CN111304054A - 外泌体分离微流控芯片及其方法 - Google Patents

外泌体分离微流控芯片及其方法 Download PDF

Info

Publication number
CN111304054A
CN111304054A CN202010130958.8A CN202010130958A CN111304054A CN 111304054 A CN111304054 A CN 111304054A CN 202010130958 A CN202010130958 A CN 202010130958A CN 111304054 A CN111304054 A CN 111304054A
Authority
CN
China
Prior art keywords
exosome
herringbone
microfluidic chip
exosomes
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010130958.8A
Other languages
English (en)
Inventor
张勇
邓昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Third Affiliated Hospital Of Cqmu (gener Hospital)
Original Assignee
Third Affiliated Hospital Of Cqmu (gener Hospital)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Third Affiliated Hospital Of Cqmu (gener Hospital) filed Critical Third Affiliated Hospital Of Cqmu (gener Hospital)
Priority to CN202010130958.8A priority Critical patent/CN111304054A/zh
Publication of CN111304054A publication Critical patent/CN111304054A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本发明公开了外泌体分离微流控芯片及其方法,芯片包括多个交错人字型微混合器,每个SHM的人字形凹槽呈周期性地交错排列,使用该结构在标本通过时形成各向异性流,最后形成微涡流,使外泌体与抗体充分结合,克服常规微流控芯片平滑通道因混合不均致反应不完全的弊端。可通过靶向外泌体膜表面的生物标记物,直接将外泌体从血浆中分离出来。与超速离心法相比,该方法具有更高的特异性,操作简单,需要较小的样品量即可检测,对临床肿瘤早期诊断具有重要意义。

Description

外泌体分离微流控芯片及其方法
技术领域
本发明涉及医学诊断仪器,具体涉及外泌体分离微流控芯片,还涉及利用外泌体分离微流控芯片捕获外泌体的方法。
背景技术
外泌体(Exosomes)是一种脂质膜包裹的纳米颗粒(30-150nm),由各种类型的细胞(正常细胞和异常细胞)通过内溶酶体途径分泌到细胞外环境。外泌体内部携带了大量来自亲代细胞的生物信息,例如蛋白质、miRNA、mRNA等,能反应亲代细胞的代谢状态和病理状态。同时外泌体在循环体液中含量丰富,在血液中的浓度(108-1010颗粒/mL)明显高于循环肿瘤细胞CTCs(1-100细胞/mL)。因此肿瘤细胞来源的外泌体能反应肿瘤的状态,是理想的肿瘤生物标志物。
然而外泌体在临床中并未广泛使用,最主要的原因是外泌体尺寸小,现有技术难以将其从复杂的体液环境内分离出来。目前外泌体的分离主要依赖于超高速离心法,但是这种方法步骤繁琐,耗时长(>10h),仪器昂贵,不能将外泌体和其它囊泡或大分子蛋白区分开来。此外市场上常见的外泌体分离试剂盒利用聚合物分离外泌体,但沉淀外泌体的同时会沉淀出大量的杂蛋白,给后续检测结果带来假阳性的结果。微流控芯片的技术进展为外泌体的分离提供了可能性,然而传统的芯片通道多为平滑的S形通道,不利于流体在通道里的混合,也不利于流体中的细胞、蛋白和外泌体与通道中的抗体结合。
因此,急需一种特异性分离外泌体的芯片,高通量、体积小和操作简单,为肿瘤早期及伴随诊断提供工具。
发明内容
有鉴于此,本发明的目的之一在于提供一种外泌体分离微流控芯片;本发明的目的之二在于提供利用所述外泌体分离微流控芯片捕获外泌体的方法。
为达到上述目的,本发明提供如下技术方案:
1、外泌体分离微流控芯片,所述芯片包括多个交错人字型微混合器,每个SHM的人字形凹槽呈周期性地交错排列。
优选的,所述人字型微混合器每个循环周期由十个人字形的不对称连续区域组成。
优选的,所述交错人字型微混合器组成八个单独的人字形微通道,八个人字形微通道通过集管与入口连接。
优选的,通道的总高度(h)50μm,凹槽的高度与通道的高度(α)的比率设定为0.8;V字形和通道轴的夹角(θ)为45°,主波矢量q=2π/100μm。
2、利用所述外泌体分离微流控芯片捕获外泌体的方法,包括如下步骤:在芯片通道内包被捕获抗体,加入体液样本,用pH为2.8~8.5的甘氨酸-HCl缓冲液洗脱,收集洗脱液。
优选的,所述洗脱的缓冲液流速为80μl/min。
优选的,所述捕获抗体的浓度为5~20μg/ml。
优选的,所述外泌体胰腺癌血浆外泌体,包被抗体为GPC1抗体。
本发明的有益效果在于:本发明通过设计人字形微流控芯片,当标本通过时形成各向异性流,最后形成微涡流,使外泌体与抗体充分结合,克服常规微流控芯片平滑通道因混合不均致反应不完全的弊端,用此平台靶向外泌体膜表面的生物标记物GPC1,直接将外泌体从血浆中分离出来。与标准的外泌体分离方法(超速离心法)相比,本发明的装置显示出更高的特异性(4倍的差异)和相对简洁的步骤(捕获和释放<20分钟),并且需要较小的样品量 (200μl)即可检测到pc患者和健康人的GPC1外泌体含量的差异。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为外泌体分离微流控芯片实物图。
图2为外泌体分离微流控芯片结构图(a:人字形微流控芯片平面设计图;b:人字形微流控芯片立体设计图;c:电镜下的通道结构);
图3为各向异性流示意图;
图4为洗脱液验证(a:外泌体捕获原理(抗原抗体结合);b:洗脱液和中和液的滴定曲线,在10:1的比例下,pH调节至7.4;c:通过NTA技术比较PBS和buffer洗脱液的外泌体分离效果。
图5为抗体浓度筛选结果(a:不同浓度抗体NTA检测结果;b:平滑通道与人字形通道比较结果;c:本发明方法与超速离心比较结果)。
图6为验证芯片处理临床样本的能力(a:健康人和胰腺癌患者外泌体分析结果;b:western-blot分析健康人和胰腺癌患者外泌体结果)。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1、外泌体分离微流控芯片
外泌体分离微流控芯片,结构如图1所示,芯片包括多个交错人字型微混合器(SHM),每个SHM的人字形凹槽呈周期性地交错排列,每个循环周期由十个人字形的不对称连续区域组成。优选的,芯片的SHM组成八个单独的人字形微通道,八个人字形微通道通过集管与入口连接。流体从入样口进入后分流,分别流入八个单独的人字形微通道,以保证整个芯片的机械完整性和均匀的流量分布。通过人字型微混合器结合于微流控芯片的通道上,解决了平滑通道混合不均致反应不完全的弊端。人字形微流控芯片的设计在几何上是基于低Re数下诱导混沌混合,通过改变凹槽高度与通道高度的比值来分离血浆中外泌体。
芯片的尺寸优选为:通道的总高度(h)50μm,凹槽的高度与通道的高度(α)的比率设定为0.8,使用标准光刻法在硅晶片上刻蚀通道结构;V字形和通道轴的夹角(θ)为45°,主波矢量q=2π/100μm(如图2),SHM的长为2500μm,人字形微通道的间隔为300μm,形成通道区域为长为39000μm,宽为22115μm。
与传统的平壁微流控芯片相比,人字形结构能诱导各向异性流形成,最后产生微涡流破坏血浆中外泌体行进的层流流线,导致它们发生“移位”,以此增加抗体涂层通道中外泌体与抗体相互作用的机会(图3)。
实施例2、洗脱液验证
将血浆用实施例1设计的微流控芯片进行洗脱,外泌体捕获原理如图4中a所示。洗脱液为pH为2.8~8.5的甘氨酸-HCl缓冲液或PBS(图4中b),结果发现低pH的甘氨酸-HCl缓冲液比在80μl/min的流速下能释放出更多的外泌体(30-150nm),而两个对照组(PBS缓冲液和低 pH缓冲液样品)的颗粒浓度相近,接近NTA仪器的检测下限1×107particles/ml。平均纳米颗粒浓度从PBS洗脱的7.633×108±2.779×108particles/ml增加至低PH缓冲液洗脱的5.633×109± 1.106×109particles/ml(图4中c)。
实施例3、抗体浓度优化
选用3种不同浓度的GPC1抗体(5μg/ml、10μg/ml、20μg/ml)包被在HBEXO-Chip上,进行捕捉,基于洗脱液的NTA检测报告结果,结果发现3种浓度捕捉外泌体的能力无明显差异(图5,a)。接着比较了平滑通道与人字形凹槽通道的捕捉效果,结果发现30-150nm范围内的颗粒浓度从3.363×109±1.438×109particles/ml(平滑通道)显著增加到1.793×1010±5.262×109particles/ml(人字形凹槽通道)(p<0.05,图5,b)。根据标准的外泌体分离方法测试了HBEXO-Chip捕捉胰腺癌血浆外泌体的能力。将我们收集到的eGFP标记的外泌体掺入健康体检者的血浆中,并分为一式两份,一份用于超速离心提取其中的外泌体,另一份用于微流控芯片提取外泌体。提取外泌体中RNA并用qPCR检测肿瘤外泌体特异信息eGFP,pcr结果表明两种方法得到的eGFP拷贝数有明显差异,HBEXO-Chip捕捉特异性外泌体的能力大约是超速离心的4倍(图5,c)。
实施例4、
为验证分泌到血液中的肿瘤来源的外泌体可能会提供更容易获得和更具代表性的癌症生物标志物来源,对pc(胰腺癌)患者、健康人患者的血浆样本进行了外泌体分析。NTA结果显示,pc患者分离出的GPC1+的外泌体数量明显增加,平均纳米颗粒浓度从健康人的7.500 ×108±2.629×108particles/ml增加至IV期胰腺癌患者的1.793×1010±5.262×109particles/ml (p<0.05,图6,a)。该结果证实了此前报道的GPC1+外泌体在胰腺癌病人的血浆中的丰度显著高于正常人群。此外,我们通过western-blot验证了GPC1蛋白在患者和健康人中的相对表达丰度,结果发现GPC1蛋白在患者组产生更加明显的印记条带(图6,b)。
结论:
(a)基于人字形结构的微流控装置分离特异性外泌体的能力约为超速离心法的4倍,能为下游加工提供高纯度和高质量外泌体样本;(b)基于人字形的微流控芯片捕捉外泌体的能力优于基于平滑通道的微流控芯片。(c)pc患者血清中GPC1+外泌体浓度明显高于健康对照组,外泌体颗粒浓度从健康组的7.500×108±2.629×108particles/ml增加至胰腺癌患者。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (8)

1.外泌体分离微流控芯片,其特征在于:所述芯片包括多个交错人字型微混合器,每个人字型微混合器的人字形凹槽呈周期性地交错排列。
2.根据权利要求1所述外泌体分离微流控芯片,其特征在于:所述人字型微混合器每个循环周期由十个人字形的不对称连续区域组成。
3.根据权利要求1所述外泌体分离微流控芯片,其特征在于:所述交错人字型微混合器组成八个单独的人字形微通道,八个人字形微通道通过集管与入口连接。
4.根据权利要求1所述外泌体分离微流控芯片,其特征在于:通道的总高度为50μm,凹槽的高度与通道的高度的比率设定为0.8;V字形和通道轴的夹角θ为45°,主波矢量q=2π/100μm。
5.利用权利要求1~4任一项所述外泌体分离微流控芯片捕获外泌体的方法,其特征在于,包括如下步骤:在芯片通道内包被捕获抗体,加入体液样本,用pH为2.8~8.5的甘氨酸-HCl缓冲液洗脱,收集洗脱液。
6.根据权利要求5所述的方法,其特征在于:所述洗脱的缓冲液流速为80μl/min。
7.根据权利要求5所述的方法,其特征在于:所述捕获抗体的浓度为5~20μg/ml。
8.根据权利要求5所述的方法,其特征在于:所述外泌体为胰腺癌血浆外泌体,包被抗体为GPC1抗体。
CN202010130958.8A 2020-02-28 2020-02-28 外泌体分离微流控芯片及其方法 Pending CN111304054A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010130958.8A CN111304054A (zh) 2020-02-28 2020-02-28 外泌体分离微流控芯片及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010130958.8A CN111304054A (zh) 2020-02-28 2020-02-28 外泌体分离微流控芯片及其方法

Publications (1)

Publication Number Publication Date
CN111304054A true CN111304054A (zh) 2020-06-19

Family

ID=71153518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010130958.8A Pending CN111304054A (zh) 2020-02-28 2020-02-28 外泌体分离微流控芯片及其方法

Country Status (1)

Country Link
CN (1) CN111304054A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111778138A (zh) * 2020-07-06 2020-10-16 中南大学 一种分选血浆中外泌体的微流控器件及其使用方法
CN113008652A (zh) * 2021-02-25 2021-06-22 重庆医科大学附属第三医院(捷尔医院) 一种利用tim-4功能化鱼骨状微流控芯片分离外泌体的方法
CN113174359A (zh) * 2021-03-31 2021-07-27 中山大学 一种外泌体捕获纸芯片及其制备方法与应用
CN113522384A (zh) * 2021-07-06 2021-10-22 温州医科大学附属眼视光医院 一种微流控芯片及其制备与应用
CN114618600A (zh) * 2022-02-25 2022-06-14 南昌大学 微流控离心盘
CN114713299A (zh) * 2022-01-05 2022-07-08 宁波大学 一种微流控芯片及外泌体检测方法
CN116024067A (zh) * 2022-12-19 2023-04-28 深圳职业技术学院 一种循环胎儿细胞分离装置及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110093254A (zh) * 2019-06-06 2019-08-06 上海海洋大学 一种用于快速捕获或检测细胞的微流控芯片及方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110093254A (zh) * 2019-06-06 2019-08-06 上海海洋大学 一种用于快速捕获或检测细胞的微流控芯片及方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ABRAHAM D. STROOCK等: "Chaotic Mixer for Microchannels", 《SCIENCE》 *
COLIN L. HISEY等: "Microfluidic Affinity Separation Chip for Selective Capture and Release of Label-free Ovarian Cancer Exosomes", 《LAB ON A CHIP》 *
SHANNON L. STOTTA等: "Isolation of circulating tumor cells using a microvortex-generating herringbone-chip", 《PNAS》 *
YONG ZHANG等: "A herringbone mixer based microfluidic device HBEXO-chip for purifying tumor-derived exosomes and establishing miRNA signature in pancreatic cancer", 《SENSORS AND ACTUATORS: B. CHEMICAL》 *
卞修武: "《分子病理与精准诊断》", 31 January 2020, 上海交通大学出版社 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111778138A (zh) * 2020-07-06 2020-10-16 中南大学 一种分选血浆中外泌体的微流控器件及其使用方法
CN111778138B (zh) * 2020-07-06 2022-01-11 中南大学 一种分选血浆中外泌体的微流控器件及其使用方法
CN113008652A (zh) * 2021-02-25 2021-06-22 重庆医科大学附属第三医院(捷尔医院) 一种利用tim-4功能化鱼骨状微流控芯片分离外泌体的方法
CN113174359A (zh) * 2021-03-31 2021-07-27 中山大学 一种外泌体捕获纸芯片及其制备方法与应用
CN113522384A (zh) * 2021-07-06 2021-10-22 温州医科大学附属眼视光医院 一种微流控芯片及其制备与应用
CN114713299A (zh) * 2022-01-05 2022-07-08 宁波大学 一种微流控芯片及外泌体检测方法
CN114713299B (zh) * 2022-01-05 2024-01-26 宁波大学 一种微流控芯片及外泌体检测方法
CN114618600A (zh) * 2022-02-25 2022-06-14 南昌大学 微流控离心盘
CN116024067A (zh) * 2022-12-19 2023-04-28 深圳职业技术学院 一种循环胎儿细胞分离装置及其制备方法

Similar Documents

Publication Publication Date Title
CN111304054A (zh) 外泌体分离微流控芯片及其方法
Zou et al. Advances in isolation and detection of circulating tumor cells based on microfluidics
Mohammadi et al. Emerging technologies and commercial products in exosome-based cancer diagnosis and prognosis
Yin et al. Microfluidics-based approaches for separation and analysis of circulating tumor cells
EP2409151B1 (en) Device for capturing circulating cells
CN109490528A (zh) 外泌体分析及癌症诊断方法
US11761952B2 (en) Exosome-total-isolation-chip (ExoTIC) device for isolation of exosome-based biomarkers
US11389797B2 (en) Methods and systems for circulating tumor cell capture
Yu et al. ExoSD chips for high-purity immunomagnetic separation and high-sensitivity detection of gastric cancer cell-derived exosomes
US20160091489A1 (en) Devices and methods for isolating cells
Zhang et al. Characterization and applications of extracellular vesicle proteome with post-translational modifications
WO2012094642A2 (en) Circulating tumor cell capture on a microfluidic chip incorporating both affinity and size
Kamyabi et al. Isolation and mutational assessment of pancreatic cancer extracellular vesicles using a microfluidic platform
Kim et al. Rapid and efficient isolation of exosomes by clustering and scattering
US11548002B2 (en) Engineered nano-interfaces for microfluidic isolation of extracellular vesicles
Bathini et al. Magnetic particle based liquid biopsy chip for isolation of extracellular vesicles and characterization by gene amplification
Kumar et al. Recent advances in microfluidic approaches for the isolation and detection of exosomes
Zhang et al. Application of nanomaterials in proteomics-driven precision medicine
Wang et al. Microfluidics‐based molecular profiling of tumor‐derived exosomes for liquid biopsy
Guo et al. Immunomagnetic separation method integrated with the Strep-Tag II system for rapid enrichment and mild release of exosomes
Gwak et al. A modular microfluidic platform for serial enrichment and harvest of pure extracellular vesicles
WO2016019401A1 (en) Microfluidic device with smooth surface for enrichment of rare cells and biomarkers from a biological fluid
Lin et al. An integrated sample-to-answer SERS platform for multiplex phenotyping of extracellular vesicles
CN113008652A (zh) 一种利用tim-4功能化鱼骨状微流控芯片分离外泌体的方法
Guo et al. Extracellular vesicles and their diagnostic and prognostic potential in cancer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination