 2014-03-28 2017-06-22 The University Of Chicago Chiral ligand-based metal-organic frameworks for broad-scope asymmetric catalysis
CN106893003A (zh) * 2017-03-08 2017-06-27 西北师范大学 一种基于壳聚糖的手性电化学传感器材料的制备及应用
CN107442170A (zh) * 2017-09-05 2017-12-08 济南大学 一种手性mof复合材料催化剂及其制备方法和应用
CN110433867A (zh) * 2019-08-30 2019-11-12 济南大学 一种手性Cu/Zn-MOF/NiF纳米复合催化剂的制备方法和应用
CN110467821A (zh) * 2019-08-30 2019-11-19 济南大学 一种Co-MOF/壳聚糖/氧化石墨烯手性复合材料的制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250312A (zh) * 2013-06-28 2014-12-31 株式会社大赛璐 壳聚糖类苯基氨基甲酸酯-脲基衍生物的制备方法
US20170173572A1 (en) * 2014-03-28 2017-06-22 The University Of Chicago Chiral ligand-based metal-organic frameworks for broad-scope asymmetric catalysis
CN106893003A (zh) * 2017-03-08 2017-06-27 西北师范大学 一种基于壳聚糖的手性电化学传感器材料的制备及应用
CN107442170A (zh) * 2017-09-05 2017-12-08 济南大学 一种手性mof复合材料催化剂及其制备方法和应用
CN110433867A (zh) * 2019-08-30 2019-11-12 济南大学 一种手性Cu/Zn-MOF/NiF纳米复合催化剂的制备方法和应用
CN110467821A (zh) * 2019-08-30 2019-11-19 济南大学 一种Co-MOF/壳聚糖/氧化石墨烯手性复合材料的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNYI ZHANG ET AL.: "Preparation and enantioseparation of copolymer chiral stationary phases with(1R,2R)-(+)-1,2-dephenylethylendiamine as the chiral building block", 《JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433234A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种膜催化剂,其制备方法及应用

Similar Documents

Publication Publication Date Title
Anicuta et al. Fourier transform infrared (FTIR) spectroscopy for characterization of antimicrobial films containing chitosan
Brondani et al. Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline
Lu et al. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid
Schuhmann Electron-transfer pathways in amperometric biosensors. Ferrocene-modified enzymes entrapped in conducting-polymer layers
de Oliveira et al. Immobilization procedures for the development of a biosensor for determination of hydroquinone using chitosan and gilo (Solanum gilo)
Tan et al. Glucose biosensor based on glucose oxidase immobilized in sol–gel chitosan/silica hybrid composite film on Prussian blue modified glass carbon electrode
Ranganathan et al. Biocompatible chitosan-pectin polyelectrolyte complex for simultaneous electrochemical determination of metronidazole and metribuzin
Fernandes et al. Biosensor based on laccase immobilized on microspheres of chitosan crosslinked with tripolyphosphate
CN109265698B (zh) 一种mof/碳点手性杂化材料及其制备方法和应用
Şenel Simple method for preparing glucose biosensor based on in-situ polypyrrole cross-linked chitosan/glucose oxidase/gold bionanocomposite film
EA018643B1 (ru) Раствор металлсодержащего хелатного полимера и его применение (варианты)
KR20010064276A (ko) 효소전극센서 및 그 제조방법
Mo et al. Electrochemical recognition for tryptophan enantiomers based on 3, 4, 9, 10-perylenetetracarboxylic acid–chitosan composite film
CN111330646A (zh) 一种高分子@Cu-MOF复合手性膜催化剂的制备方法和应用
CN114134138B (zh) 一种用于农药检测的离子液体聚合物基电化学修饰材料及其制备方法和应用
CN110887884A (zh) 一种柔性电化学葡萄糖传感器及其制备方法
CN111398381A (zh) 一种识别非电活性氨基酸对映体的电化学识别方法
CN1869674A (zh) 琼脂糖水凝胶固定化酶电极及其制备方法和应用
CN1719243A (zh) 用于检测黄曲霉毒素及杂色曲霉素的生物传感器电极及其制备方法
Hui et al. A glucose biosensor based on immobilization of glucose oxidase in chitosan network matrix
Başak et al. Immobilization of catalase on chitosan and amino acid-modified chitosan beads
Chekin et al. Tyrosine sensing on phthalic anhydride functionalized chitosan and carbon nanotube film coated glassy carbon electrode
Chen et al. Characterization of natural chitosan membranes from the carapace of the soldier crab Mictyris brevidactylus and its application to immobilize glucose oxidase in amperometric flow-injection biosensing system
CN110095520B (zh) 一种基于Cs/Ce-MOF电化学传感器用工作电极
CN107138051A (zh) 一步原位反应制备抗菌醋酸纤维素反渗透膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200626