CN111323198A - 一种船尾外形旋转弹马格努斯力滚转导数获取方法 - Google Patents

一种船尾外形旋转弹马格努斯力滚转导数获取方法 Download PDF

Info

Publication number
CN111323198A
CN111323198A CN202010162669.6A CN202010162669A CN111323198A CN 111323198 A CN111323198 A CN 111323198A CN 202010162669 A CN202010162669 A CN 202010162669A CN 111323198 A CN111323198 A CN 111323198A
Authority
CN
China
Prior art keywords
stern
derivative
magnus
length
bullet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010162669.6A
Other languages
English (en)
Other versions
CN111323198B (zh
Inventor
石磊
豆国辉
王利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Aerospace Aerodynamics CAAA
Original Assignee
China Academy of Aerospace Aerodynamics CAAA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Aerospace Aerodynamics CAAA filed Critical China Academy of Aerospace Aerodynamics CAAA
Priority to CN202010162669.6A priority Critical patent/CN111323198B/zh
Publication of CN111323198A publication Critical patent/CN111323198A/zh
Application granted granted Critical
Publication of CN111323198B publication Critical patent/CN111323198B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

一种船尾外形旋转弹马格努斯力滚转导数获取方法,主要步骤包括:根据旋转弹几何特征参数和来流条件计算得到等效长度雷诺数、马赫数和几何外形影响因子,最后代入解析估算公式得到全弹的马格努斯滚转导数。本发明针对船尾外形的旋转弹,采用等效长度思想,利用解析估算公式快速高效的得到全弹的马格努斯力滚转导数,相较于非定常计算方法,本发明大大节省了计算资源和计算机时。

Description

一种船尾外形旋转弹马格努斯力滚转导数获取方法
技术领域
本发明涉及一种船尾外形旋转弹马格努斯力滚转导数获取方法,属于旋转弹气动设计技术领域,用于榴弹或火箭炮发射的炮弹的气动外形设计和气动性能预测。
背景技术
炮弹、火箭弹、导弹等战术武器为提高其飞行稳定性,通常采用绕体轴旋转的的方式飞行。但是当自转和攻角同时存在时,由于流场边界层的畸变和离心力因素,弹体附近流场相对于攻角平面不对称,因此会产生垂直于攻角平面的力,通常称为马格努斯力、也叫面外力。马格努斯力会影响弹丸的航向动稳定性,降低打靶精度。因此,准确预测旋转弹的马格努斯特性成为弹道计算、弹箭设计和稳定性研究的必然要求。
马格努斯特性是由于弹体纵-横向耦合运动而产生的一类复杂的气动现象,其诱发的因素较多,如非对称湍流剪切层、非对称旋涡、非对称转捩等。针对这类复杂的气动问题,国内外采用的研究手段主要有两种,一是风洞试验,二是数值计算。风洞试验具有代表性的工作包括:①Leroy在Arnold Engineering and Development Center(AEDC)研究了马赫数0.2~2.5,攻角0~90°的舵身组合外形旋转气动特性,并发现在攻角大于20°、马赫数小于1.5时滚转阻尼和马格努斯特性随旋转速率呈现非线性(Leroy M J.ExperimentalRoll-Damping,Magnus,and Static Stability Characteristics of Two SlenderMissile Configurations at High Angles of Attack(0to 90Deg)and Mach Number0.2Through 2.5[R].AEDC-TR-76-58,1976.),②雷娟棉利用风洞试验研究了马赫数0.4~4.5,攻角-2~12°条件下正、反装卷弧形尾翼及平板型尾翼的面外力特性,认为卷弧形尾翼反装且反向旋转是抑制旋转火箭弹锥形失稳的有效措施(雷娟棉,吴甲生.尾翼稳定大长径比无控旋转火箭弹的锥形运动与抑制[J].空气动力学学报,2005,23(4):455-458)。对于数值计算,发明人所在团队做了大量的工作:采用完全时间相关的非定常Navier-Strokes方程,研究了马赫数2.5,攻角-5~40°翼身组合弹箭马格努斯特性及产生机理,发现切应力产生的马格努斯力只占压力产生马格努斯力的1%;研究了不同湍流模型模拟的旋转弹近壁湍流粘性系数差异,发现一方程湍流模型和两方程湍流模型的物面摩阻系数最大相差35%(①石磊,杨云军,周伟江.两种湍流模型在高速旋转翼身组合弹箭中的对比研究[J],力学学报,2017,49(1):84-92.②石磊,刘周,杨云军,周伟江.弯曲和旋转修正的湍流模型在旋转翼身组合弹箭中的应用研究[J].空气动力学学报,2018,36(4):620-625)。
针对旋转弹开展的试验,主要为了获得指定状态下的全弹马格努斯特性,进而研究其随马赫数、转速和攻角的变化规律;数值计算集中在典型状态下的流场分析,进而研究马格努斯效应产生的机理。不管是试验还是数值计算,都需要花费大量的时间和费用。经过课题组大量的调研和研究,认为建立一种适用于旋转弹马格努斯特性的快速计算方法,能够快速高效的预估旋转弹的马格努斯特性,可为旋转弹设计和旋转弹气动特性评估提供有效支撑,同时也是风洞试验和数值计算的有力补充。而关于旋转弹气动特性方面的专利,只搜索到2013年闫晓勇利用试验数据进行气动参数辨识的发明(专利名称:一种旋转弹气动参数获取方法,专利号:CN201310143748.2,发明人:闫晓勇,钟凌伟),与本发明相关的专利还未能查到。
发明内容
本发明的技术解决问题:克服现有技术的不足,提出一种旋转弹马格努斯力滚转导数快速计算方法,通过解析的经验公式预测旋转弹在飞行状态或风洞状态下的马格努斯特性。
本发明的技术解决方案:一种船尾外形旋转弹马格努斯力滚转导数获取方法,
1)获取旋转弹的几何尺寸,包括弹长L、表面积S、弹径D、弹头长度Lh、船尾长度LB、船尾锥角θ;
2)获取飞行状态参数,包括单位长度雷诺数Re和马赫数Ma;
3)计算得到等效长度雷诺数;
4)使用马赫数按照线性公式计算得到马赫数影响因子ηM
5)根据步骤1)得到的旋转弹的几何尺寸,计算得到几何外形影响因子ηgeom
6)根据有效长度雷诺数Lval、马赫数影响因子ηM、几何外形影响因子ηgeom,计算得到马格努斯力滚转导数
Figure BDA0002406346510000031
所述步骤3)计算得到等效长度雷诺数的具体过程为:用旋转弹表面积除以弹径与圆周率的乘积得到旋转弹的等效长度Lval;将单位长度雷诺数Re乘以等效长度Lval,得到等效长度雷诺数Reval
所述步骤4)马赫数影响因子ηM的计算公式如下:
ηM=1-0.0927Ma。
所述步骤6)几何外形影响因子ηgeom的计算公式如下:
Figure BDA0002406346510000032
所述步骤6)马格努斯力滚转导数
Figure BDA0002406346510000033
计算的计算公式如下:
Figure BDA0002406346510000034
本发明与现有技术相比的优点在于:
(1)本发明获得解析估算公式可以体现马格努斯力滚转导数的非线性特征,与传统的线性估算公式相比,准确性更好;
(2)本发明无需进行风洞试验和非定常计算,可以快速高效的估算
出马格努斯力滚转导数,大大的节省费用和计算时间。
附图说明:
图1为本发明流程图。
图2为船尾外形旋转弹几何外形图,图中L表示弹长、D表示弹径、Lh表示弹头长度、LB表示船尾长度、θ表示船尾锥角。
具体实施方式:
具体实施方式如下:
本示例选取的外形、风洞条件和实验结果均来自于文献(Leroy M.ExperimentalMagnus Characteristics of Ballistic Projectiles with ana without Anti-magusVanes at Mach Numbers 1.5through 2.5[R].AD771807,1973)
(1)获取旋转弹的几何尺寸,包括弹长L、表面积S、弹径D、弹头长度Lh、船尾长度LB、船尾锥角θ,表1给出三种外形的几何尺寸。
表1几何尺寸表
外形 L(mm) D(mm) S(mm<sup>2</sup>) L<sub>h</sub>(mm) L<sub>B</sub>(mm) θ(deg)
1 728 139.6 2.4369E+5 384.8 69.8 5
2 686.8 132.08 2.1153E+5 363.2 132.08 7.5
3 853.44 142.24 2.5928E+5 504.85 320.04 3.72
(2)获取飞行(风洞)状态参数,单位长度雷诺数Re和马赫数Ma。表2给出3个飞行(风洞)状态的单位雷诺数和马赫数。
表2飞行(风洞)状态参数
状态 Ma Re
a 1.5 12.96E+6
b 2 13.19E+6
c 2.5 13.19E+6
(3)等效长度雷诺数计算
Reval=Re·Lval
其中,等效参数Lval=S/(πD),表3给出不同风洞状态下3个外形的等效长度雷诺数。
表3等效长度雷诺数表
Figure BDA0002406346510000051
(4)马赫数影响因子计算
采用公式(i)计算马赫数影响因子ηM
ηM=1-0.0927Ma (i)
表4给出不同风洞状态对应的马赫数影响因子。
表4马赫数影响因子表
风洞 η<sub>M</sub>
a 0.8609
b 0.8146
c 0.7682
(5)几何外形影响因子计算
采用公式(ii)计算几何外形影响因子ηgeom
Figure BDA0002406346510000052
表5给出不同风洞状态对应的马赫数影响因子。
表5几何外形影响因子表
Figure BDA0002406346510000053
Figure BDA0002406346510000061
(6)马格努斯力滚转导数计算
采用下面的公式(iii)计算马格努斯力滚转导数
Figure BDA0002406346510000062
Figure BDA0002406346510000063
表6给出不同风洞状态和外形下马格努斯力滚转导数的估算结果和文献结果,对比文献结果和本发明估算结果,最大相对误差≤12%。
表6马格努斯力滚转导数对照表
Figure BDA0002406346510000064
本发明未详细描述内容为本领域技术人员公知技术。

Claims (5)

1.一种船尾外形旋转弹马格努斯力滚转导数获取方法,其特征在于:
1)获取旋转弹的几何尺寸,包括弹长L、表面积S、弹径D、弹头长度Lh、船尾长度LB、船尾锥角θ;
2)获取飞行状态参数,包括单位长度雷诺数Re和马赫数Ma;
3)计算得到等效长度雷诺数;
4)使用马赫数按照线性公式计算得到马赫数影响因子ηM
5)根据步骤1)得到的旋转弹的几何尺寸,计算得到几何外形影响因子ηgeom
6)根据有效长度雷诺数Lval、马赫数影响因子ηM、几何外形影响因子ηgeom,计算得到马格努斯力滚转导数
Figure FDA0002406346500000011
2.根据权利要求1所述的一种船尾外形旋转弹马格努斯力滚转导数获取方法,其特征在于:所述步骤3)计算得到等效长度雷诺数的具体过程为:用旋转弹表面积除以弹径与圆周率的乘积得到旋转弹的等效长度Lval;将单位长度雷诺数Re乘以等效长度Lval,得到等效长度雷诺数Reval
3.根据权利要求1所述的一种船尾外形旋转弹马格努斯力滚转导数获取方法,其特征在于:所述步骤4)马赫数影响因子ηM的计算公式如下:
ηM=1-0.0927Ma。
4.根据权利要求1所述的一种船尾外形旋转弹马格努斯力滚转导数获取方法,其特征在于:所述步骤6)几何外形影响因子ηgeom的计算公式如下:
Figure FDA0002406346500000021
5.根据权利要求1所述的一种船尾外形旋转弹马格努斯力滚转导数获取方法,其特征在于:所述步骤6)马格努斯力滚转导数
Figure FDA0002406346500000022
计算的计算公式如下:
Figure FDA0002406346500000023
CN202010162669.6A 2020-03-10 2020-03-10 一种船尾外形旋转弹马格努斯力滚转导数获取方法 Active CN111323198B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010162669.6A CN111323198B (zh) 2020-03-10 2020-03-10 一种船尾外形旋转弹马格努斯力滚转导数获取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010162669.6A CN111323198B (zh) 2020-03-10 2020-03-10 一种船尾外形旋转弹马格努斯力滚转导数获取方法

Publications (2)

Publication Number Publication Date
CN111323198A true CN111323198A (zh) 2020-06-23
CN111323198B CN111323198B (zh) 2022-01-04

Family

ID=71171442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010162669.6A Active CN111323198B (zh) 2020-03-10 2020-03-10 一种船尾外形旋转弹马格努斯力滚转导数获取方法

Country Status (1)

Country Link
CN (1) CN111323198B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112268682A (zh) * 2020-10-15 2021-01-26 中国空气动力研究与发展中心高速空气动力研究所 一种飞行器单自由度摇滚特性预测方法
CN112904898A (zh) * 2021-01-28 2021-06-04 上海机电工程研究所 旋转弹箭非定常气动响应特性评估方法和系统
CN114861292A (zh) * 2022-03-22 2022-08-05 电子科技大学 一种基于深度学习的飞行器几何特征和参数联合建模方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721682B1 (en) * 2002-01-07 2004-04-13 The United States Of America As Represented By The Secretary Of The Navy Aerodynamic prediction using semiempirical prediction techniques and methods therefor
KR20090117147A (ko) * 2008-05-08 2009-11-12 국방과학연구소 풍동실험장치 및 풍동실험방법
CN103307938A (zh) * 2013-04-23 2013-09-18 北京电子工程总体研究所 一种旋转弹气动参数获取方法
CN204495534U (zh) * 2015-03-20 2015-07-22 中国航天空气动力技术研究院 用于马格努斯效应风洞试验的强迫旋转装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721682B1 (en) * 2002-01-07 2004-04-13 The United States Of America As Represented By The Secretary Of The Navy Aerodynamic prediction using semiempirical prediction techniques and methods therefor
KR20090117147A (ko) * 2008-05-08 2009-11-12 국방과학연구소 풍동실험장치 및 풍동실험방법
CN103307938A (zh) * 2013-04-23 2013-09-18 北京电子工程总体研究所 一种旋转弹气动参数获取方法
CN204495534U (zh) * 2015-03-20 2015-07-22 中国航天空气动力技术研究院 用于马格努斯效应风洞试验的强迫旋转装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴承清: "超音速旋转炮弹马格努斯特性的一种工程计算", 《兵工学报弹箭分册》 *
石磊等: "弯曲和旋转修正的湍流模型在旋转翼身组合弹箭中的应用研究", 《空气动力学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112268682A (zh) * 2020-10-15 2021-01-26 中国空气动力研究与发展中心高速空气动力研究所 一种飞行器单自由度摇滚特性预测方法
CN112904898A (zh) * 2021-01-28 2021-06-04 上海机电工程研究所 旋转弹箭非定常气动响应特性评估方法和系统
CN114861292A (zh) * 2022-03-22 2022-08-05 电子科技大学 一种基于深度学习的飞行器几何特征和参数联合建模方法
CN114861292B (zh) * 2022-03-22 2024-01-26 电子科技大学 一种基于深度学习的飞行器几何特征和参数联合建模方法

Also Published As

Publication number Publication date
CN111323198B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
CN111323198B (zh) 一种船尾外形旋转弹马格努斯力滚转导数获取方法
US10317178B2 (en) Optimized subsonic projectiles and related methods
CN108680333B (zh) 一种旋转空气动力效应风洞试验的旋转驱动装置
CN102302989B (zh) 共用喉部的超声速喷管及其设计方法
CN104101478A (zh) 一种结构物入水实验发射装置
CN116305591B (zh) 一种制导火箭力热迭代联合优化总体设计方法
CN109668478B (zh) 一种空气炮用稳定推进弹托及其设计方法
CN109376364B (zh) 基于扩展卡尔曼滤波的高速旋转弹气动参数辨识方法
CN105486177A (zh) 一种能实现大机动的靶机
CN112286059B (zh) 一种具有攻击角和视场角约束的二阶前置角重塑制导方法
Li et al. A Study of Aerodynamic Characteristics of an Anti-tank Missile
WO2014046569A1 (ru) Способ оптимизации аэродинамических характеристик протяженных тем с оживальной или заостренной носовой частью
de Briey et al. Influence of the Transonic Crossing for Precision Ammunition
Xu et al. Ballistic characteristics of rocket projectile with deflection nose
Noh et al. A numerical study on the effect of the tail wing of a projectile on the base drag
Hao et al. Research on aerodynamic characteristics and correction ability of two-dimension trajectory correction projectile of different canard rudder profile shape
Ma et al. Aerodynamic Optimal Design of Guided Bullets Based on Improved Orthogonal Test
Chen et al. Analysis of aerodynamic characteristics of a modular assembled missile with canard rudder and arc tail
FENG et al. Numerical study of asymmetrical load on the body of dual-spin projectile
ZHOU et al. Research on aerodynamics of a novel smart bullet
RU2166178C1 (ru) Вращающийся сверхзвуковой реактивный снаряд
CN109162833B (zh) 一种适应横向过载的喷管接头防热环及加工方法
CN107804473B (zh) 一种改善前缘热环境的变后掠舵或翼的设计方法
RU2451902C1 (ru) Вращающийся реактивный снаряд
CN105460199A (zh) 减小高超声速飞行器与空气摩擦升温表面处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant