CN111302653B - 一种网状金银复合纳米薄膜的制备方法 - Google Patents
一种网状金银复合纳米薄膜的制备方法 Download PDFInfo
- Publication number
- CN111302653B CN111302653B CN202010207743.1A CN202010207743A CN111302653B CN 111302653 B CN111302653 B CN 111302653B CN 202010207743 A CN202010207743 A CN 202010207743A CN 111302653 B CN111302653 B CN 111302653B
- Authority
- CN
- China
- Prior art keywords
- gold
- silver
- glass layer
- nano
- net
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/40—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal all coatings being metal coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/25—Metals
- C03C2217/251—Al, Cu, Mg or noble metals
- C03C2217/254—Noble metals
- C03C2217/255—Au
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/25—Metals
- C03C2217/251—Al, Cu, Mg or noble metals
- C03C2217/254—Noble metals
- C03C2217/256—Ag
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/151—Deposition methods from the vapour phase by vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/154—Deposition methods from the vapour phase by sputtering
- C03C2218/156—Deposition methods from the vapour phase by sputtering by magnetron sputtering
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Surface Treatment Of Glass (AREA)
- Laminated Bodies (AREA)
Abstract
本发明公开了一种网状金银复合纳米薄膜的制备方法,通过透明基底层结构的优化,利用物理气相沉积制备具有网状纳米结构的金或银材料;在此基础上旋涂一层光刻胶,并将透明基底一面进行曝光、烘焙、显影,去除具有网状纳米结构的金或银材料孔洞中的光刻胶涂层,保留下附着于其正上方的光刻胶涂层,并以此为基础进行二次物理气相沉积过程,制备一层第二种金或银纳米材料;完成后进行剥离,去除附着于具有网状纳米结构的金或银材料正上方的光刻胶涂层以及第二种金或银纳米材料,留下填充在孔洞中的第二种金或银纳米材料,即得网状金银复合纳米薄膜。本发明可以通过调节金、银体积比以及镂空图案的尺寸、位置的不同来调节薄膜的表面等离激元光谱。
Description
技术领域
本发明涉及纳米材料领域,具体涉及一种网状金银复合纳米薄膜的制备方法。
背景技术
金属纳米颗粒的表面等离激元效应是由于纳米颗粒表面电子云受入射电磁波(或入射光)中电场激励,而产生相互作用,形成表面等离激元。这种表面等离激元可产生电场幅度高于入射电磁波103~107倍的局域电场强度,形成局域场增强效应。与此同时,纳米材料与光的相互作用还可形成对入射光的强散射等作用,利用这些特点,在纳米技术领域有着广泛的应用。在生物检测领域,研究发现(如期刊Journal of the AmericanChemicalSociety,第127卷,14992页),具有表面等离激元效应的贵金属纳米材料是提高拉曼检测型号的有效途径。在能源领域,人们发现同样可以利用纳米薄膜增强太阳能电池对入射光的吸收(如期刊Nature materials,第9卷,205页)。在以往的纳米材料应用过程中,人们研究表明纳米薄膜光学特性与纳米薄膜中纳米颗粒单元以及结构有着密切的联系。在不同的纳米技术领域需要不同光学特性的贵金属纳米薄膜。而制备光学特性可调的纳米复合薄膜是纳米技术领域的一大难题之一。
发明内容
为解决上述问题,本发明提供了一种网状金银复合纳米薄膜的制备方法,可以通过调节金、银体积比以及镂空图案的尺寸、位置的不同来调节薄膜的表面等离激元光谱。
为实现上述目的,本发明采取的技术方案为:
一种网状金银复合纳米薄膜的制备方法,包括如下步骤:
S1、制作透明基底层
该透明基底层包括带目标镂空图案的上玻璃层以及分别与上玻璃层卡合的下玻璃层A和下玻璃层B;下玻璃层A和下玻璃层B上表面均设有所述目标镂空图案相配合的凸起,卡合后,下玻璃层A的凸起的水平面略高于上玻璃层,下玻璃层B的凸起的水平面与上玻璃层齐平;
S2、将上玻璃层与下玻璃层A对接并固定后,在凸起上表面以及凸出部分的四周侧面分别旋涂一层光刻胶,并置于100℃的烘干炉内烘干,在凸起上表面以及凸出部分的四周侧面留下光刻胶涂层;
S3、在凸起上表面的光刻胶涂层表面,利用真空热蒸镀或磁控溅射制备一层厚度为1nm-20nm的金或银纳米薄膜;
S4、在步骤S3的基础上,去除步骤S2中的光刻胶涂层,完成上玻璃层与下玻璃层A的分离操作,并去除步骤S2中附着于光刻胶涂层正上方的金或银纳米材,得具有网状纳米结构的金或银材料;
S5、将附着有网状纳米结构的金或银材料的上玻璃层与下玻璃层B对接并固定后,在具有网状纳米结构的金或银材料的表面旋涂一层光刻胶,对光刻胶进行软烘后,将透明基底一面朝向曝光光源,进行曝光;曝光后100℃后烘,烘完后进行显影,去除具有网状纳米结构的金或银材料孔洞中的光刻胶涂层,并在正上方保留下与具有网状纳米结构的金或银材料相同图案的光刻胶涂层;
S6、在步骤S5制备的材料基础上,在光刻胶涂层表面,利用热蒸镀或磁控溅射技术再次制备一层第二种金或银纳米材料;第二种金或银纳米材料选用的材料不同于具有网状纳米结构的金或银材料,第二种金或银纳米材料的厚度为5nm-15nm,且小于具有网状纳米结构的金或银材料的厚度;
S7、去除多余的光刻胶和第二种金或银纳米材料;
在步骤S6基础上,对整体材料进行剥离处理,去除步骤S6中的光刻胶涂层以及步骤S6中附着于光刻胶涂层正上方的第二种金或银纳米材料,保留下填充在步骤二中具有网状纳米结构的金或银材料孔洞中的第二种金或银纳米材料,即得网状金银复合纳米薄膜。
进一步地,所述步骤S2和步骤S5中,光刻胶的厚度控制在100nm-200nm。
进一步地,凸起四周外壁与目标镂空图案的内壁之间的间隙小于100nm-200nm。
进一步地,上玻璃层的下底面上设有若干凸起,从而使得上玻璃层与下玻璃层A对接固定后,两玻璃层之间设有间隙,便于后续光刻胶涂层的清除。
进一步地,上玻璃层的下底面上设有若干凸起,且下玻璃层B上表面设有与该凸起相配合的凹槽,从而使得上玻璃层与下玻璃层B对接后,两玻璃层之间呈无间隙对接。
进一步地,所述具有网状纳米结构的金或银材料和具有网状纳米结构的金或银材料孔洞中的第二种金或银纳米材料均呈薄膜二维分布。
进一步地,所述具有网状纳米结构的金或银材料孔洞中的第二种金或银纳米材料呈纳米岛状。
进一步地,网状金银复合纳米薄膜的光学特性根据其中金、银体积比以及镂空图案的尺寸、位置的不同进行相应的调节。
本发明所得的复合纳米薄膜具有金、银两种金属材料,可以通过控制金、银体积比以及镂空图案的尺寸、位置的不同,进而控制这种复合纳米薄膜的表面等离激元的光学特性。
本发明所得的复合纳米薄膜同时具有局域场增强效应和散射效应,可在多个纳米技术领域得到应用,比如生物检测或太阳能电池领域。
附图说明
图1为本发明实施例中上玻璃层与下玻璃层A对接后的结构示意图。
图2为本发明实施例中上玻璃层与下玻璃层B对接后的结构示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明实施例提供了一种网状金银复合纳米薄膜的制备方法,包括如下步骤:
S1、制作透明基底层
该透明基底层包括带目标镂空图案的上玻璃层1以及分别与上玻璃层卡合的下玻璃层A 2和下玻璃层B 3;下玻璃层A和下玻璃层B上表面均设有所述目标镂空图案相配合的凸起4,卡合后,下玻璃层A的凸起的水平面略高于上玻璃层,下玻璃层B的凸起的水平面与上玻璃层齐平;目标镂空图案优选为规则图形,比如圆形、正方形、长方形、椭圆形等;上玻璃层的下底面上设有若干凸起,从而使得上玻璃层与下玻璃层A对接固定后,两玻璃层之间设有间隙,便于后续光刻胶涂层的清除。上玻璃层的下底面上设有若干凸起,且下玻璃层B上表面设有与该凸起相配合的凹槽,从而使得上玻璃层与下玻璃层B对接后,两玻璃层之间呈无间隙对接;
S2、对上玻璃层、下玻璃层A和下玻璃层B进行清洗以去除表面的颗粒和杂质离子;清洗时使用洗涤剂、丙酮、异丙醇依次清洗,清洗完毕烘干,备用;
将上玻璃层与下玻璃层A对接并采用夹子夹持固定后,在凸起上表面以及凸出部分的四周侧面分别旋涂一层光刻胶,光刻胶的厚度控制在100nm-200nm,并置于100℃的烘干炉内烘干,在凸起上表面以及凸出部分的四周侧面留下光刻胶涂层;
S3、在凸起上表面的光刻胶涂层表面,利用真空热蒸镀或磁控溅射制备一层厚度为1nm-20nm的金或银纳米薄膜;以热蒸镀法为例,将透明基底层放置在蒸发源上方40cm-50cm,称取0.05g-0.08g高纯度金丝放置于蒸发舟,待腔体真空度抽至10-4帕斯卡以下,蒸发完所有金丝材料,透明基底层上获得一层金纳米薄膜;
S4、在步骤S3的基础上,去除步骤S2中的光刻胶涂层,完成上玻璃层与下玻璃层A的分离操作,并去除步骤S2中附着于光刻胶涂层正上方的金或银纳米材,得具有网状纳米结构的金或银材料;
S5、将附着有网状纳米结构的金或银材料的上玻璃层与下玻璃层B对接并采用胶水粘结固定后,在具有网状纳米结构的金或银材料的表面旋涂一层光刻胶,光刻胶的厚度控制在100nm-200nm,对光刻胶进行软烘后,将透明基底一面朝向曝光光源,进行曝光,使紫外线穿过透明基底,并穿过具有网状纳米结构的金或银材料,紫外曝光后,100℃后烘1min,烘完后将材料整体放置于显影液中,浸泡2-5min,具有网状纳米结构的金或银材料孔洞中的光刻胶在显影液的作用下被去除,而具有网状纳米结构的金或银材料正上方的材料得以保留;
S6、在步骤S5制备的材料基础上,在光刻胶涂层表面,利用热蒸镀或磁控溅射技术再次制备一层第二种金或银纳米材料;典型方法为:将步骤S5制备的材料放置于蒸发源上方,称取适量高纯度银丝放置于蒸发舟,保持光刻胶表面朝下,蒸镀一层5nm-15nm厚的银纳米材料;
值得注意的是,第二种金或银纳米材料选用的材料不同于具有网状纳米结构的金或银材料,第二种金或银纳米材料的厚度为5nm-15nm,且小于具有网状纳米结构的金或银材料的厚度;
S7、去除多余的光刻胶和第二种金或银纳米材料;
在步骤S6基础上,对整体材料进行剥离处理,去除步骤S6中的光刻胶涂层以及步骤S6中附着于光刻胶涂层正上方的第二种金或银纳米材料,保留下填充在步骤二中具有网状纳米结构的金或银材料孔洞中的第二种金或银纳米材料,即得网状金银复合纳米薄膜。具体的,将步骤S6获得的材料整体置于光刻胶对应的剥离液中,在剥离液的作用下,具有网状纳米结构的金或银材料正上方的光刻胶以及第二种金或银纳米材料被去除,而具有网状纳米结构的金或银材料孔洞中的第二种金或银纳米材料得以保留。
本实施例中,所述具有网状纳米结构的金或银材料和具有网状纳米结构的金或银材料孔洞中的第二种金或银纳米材料均呈薄膜二维分布。所述具有网状纳米结构的金或银材料孔洞中的第二种金或银纳米材料呈纳米岛状
本实施例中,凸起四周外壁与目标镂空图案的内壁之间的间隙小于100nm-200nm,可以避免金或银纳米材料进入间隙,从而可以方便后续的分离操作。
本实施例中,网状金银复合纳米薄膜的光学特性根据其中金、银体积比以及镂空图案的尺寸、位置的不同进行相应的调节。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
Claims (6)
1.一种网状金银复合纳米薄膜的制备方法,其特征在于:包括如下步骤:
S1、制作透明基底层
该透明基底层包括带目标镂空图案的上玻璃层以及分别与上玻璃层卡合的下玻璃层A和下玻璃层B;下玻璃层A和下玻璃层B上表面均设有所述目标镂空图案相配合的凸起,卡合后,下玻璃层A的凸起的水平面略高于上玻璃层,下玻璃层B的凸起的水平面与上玻璃层齐平;
S2、将上玻璃层与下玻璃层A对接并固定后,在凸起上表面以及凸出部分的四周侧面分别旋涂一层光刻胶,并置于100℃的烘干炉内烘干,在凸起上表面以及凸出部分的四周侧面留下光刻胶涂层;
S3、在凸起上表面的光刻胶涂层表面,利用真空热蒸镀或磁控溅射制备一层厚度为1nm-20nm的金或银纳米薄膜;
S4、在步骤S3的基础上,去除步骤S2中的光刻胶涂层,完成上玻璃层与下玻璃层A的分离操作,并去除步骤S2中附着于光刻胶涂层正上方的金或银纳米材,得具有网状纳米结构的金或银材料;
S5、将附着有网状纳米结构的金或银材料的上玻璃层与下玻璃层B对接并固定后,在具有网状纳米结构的金或银材料的表面旋涂一层光刻胶,对光刻胶进行软烘后,将透明基底一面朝向曝光光源,进行曝光;曝光后100℃后烘,烘完后进行显影,去除具有网状纳米结构的金或银材料孔洞中的光刻胶涂层,并在正上方保留下与具有网状纳米结构的金或银材料相同图案的光刻胶涂层;
S6、在步骤S5制备的材料基础上,在光刻胶涂层表面,利用热蒸镀或磁控溅射技术再次制备一层第二种金或银纳米材料;第二种金或银纳米材料选用的材料不同于具有网状纳米结构的金或银材料,第二种金或银纳米材料的厚度为5nm-15nm,且小于具有网状纳米结构的金或银材料的厚度;
S7、去除多余的光刻胶和第二种金或银纳米材料;
在步骤S6基础上,对整体材料进行剥离处理,去除步骤S6中的光刻胶涂层以及步骤S6中附着于光刻胶涂层正上方的第二种金或银纳米材料,保留下填充在步骤二中具有网状纳米结构的金或银材料孔洞中的第二种金或银纳米材料,即得网状金银复合纳米薄膜;
其中,上玻璃层的下底面上设有若干凸起,从而使得上玻璃层与下玻璃层A对接固定后,两玻璃层之间设有间隙,便于后续光刻胶涂层的清除;上玻璃层的下底面上设有若干凸起,且下玻璃层B上表面设有与该凸起相配合的凹槽,从而使得上玻璃层与下玻璃层B对接后,两玻璃层之间呈无间隙对接。
2.如权利要求1所述的一种网状金银复合纳米薄膜的制备方法,其特征在于:所述步骤S2和步骤S5中,光刻胶的厚度控制在100nm-200nm。
3.如权利要求1所述的一种网状金银复合纳米薄膜的制备方法,其特征在于:凸起四周外壁与目标镂空图案的内壁之间的间隙小于100nm-200nm。
4.如权利要求1所述的一种网状金银复合纳米薄膜的制备方法,其特征在于:所述具有网状纳米结构的金或银材料和具有网状纳米结构的金或银材料孔洞中的第二种金或银纳米材料均呈薄膜二维分布。
5.如权利要求1所述的一种网状金银复合纳米薄膜的制备方法,其特征在于:所述具有网状纳米结构的金或银材料孔洞中的第二种金或银纳米材料呈纳米岛状。
6.如权利要求1所述的一种网状金银复合纳米薄膜的制备方法,其特征在于:网状金银复合纳米薄膜的光学特性根据其中金、银体积比以及镂空图案的尺寸、位置的不同进行相应的调节。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010207743.1A CN111302653B (zh) | 2020-03-23 | 2020-03-23 | 一种网状金银复合纳米薄膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010207743.1A CN111302653B (zh) | 2020-03-23 | 2020-03-23 | 一种网状金银复合纳米薄膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111302653A CN111302653A (zh) | 2020-06-19 |
CN111302653B true CN111302653B (zh) | 2022-04-05 |
Family
ID=71156099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010207743.1A Active CN111302653B (zh) | 2020-03-23 | 2020-03-23 | 一种网状金银复合纳米薄膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111302653B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114541173B (zh) * | 2022-01-14 | 2022-10-14 | 浙江昶腾杰包装科技有限公司 | 金银卡纸的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011160532A1 (zh) * | 2010-06-26 | 2011-12-29 | 上海交通大学 | 一维纳米材料植入金属电极表面的方法 |
CN103855265A (zh) * | 2012-11-28 | 2014-06-11 | 海洋王照明科技股份有限公司 | 发光器件制备方法及发光器件 |
CN105448423A (zh) * | 2014-06-12 | 2016-03-30 | 宸鸿科技(厦门)有限公司 | 导电膜的制作方法及触控面板的制作方法及触控面板 |
CN107490570A (zh) * | 2015-04-15 | 2017-12-19 | 江苏理工学院 | 表面增强拉曼散射基底的制备方法 |
CN108330454A (zh) * | 2018-01-04 | 2018-07-27 | 江苏理工学院 | 一种网状金银复合纳米薄膜的制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8002948B2 (en) * | 2002-04-24 | 2011-08-23 | Sipix Imaging, Inc. | Process for forming a patterned thin film structure on a substrate |
US20090253227A1 (en) * | 2008-04-08 | 2009-10-08 | Defries Anthony | Engineered or structured coatings for light manipulation in solar cells and other materials |
-
2020
- 2020-03-23 CN CN202010207743.1A patent/CN111302653B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011160532A1 (zh) * | 2010-06-26 | 2011-12-29 | 上海交通大学 | 一维纳米材料植入金属电极表面的方法 |
CN103855265A (zh) * | 2012-11-28 | 2014-06-11 | 海洋王照明科技股份有限公司 | 发光器件制备方法及发光器件 |
CN105448423A (zh) * | 2014-06-12 | 2016-03-30 | 宸鸿科技(厦门)有限公司 | 导电膜的制作方法及触控面板的制作方法及触控面板 |
CN107490570A (zh) * | 2015-04-15 | 2017-12-19 | 江苏理工学院 | 表面增强拉曼散射基底的制备方法 |
CN108330454A (zh) * | 2018-01-04 | 2018-07-27 | 江苏理工学院 | 一种网状金银复合纳米薄膜的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111302653A (zh) | 2020-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Seo et al. | Nanopatterning by laser interference lithography: applications to optical devices | |
Whitney et al. | Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography | |
KR102527501B1 (ko) | 리소그라피 및 기타 용도에서 극자외방사선과 함께 사용하기 위한 재료, 구성요소 및 방법 | |
Ctistis et al. | Optical transmission through hexagonal arrays of subwavelength holes in thin metal films | |
JP4112597B2 (ja) | 自己組織化材料のパターニング方法、及び自己組織化材料パターニング基板とその生産方法、並びに自己組織化材料パターニング基板を用いたフォトマスク | |
Oliveira et al. | Colloidal lithography for photovoltaics: An attractive route for light management | |
TW201214471A (en) | Transparent conductive element, information input apparatus, and display apparatus | |
CN108330454B (zh) | 一种网状金银复合纳米薄膜的制备方法 | |
Tu et al. | Enhancement of surface Raman spectroscopy performance by silver nanoparticles on resin nanorods arrays from anodic aluminum oxide template | |
Lindeberg et al. | Interconnected nanowire clusters in polyimide for flexible circuits and magnetic sensing applications | |
Linn et al. | Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness | |
CN111302653B (zh) | 一种网状金银复合纳米薄膜的制备方法 | |
Wang et al. | Hydrophilicity reinforced adhesion of anodic alumina oxide template films to conducting substrates for facile fabrication of highly ordered nanorod arrays | |
Deng et al. | Rapid fabrication and characterization of SERS substrates | |
Pan et al. | Rapid bending origami in micro/nanoscale toward a versatile 3D metasurface | |
Zhao et al. | Direct chemisorption-assisted nanotransfer printing with wafer-scale uniformity and controllability | |
He et al. | Maskless laser nano-lithography of glass through sequential activation of multi-threshold ablation | |
Li et al. | Convex-meniscus-assisted self-assembly at the air/water interface to prepare a wafer-scale colloidal monolayer without overlap | |
Li et al. | Surface-Enhanced Raman Spectroscopy on Two-Dimensional Networks of Gold Nanoparticle− Nanocavity Dual Structures Supported on Dielectric Nanosieves | |
Svavarsson et al. | Large arrays of ultra-high aspect ratio periodic silicon nanowires obtained via top–down route | |
US9011706B2 (en) | Method of making foraminous microstructures | |
Li et al. | The fabrication of long-range ordered nanocrescent structures based on colloidal lithography and parallel imprinting | |
Pettine et al. | Polarization-controlled directional multiphoton photoemission from hot spots on single Au nanoshells | |
CN110143566B (zh) | 一种三维微纳折纸结构的制备方法 | |
Saleem et al. | Cluster ion beam assisted fabrication of metallic nanostructures for plasmonic applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |