CN111315083A - 检测led串中缺陷的方法以及具有至少一个led串的电子电路 - Google Patents

检测led串中缺陷的方法以及具有至少一个led串的电子电路 Download PDF

Info

Publication number
CN111315083A
CN111315083A CN201911268876.3A CN201911268876A CN111315083A CN 111315083 A CN111315083 A CN 111315083A CN 201911268876 A CN201911268876 A CN 201911268876A CN 111315083 A CN111315083 A CN 111315083A
Authority
CN
China
Prior art keywords
string
voltage
led
current
operating parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911268876.3A
Other languages
English (en)
Other versions
CN111315083B (zh
Inventor
M·帕玛托
D·萨托利
G·昂特维杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN111315083A publication Critical patent/CN111315083A/zh
Application granted granted Critical
Publication of CN111315083B publication Critical patent/CN111315083B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/23Responsive to malfunctions or to light source life; for protection of two or more light sources connected in series
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/58Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving end of life detection of LEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/52Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits in a parallel array of LEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/54Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits in a series array of LEDs

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

公开了一种方法和电子电路。该方法包括:检测包括被监控的LED串(3)的电子电路中的至少一个操作参数;基于检测的至少一个操作参数调整电压阈值(S3TH);检测被监控的LED串(3)两端的串电压(V3);将串电压(V3)与电压阈值(S3TH)进行比较;以及基于比较来检测LED串(3)中的缺陷。

Description

检测LED串中缺陷的方法以及具有至少一个LED串的电子电路
技术领域
本公开总体上涉及用于检测LED(发光二极管)串中的缺陷的方法以及具有至少一个LED串的电子电路。
背景技术
包括串联连接的多个LED的LED串被广泛用于各种应用中的照明目的,诸如汽车的内部或外部照明或者建筑物的照明(仅举几例)。LED串可通过生成被LED串接收的驱动电流的驱动电路来驱动。驱动电路还可以被配置为监控LED串并且检测LED串中的一个LED的缺陷。缺陷可包括串中的一个LED的短路。
检测具有至少一个LED串的系统中的缺陷可包括:测量LED串两端的电压,并将测量的电压与有系统制造商预定义且存储在系统的存储器中的阈值进行比较。这种类型的缺陷检测基于以下假设:当串中的每个LED都点亮时,LED串两端的电压(串电压)高于阈值,而当一个LED中发生短路时,串电压降至阈值以下。串电压基本上与串中LED的数量和LED的正向电压成比例。一个LED中发生短路时的串电压的降低基本上与串中的LED数量n的倒数成比例。例如,当串包括n=2个LED且其中一个LED发生短路时,串电压下降约50%(=1/n);又例如,当串包括n=10个LED且其中一个LED发生短路时,串电压下降约10%(=1/n)。必须调整阈值,使得检测到由一个LED中的短路所引起的电压变化,并且可由温度变化而导致的串电压的变化不会错误地导致检测到缺陷。具体地,当LED的数量增加并且必须可靠地检测到的串电压的变化减小时,适当地选择阈值具有挑战性。
因此,需要一种方法,其能够可靠地检测LED串,特别是具有五个以上LED的LED串中的缺陷。
发明内容
一个示例涉及一种方法。该方法包括:检测包括被监控的LED串的电子电路中的至少一个操作参数;基于检测的至少一个操作参数来调整电压阈值;检测被监控的LED串两端的串电压;将串电压与电压阈值进行比较;以及基于比较来检测LED串(3)中的缺陷。
另一示例涉及一种电子电路。该电子电路包括被监控的LED串和缺陷检测电路。缺陷检测电路被配置为检测电子电路中的至少一个操作参数,以基于检测的至少一个操作参数来调整电压阈值,检测被监控的LED串两端的串电压,将串电压与电压阈值进行比较,以及基于比较来检测LED串中的缺陷。
附图说明
下面参考附图解释示例。附图用于说明特定原理,因此仅示出理解这些原理所必需的方面。附图未按比例绘制。在附图中,相同的参考标号表示相似的特征。
图1示出了包括LED串的电子电路的一个示例;
图2更详细示出了LED串的一个示例;
图3示意性示出了在无故障状态下以及在发生LED短路之后的LED串两端的电压(串电压);
图4示意性示出了串电压对LED串的温度的依赖性;
图5示意性示出了串电压对通过LED串的电流的依赖性;
图6示意性示出了串电压对LED串的LED的正向电压的依赖性;
图7示出了用于检测LED串中的缺陷的方法的一个示例的流程图;
图8示出了具有LED串和自适应缺陷检测电路的电子电路的电路图;
图9示出了图8所示的电路布置的修改;
图10示出了被配置为基于通过LED串的电流调整阈值的缺陷检测电路的一个示例;
图11示出了被配置为基于LED串的温度调整阈值的缺陷检测电路的一个示例;
图12示出了被配置为基于通过LED串的电流和LED串的温度调整阈值的缺陷检测电路的一个示例;
图13示出了被配置为基于通过LED串的电流调整阈值的缺陷检测电路的另一示例;
图14示出了被配置为基于通过LED串的电流调整阈值的缺陷检测电路的另一示例;
图15示出了被配置为基于LED串中的LED的正向电压调整阈值的缺陷检测电路的一个示例;
图16示出了被配置为基于电子电路中的另一LED串的串电压调整阈值的缺陷检测电路的一个示例;以及
图17示出了图16所示的电子电路的修改。
具体实施方式
参考附图进行以下详细描述。附图是说明书的一部分,并且出于说明的目的示出如何使用和实施本发明的示例。应当理解,除非另有明确说明,否则本文所述的各种实施例的特征可以彼此组合。
图1示出了电子电路的一个示例,该电子电路包括LED串3和被配置为检测LED串3中的缺陷的缺陷检测电路4。参考图1,LED串3包括第一电路节点31和第二电路节点32,下文也被称为第一串节点31和第二串节点32。以下将第一串节点31与第二串节点32之间的电压V3称为串电压。缺陷检测电路4被配置为检测串电压V3,以便检测LED串中的缺陷。如图1所示,为了检测串电压V3,缺陷检测电路4可连接至第一和第二串节点31、32。
LED串3包括多个(两个或更多个)LED。在图2中示出LED串3的一个示例。参照图2,LED串3可包括串联连接在第一串节点31和第二串节点32之间的多个LED 31-3m
当电子电路在操作时,LED串3可接收串电流I3,其是在第一串节点31和第二串节点32之间流动的电流。根据串电流I3的电流水平,串3的LED 31-3m点亮或不点亮。以下,“接通”和“断开”分别与“点亮”和“不点亮”可互换地使用。
LED串3中的LED的总数可以在2至50的范围内,特别是2至30。仅出于说明的目的,图2所示的LED串3包括m=6个串联连接的LED 31-3m
根据一个示例,在LED串3中串联连接的LED 31-3m是相同类型的LED,使得当串电流I3高于使得LED 31-3m点亮的阈值时,在给定串电流I3下,LED 31-3m以基本相同的强度发光。
在LED串3的操作期间,可能发生缺陷。可能发生的一种类型的缺陷是一个单个LED的短路。以下将这种类型的缺陷简称为LED短路。在LED短路的情况下,缺陷(短路)LED断开,而LED串3中的其余LED仍然接通。LED串3的LED 31-3m的一个33中的LED短路的示例在图2中用粗虚线表示。在该示例中,当高于特定电流阈值的串电流I3流过LED串3时,LED 33断开,而其余的31-32、34-3m接通。
参照图2,串电压V3本质上由串3中的各个LED 31-3m两端的电压V31-V3m之和给出。当将串电流I3驱动到串3中而使得LED 31-3m点亮时以及当LED 31-3m为相同类型时,LED电压V31-V3m基本相同。因此,当串3中没有缺陷时,串电压V3基本上与串联连接的LED 31-3m的数量m成比例。当发生LED短路且串电流I3不变时,串电压V3下降,因为短路的LED(在图2所示示例中为33)两端的电压(在图2所示示例中为V33)大幅下降为零。
参照图1,可通过与LED串3串联连接的电流源2生成串电流I3,其中包括LED串3和电流源2的串联电路连接在输入电压VIN可用的输入节点11、12之间。电流源2可以是根据输入信号S2而接通或断开的开关电流源。根据一个示例,电流源2被配置为生成当输入信号S2具有接通电平时使LED串3中的LED点亮的串电流I3以及生成串电流I3的电流电平,使得当输入信号S2具有断开电平时,LED 31-3m断开。
基本上,检测LED短路可包括:检测串电压V3,以及将串电压V3与电压阈值V3TH进行比较。这在图3中示出,图3示意性示出了串电压V3的时序图。在该示例中,LED 31-3m中的一个LED短路发生在第一时间点t1处,使得在第一时间点t1处,串电压V3从第一电压电平V3N(下文称为无故障电平)下降到第二电压电平V3D(下文称为缺陷电平)。无故障电平V3N基本由V3N=m·V3F给出,其中V3F是当LED接通(点亮)时并且LED 31-3m为相同类型时,每个LED31-3m两端的电压。以下,该电压VF也被称为正向电压。缺陷电平基本由V3D=(m-1)·V3F给出,使得无故障电平与缺陷电平之间的差V3N-V3D基本由V3F给出。为了检测这种类型的缺陷,选择电压阈值V3TH,以使其在无故障电平V3N和缺陷电平V3D之间,即,V3N>V3TH>V3D。然而,由于几个原因,串电压V3可能变化,使得可能发生以下情况:将串电压V3与固定电压阈值V3TH进行比较不会使得能够可靠地检测LED短路。下面解释一些示例。
参照图4,串电压V3取决于LED串3的温度,其中串电压V3随着温度T降低而降低。图4示意性示出了取决于温度T的无故障电平V3N和缺陷电平V3D。在该示例中,当温度T低于温度阈值T1时,无故障电平V3N和缺陷电平V3D中的每一个都高于阈值V3TH,使得在低于温度阈值T1的温度下不可能检测到LED短路。此外,在高温下,无故障电平V3N可下降到阈值V3TH以下,使得仅在特定温度范围内通过将串电压V3与固定阈值V3TH进行比较来可靠地检测LED短路。
参考图5,串电压V3还取决于串电流I3,其中串电压V3随着串电流I3的增加而增加。图5示出了取决于串电流I3的无故障电平V3N和缺陷电平V3D。参照图5,当串电流I3高于电流阈值I31时,缺陷电平V3D变得高于固定阈值V3TH。因此,当通过电流变化使串电流I3上升到高于电流阈值I31时,不再可能可靠地检测LED短路。
此外,参考图6,串电压V3还取决于LED串3中的LED 31-3m的正向电压VF。正向电压VF是在使LED点亮的特定串电流下的单个LED两端的电压。由于LED的制造工艺的变化,不同的LED可具有不同的正向电压VF。在一些情况下,当组装LED串时,选择具有基本相同的正向电压的LED,使得具有相同数量的LED并且接收具有相同水平的串电流的不同LED串可具有明显不同的串电压V3。因此,在一些LED串中,在给定串电流I3下的缺陷电平可高于阈值电压V3TH,使得在这些LED串中不可能进行可靠的LED短路检测。
图7示出了一种方法的流程图,尽管存在参考图4至图6解释类型的串电压V3变化,但该方法仍能够可靠地检测LED串3中的LED短路。如图7所示,该方法包括检测包括LED串3的电子电路中的至少一个操作参数(101)。在下文中,该LED串3也被称为被监控LED串。该方法还包括:基于至少一个检测的操作参数来调整电压阈值(102);测量被监控LED串两端的串电压(103);将串电压与电压阈值进行比较(104);以及基于比较检测LED串中的缺陷(105)。通过检测至少一个操作参数并基于至少一个检测的操作参数来调整电压阈值,该方法对于不是由于LED短路引起的串电压的变化(诸如参照图4至图6解释的类型的变化)是鲁棒的。
图8示出了被配置为根据图7所示的方法进行操作的缺陷检测电路4的一个示例。参考图8,缺陷检测电路4包括比较器41和电压阈值生成电路42,其中比较器41接收代表串电压V3的信号S3和代表电压阈值V3TH的阈值信号S3TH,并且被配置为根据串电压信号S3与电压阈值信号S3TH的比较输出缺陷信号SDEF。根据一个示例,比较器41被配置为生成缺陷信号SDEF,使得缺陷信号SDEF具有正常电平或缺陷电平,其中缺陷电平指示已经检测到缺陷。根据一个示例,比较器41被配置为每当由串电压信号S3表示的串电压V3下降到由电压阈值信号S3TH表示的电压阈值V3TH以下时生成缺陷电平。
根据一个示例,比较器41在反相输入端接收串电压信号S3,并且在非反相输入端接收电压阈值信号S3TH,使得只要串电压信号S3下降到低于电压阈值信号S3TH时,缺陷信号SDEF都具有低信号电平。然而,这只是一个示例。反相和非反相输入或比较器41可以改变,使得缺陷信号SDEF的高信号电平代表缺陷。
仅作为示例,在图8所示的示例中,串电压信号S3与串电压V3相同。等效地,电压阈值信号S3TH可与电压阈值V3TH相同。然而,这仅是一个示例。根据另一示例,串电压信号S3与串电压V3不相同,而是以任何方式表示串电压V3。等效地,电压阈值信号S3TH可以与阈值电压V3TH不同,但是以任何方式表示电压阈值V3TH。然而,在每种情况下,将串电压信号S3与电压阈值信号S3TH进行比较等同于将串电压V3与电压阈值V3TH进行比较。
在图8所示的示例中,串电压V3参考电子电路的第二输入节点12,其中第二输入节点12可以是电子电路的接地节点。在该示例中,电压阈值生成电路42也连接至第二输入节点12,并且电压阈值信号S3TH是参考第二输入节点12的信号。然而,这仅是一个示例。根据图9所示的另一示例,串电压V3是第一输入节点11和第二串节点32之间的电压。在该示例中,电压阈值生成电路42生成电压阈值信号S3TH,使得该信号参考第一输入节点11。
参照图8和图9,电压阈值生成电路42接收操作参数信号SOP,其中操作参数信号SOP表示电子电路的至少一个操作参数。
根据一个示例,检测到的操作参数是串电流I3。在该示例中,操作参数信号SOP代表串电流I3。在图10中示出了缺陷检测电路4,其被配置为检测串电流I3并且基于检测到的串电流I3生成电压阈值信号S3TH。在该示例中,电压阈值生成电路42包括电流传感器45,该电流传感器被配置为感测串电流I3并提供代表串电流I3的感测电流ISENSE。电流传感器45可以是被配置为感测串电流I3并提供代表串电流I3的电流ISENSE的任何种类的电流传感器。根据一个示例,感测电流ISENSE与串电流I3成比例。在该示例中,电压阈值生成电路42被配置为生成电压阈值信号S3TH(其与电压阈值V3TH相同),使得电压阈值信号S3TH随着感测电流ISENSE的增加而增加,因此随着串电流I3的增加而增加。以这种方式,在诸如LED短路的缺陷的检测中可以补偿由于串电流I3的变化而引起的串电压V3的变化。
在图10所示的示例中,电压阈值V3TH是电阻器44两端的电压,其中由电流源43提供的恒定电流I43和感测电流ISENSE通过该电阻器44驱动。因此,电压阈值V3TH与由恒定电流I43和感测电流ISENSE给出的总电流成比例,并且电压阈值V3TH随着代表串电流I3的感测电流ISENSE的增加而增加。
根据另一示例,操作参数是LED串3的温度,使得操作参数信号SOP表示LED串3的温度。在图11中示出了缺陷检测电路4,其被配置为根据LED串3的温度生成电压阈值信号S3TH。在该示例中,电压阈值生成电路42包括温度传感器51,该温度传感器51被配置为感测LED串3的温度并输出代表串温度的温度信号STEMP。在该示例中,该温度信号STEMP是操作参数信号SOP。控制电路52接收温度信号STEMP并根据温度信号STEMP驱动可变电流源53。根据一个示例,控制电路52被配置为驱动电流源53,使得由电流源53提供的电流ITEMP随着由温度信号STEMP表示的串温度的增加而增加。缺陷检测电路包括已经参考图10解释的恒定电流源43和电阻器44,其中可变电流源53与电阻器44并联连接。以这种方式,通过电阻器的电流I44与恒定电流I44和依赖于温度的电流ITEMP之间的差成比例,并且随着依赖于温度的电流ITEMP的增加而减小。以这种方式,电压阈值信号S3TH随着依赖于温度的电流ITEMP的增加而降低,即,随着串温度的升高而降低。以这种方式,如图3所示,可以生成由电压阈值信号S3TH表示的电压阈值V3TH,使其处于无故障电平V3N和缺陷电平V3D之间,即使这些电压电平随着温度升高而减小。因此,可以在诸如LED短路的缺陷的检测中补偿由于串温度的变化而引起的串电压V3的变化。
图12示出了缺陷检测电路4的一个示例,该缺陷检测电路4被配置为生成取决于串电流I3和串温度二者的电压阈值信号S3TH。该缺陷检测电路4包括图10所示的电流传感器54以及图11所示的温度传感器51、控制电路52和可变电流源43。在该示例中,通过电阻器44的电流I44通过由电流源43提供的恒定电流I43加上感测电流ISENSE减去依赖于温度的电流ITEMP来给出。以这种方式,电压阈值信号S3TH随着传感器电流ISENSE的增加而增加,并且随着依赖于温度的电流ITEMP的增加而减小。以这种方式,可以生成电压阈值信号S3TH,使得尽管串温度和串电流I3发生变化,但是该电压阈值信号S3TH都在无故障电平V3N和缺陷电平V3D之间。以这种方式,可以在诸如LED短路的缺陷的检测中补偿由于串电流I3的变化和串温度的变化而引起的串电压V3的变化。
在图10所示的示例中,电压阈值信号S3TH随着串电流I3连续变化,因此感测电流ISENSE变化。在图13中示出了缺陷检测电路4的另一示例,其被配置为生成电压阈值信号S3TH,使得电压阈值信号S3TH随着串电流I3的增加而逐步增加。在该示例中,开关控制器47接收感测电压VSENSE,其中感测电压VSENSE代表串电流I3。根据一个示例,感测电压VSENSE与串电流I3成比例。感测电压VSENSE可以通过参考图10解释的类型的电流传感器45以及与电流传感器45串联连接的电阻器46(其接收感测电流ISENSE以使电阻器46两端的电压与检测电流ISENSE成比例,并形成检测电压VSENSE)生成。
可包括模数转换器(ADC)的开关控制器47接收感测电压VSENSE并根据感测电压VSENSE驱动多个开关472-475中的一个。这些开关472-475中的每一个都连接至电阻分压器441-445的相应抽头,其中该分压器441-445串联连接到电流源43,并且其中电压阈值信号S3TH跨相应电阻分压器441-445可用。电阻分压器441-445包括串联连接在电流源43和参考节点(其在该示例中为第二输入节点12)之间的多个电阻器441-445。电流源43和电阻分压器441-445之间的电路节点连接至比较器41的接收电压阈值信号S3TH的输入(在该示例中,该比较器输入是非反相输入)。多个电阻器441-445中的两个连接至每个抽头,其中由控制器控制的每个开关472-475连接在相应抽头和参考节点之间。“参考节点”是参考电压阈值信号S3TH的电路节点。在接通状态下,这些开关472-475中的每个开关旁路电阻器441-445中的至少一个电阻器。例如,开关472旁路电阻器442-445,开关473旁路电阻器443-445,依此类推。因此,可以通过接通开关472-475中的相应一个来改变比较器41的输入与参考节点之间的电阻分压器的电阻,因此可以改变电压阈值信号S3TH。在图13所示的示例中,电阻分压器441-445在每个开关472-475断开时具有最高电阻,并且在开关472接通时具有最低电阻。基本上,控制器47被配置为驱动开关472-475,使得通过接通开关472-475中的相应一个而旁路的电阻器的数量随着电流感测信号VSENSE的增加而减少。以这种方式,电压阈值信号S3TH随着电流感测信号VSENSE的增加而以离散步长增加。
在图13所示的示例中,开关控制器47接收代表串电流I3的信号VSENSE,以便根据串电流调整电压阈值信号S3TH。然而,这仅是一个示例。根据另一示例(未示出),控制器47接收温度信号STEMP并驱动开关472-475,使得通过接通开关472-475中的相应一个开关而旁路的电阻器的数量随着温度信号STEMP增加而增加。以这种方式,电压阈值信号S3TH随着温度信号STEMP的增加而以离散步长减小。
在图13所示的示例中,测量串电流I3,并且基于测量的串电流I3调整电压阈值信号S3TH。图14示出了图13所示电路的修改。在图14所示的示例中,电流源2是受控电流源,其提供取决于控制信号的串电流I3。更具体地,图14所示的电流源2包括并联连接的三个子源2A、2B、2C。控制信号包括三个子信号S2A、S2B、S2C,其中这些子信号中的每个子信号控制子源2A、2B、2C中的一个。这些电流源2A、2B、2C中的每个电流源被配置为提供子电流I3A、I3B、I3C,其中串电流I3通过由电流源2A、2B、2C提供的子电流I3A、I3B、I3C的总和给出。根据一个示例,由子源2A、2B、2C中的每个子源提供的电流为零或预定电流水平,其中该预定电流水平对于子源2A、2B、2C中的每个子源可以相同,或者可以不同。由一个子源2A、2B、2C提供的电流是零还是具有不同于零的预定电流水平取决于相应的控制信号S2A、S2B、S2C。使用图14所示类型的电流源2,可以生成2N-1个不同的电流水平,每一个都与零不同。N是子源"-C的数量,其中在图14所示的示例中,N=3。
参照图14,缺陷检测电路4接收控制信号S2A、S2B、S2C,并根据这些控制信号S2A-S2C调整电压阈值信号S3TH。更具体地,逻辑电路61接收控制信号S2A、S2B、S2C,并且根据控制信号S2A-S2C通过旁路电阻分压器441-444中的两个或更多个来调整电压阈值信号S3TH。图14所示的布置包括串联连接的2N-1个电阻器和2N-2个开关472-477,使得可以调整2N-1个不同的电阻,因此可以调整电压阈值信号S3TH的2N-1个不同的电平。电压阈值信号S3TH的这些电平中的每一个都与串电流I3的不同电流水平中的一个相关联。
图15示出了根据另一示例的缺陷检测电路4。在该示例中,缺陷检测电路4被配置为检测LED串3的多个LED 31-3m中的一个的正向电压VF3m,并基于检测到的正向电压VF3m来调整电压阈值信号S3TH。根据一个示例,生成电压阈值信号S3TH,使得电压阈值信号S3TH随着检测的正向电压VF3m的增加而增加。在图15所示的示例中,放大器71接收代表正向电压VF3m的正向电压信号SF3m,并在输出端生成电压阈值信号S3TH。根据一个示例(未示出),正向电压信号SF3m是正向电压VF3m,即,放大器可连接至LED 3m。根据图15所示的另一示例,缓冲器72接收正向电压VF3m,并且直接地或如图所示经由可选的分压器731、732提供正向电压信号SF3m
如上文解释的示例,由生成缺陷信号SDEF的比较器41接收串电压信号S3(在该示例中等于串电压V3)和电压阈值信号S3TH。可选地,另一比较器74将正向电压VF3m与最小电压VMIN进行比较,其中比较器41和另一比较器74的输出信号被诸如或(OR)门75的逻辑门接收,并且通过逻辑门75提供缺陷信号SDEF。在该示例中,每当正向电压VF3m下降到由电压阈值信号S3TH表示的电压以下或者正向电压V3m下降到最小电压VMIN以下时,生成缺陷信号SDEF的缺陷电平。后者可发生LED短路,在LED 3m中发生。
根据图16所示的另一示例,电子电路包括多个LED串,被监控LED串和至少一个附加的LED串31、32,其中在图16所示的示例中,存在两个附加的LED串31、32。附加的LED串31、32中的每一个都与对应的附加的电流源21、22串联连接。这些附加的LED串31、32被驱动,使得当在附加的LED串31、32中没有缺陷时,LED串31、32基本相同。此外,当在被监控LED串3中没有缺陷时,被监控LED串3的串电压V3与这些附加的LED串31、32的串电压V31、V32基本相同,或者在被监控LED串3的串电压V3与附加的LED串31、32的串电压V31、V32之间具有预定比率。
可以假设,取决于温度,被监控LED串3的串电压V3和附加LED串31、32的串电压V31、V32以相同的方式变化。因此,在图16所示的示例中,基于附加的LED串31、32的串电压V31、V32生成电压阈值信号S3TH。根据一个示例,最大值选择器81接收每个附加的LED串31、32的串电压V31、V32,并且输出代表附加的串电压V31、V32中的最大值的信号。以这种方式,即使在附加的LED串31、32之一中发生LED短路,也确保生成适当的电压阈值信号S3TH。电阻分压器821、822基于由最大值选择器81生成的输出信号来生成电压阈值信号S3TH。在该示例中,尽管未直接测量温度,但是生成电压阈值信号S3TH还是考虑了温度。
根据图17所示的又一示例,监控图16所示的每个LED串3、31、32的缺陷的发生。在该示例中,最大值选择器81接收每个串电压V3、V31、V32,并且最小值选择器83接收每个串电压V3、V31、V32。最小值选择器83的输出信号被比较器41的第二输入(在该示例中为反相输入)接收。
尽管已经参考示例性示例对本发明进行了描述,但是这种描述并非用于限制。本领域技术人员在参考说明书的基础上将明白所示示例的各种修改和组合以及本发明的其他示例。因此,所附权利要求涵盖任何这样的修改或示例。

Claims (16)

1.一种方法,包括:
检测包括被监控的LED串(3)的电子电路中的至少一个操作参数;
基于检测的所述至少一个操作参数调整电压阈值(S3TH);
检测所述被监控的LED串(3)两端的串电压(S3);
将所述串电压(S3)与所述电压阈值(S3TH)进行比较;以及
基于所述比较检测所述LED串(3)中的缺陷。
2.根据权利要求1所述的方法,
其中所述至少一个操作参数包括通过所述LED串(3)的串电流(I3);并且
其中调整所述电压阈值(S3TH)包括随着所述串电流(I3)的增加而增加所述电压阈值(S3TH)。
3.根据权利要求1或2所述的方法,
其中所述至少一个操作参数包括所述LED串(3)的估计温度;并且
其中调整所述电压阈值(S3TH)包括随着所述估计温度的增加而降低所述电压阈值(S3TH)。
4.根据前述权利要求中任一项所述的方法,
其中所述电子电路包括至少一个附加的LED串(31、32),并且
其中所述至少一个操作参数包括所述至少一个附加的LED串(31、32)的串电压(V31、V32)。
5.根据权利要求4所述的方法,
其中所述至少一个附加的LED串包括多个附加的LED串(31、32),并且
其中所述至少一个操作参数包括所述多个附加的LED串(31、32)的串电压(V31、V32)的最大值。
6.根据前述权利要求中任一项所述的方法,其中所述至少一个操作参数包括所述LED串中的被监控的LED(3m)两端的电压(VF3m),并且
其中调整所述电压阈值(S3TH)包括随着所述电压(VF3m)的增加来增加所述电压阈值(S3TH)。
7.根据权利要求6所述的方法,还包括:
当所述被监控的LED(3m)两端的所述电压下降到预定最小值(VMIN)以下时,检测缺陷。
8.根据前述权利要求中任一项所述的方法,
其中所述电子电路还包括可变电流源(2A、2B、2C),
其中所述可变电流源(2A、2B、2C)与所述被监控的LED串(3)串联,并且被配置为根据控制信号提供具有可变幅度的电流,并且
其中所述至少一个操作参数包括所述控制信号(S2A、S2B、S2C)。
9.一种电子电路,包括:
被监控的LED串(3);以及
缺陷检测电路(4),
其中所述缺陷检测电路被配置为:
检测所述电子电路中的至少一个操作参数;
基于检测的所述至少一个操作参数调整阈值电压(S3TH);
检测所述被监控的LED串(3)两端的串电压(V3);
将所述串电压(V3)与所述电压阈值(S3TH)进行比较;以及
基于所述比较检测所述LED串(3)中的缺陷。
10.根据权利要求9所述的电子电路,
其中所述至少一个操作参数包括通过所述LED串(3)的串电流(I3);并且
其中所述缺陷检测电路(4)被配置为随着所述串电流的增加而增加所述电压阈值(S3TH)。
11.根据权利要求9或10所述的电子电路,
其中所述至少一个操作参数包括所述LED串(3)的估计温度;并且
其中所述缺陷检测电路(4)被配置为随着所述估计温度的增加而降低所述电压阈值(S3TH)。
12.根据权利要求9至11中任一项所述的电子电路,还包括:
至少一个附加的LED串(31、32),
其中所述至少一个操作参数包括所述至少一个附加的LED串(31、32)的串电压(V31、V32)。
13.根据权利要求12所述的电子电路,
其中所述至少一个附加的LED串包括多个附加的LED串(31、32),并且
其中所述至少一个操作参数包括所述多个附加的LED串(31、32)的串电压(V31、V32)的最大值。
14.根据权利要求9至13中任一项所述的电子电路,
其中所述至少一个操作参数包括所述LED串中的被监控的LED(3m)两端的电压(VF3m),并且
其中所述缺陷检测电路(4)被配置为随着所述电压(VF3m)的增加来增加所述电压阈值(S3TH)。
15.根据权利要求14所述的电子电路,
其中所述缺陷检测电路(4)进一步被配置为:当所述被监控的LED(3m)两端的所述电压下降到预定最小值(VMIN)以下时,检测缺陷。
16.根据权利要求9至15中任一项所述的电子电路,还包括:
可变电流源(2A、2B、2C),与所述被监控的LED串(3)串联连接,并且被配置为根据控制信号(S2A、S2B、S2C)提供具有可变幅度的电流,
其中所述至少一个操作参数包括所述控制信号(S2A、S2B、S2C),并且所述缺陷检测电路(4)被配置为基于所述控制信号(S2A、S2B、S2C)调整所述电压阈值(S3TH)。
CN201911268876.3A 2018-12-11 2019-12-11 检测led串中缺陷的方法以及具有至少一个led串的电子电路 Active CN111315083B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018131803.0A DE102018131803A1 (de) 2018-12-11 2018-12-11 Verfahren zum detektieren eines defekts in einer led-kette und elektronische schaltung mit wenigstens einer led-kette
DE102018131803.0 2018-12-11

Publications (2)

Publication Number Publication Date
CN111315083A true CN111315083A (zh) 2020-06-19
CN111315083B CN111315083B (zh) 2024-04-05

Family

ID=70858590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911268876.3A Active CN111315083B (zh) 2018-12-11 2019-12-11 检测led串中缺陷的方法以及具有至少一个led串的电子电路

Country Status (4)

Country Link
US (1) US11076473B2 (zh)
KR (1) KR20200072417A (zh)
CN (1) CN111315083B (zh)
DE (1) DE102018131803A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11178742B1 (en) 2020-07-15 2021-11-16 Apple Inc. Minimum voltage detector circuit
DE102021100854A1 (de) 2021-01-18 2022-07-21 HELLA GmbH & Co. KGaA Steuer- und/oder Regelungsmittel, Schaltungsanordnung und Verfahren zur Ansteuerung von Leuchtdioden in einem Leuchtdiodenfeld

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080202312A1 (en) * 2007-02-23 2008-08-28 The Regents Of The University Of Colorado Systems and methods for driving multiple solid-state light sources
US20120074856A1 (en) * 2009-06-09 2012-03-29 Go Takata Light-emitting element driving device
CN102749572A (zh) * 2012-06-26 2012-10-24 南京航空航天大学 基于iecmac参数辨识的功率电子电路故障预测方法
US20160226373A1 (en) * 2015-01-30 2016-08-04 Infineon Technologies Ag Automatic short led detection for light emitting diode (led) array load

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058524B4 (de) * 2008-11-21 2010-11-18 Herbert Waldmann Gmbh & Co. Kg Schaltungsanordnung für eine Leuchte mit Leuchtdioden
US8860427B2 (en) * 2009-04-20 2014-10-14 Infineon Technologies Ag Failure detection for series of electrical loads
DE102009017989A1 (de) * 2009-04-21 2010-10-28 Vossloh-Schwabe Optoelectronic Gmbh & Co. Kg LED-Überwachungseinrichtung
WO2013080689A1 (ja) * 2011-11-28 2013-06-06 コニカミノルタ株式会社 照明装置および発光モジュール
JP6155703B2 (ja) * 2013-03-04 2017-07-05 セイコーエプソン株式会社 光源装置及びプロジェクター
US10187955B2 (en) * 2017-06-09 2019-01-22 Infineon Technologies Ag Detection of single short-LED in LED chains
DE102018122649A1 (de) * 2018-09-17 2020-03-19 Infineon Technologies Ag Elektronische Schaltung mit einem Led-Modul

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080202312A1 (en) * 2007-02-23 2008-08-28 The Regents Of The University Of Colorado Systems and methods for driving multiple solid-state light sources
US20120074856A1 (en) * 2009-06-09 2012-03-29 Go Takata Light-emitting element driving device
CN102749572A (zh) * 2012-06-26 2012-10-24 南京航空航天大学 基于iecmac参数辨识的功率电子电路故障预测方法
US20160226373A1 (en) * 2015-01-30 2016-08-04 Infineon Technologies Ag Automatic short led detection for light emitting diode (led) array load

Also Published As

Publication number Publication date
KR20200072417A (ko) 2020-06-22
US11076473B2 (en) 2021-07-27
DE102018131803A1 (de) 2020-06-18
CN111315083B (zh) 2024-04-05
US20200187323A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
TWI455651B (zh) 發光二極體失效偵測電路
US8044667B2 (en) Failure detection for series of electrical loads
CN111670369B (zh) Led灯故障检测电路和方法
US10466070B2 (en) Disconnection detector
US9999110B2 (en) LED driver with comprehensive fault protections
JP5576892B2 (ja) Led点灯および断線検出制御装置
CN111315083B (zh) 检测led串中缺陷的方法以及具有至少一个led串的电子电路
CN105848329B (zh) 针对发光二极管(led)阵列负载的自动短路led检测
US8860427B2 (en) Failure detection for series of electrical loads
US9977095B2 (en) Method and apparatus for the diagnosis of a faulty light-emitting means
US11438983B2 (en) Multi-string LED current balancing circuit with fault detection
US7123136B2 (en) Indicator system having multiple LEDs
JP2004322982A (ja) 車両用灯具
KR20160128932A (ko) 자동차의 라이트 장치에서 단락된 발광 다이오드를 검출하기 위한 장치 및 방법
JP2010123273A (ja) Led照明装置
WO2017163862A1 (ja) Led照明システムの短絡異常検出装置、その装置を有するled照明装置、およびled照明システムの短絡異常検出方法
US10288670B2 (en) Diagnosis apparatus and method for detecting a defect of at least one of a plurality of light emitting diodes
KR102050440B1 (ko) 백라이트 유닛 및 이의 구동방법
JP2011204628A (ja) 故障判別装置及びこれを用いた照明器具
CN110933818B (zh) 具有led模块的电子电路
CN108604897B (zh) 绝缘栅型半导体元件的驱动电路
WO2020163011A1 (en) Self-repairing lighting system and method
CN111903193B (zh) 点灯电路及车辆用灯具
US9736896B2 (en) Driver assembly and method for detecting an error condition of a lighting unit
JP2018097973A (ja) 発光装置、ファイバレーザ、及び、地絡判定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant