CN111300812A - 一种数码可控打印P(VDF-TrFE)纳米线阵列的方法 - Google Patents

一种数码可控打印P(VDF-TrFE)纳米线阵列的方法 Download PDF

Info

Publication number
CN111300812A
CN111300812A CN202010261605.1A CN202010261605A CN111300812A CN 111300812 A CN111300812 A CN 111300812A CN 202010261605 A CN202010261605 A CN 202010261605A CN 111300812 A CN111300812 A CN 111300812A
Authority
CN
China
Prior art keywords
trfe
vdf
nanowire array
prepare
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010261605.1A
Other languages
English (en)
Inventor
徐文涛
刘璐
徐雯龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202010261605.1A priority Critical patent/CN111300812A/zh
Publication of CN111300812A publication Critical patent/CN111300812A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)

Abstract

本发明为一种数码可控打印P(VDF‑TrFE)纳米线阵列的方法。该方法以N,N‑二甲基甲酰胺和四氢呋喃为混合溶剂,溶解P(VDF‑TrFE)制得前驱体溶液,然后利用电流体喷印设备打印出纳米线阵列,最后高温退火后制备出P(VDF‑TrFE)纳米线阵列。本发明制备出长而连续、尺寸均匀、数码可控的P(VDF‑TrFE)纳米线阵列,为高分子纳米线阵列的制备开辟新径。

Description

一种数码可控打印P(VDF-TrFE)纳米线阵列的方法
技术领域:
本发明属于先进材料制造领域,具体来说,本发明涉及一种数码可控打印P(VDF-TrFE) 纳米线阵列的方法。
背景技术:
聚(偏氟乙烯-三氟乙烯)(P(VDF-TrFE))具有独特的压电效应、热电效应、介电效应。与传统的压电材料相比具有动态范围大、力电转换灵敏度高、机械性能强高、声阻抗易匹配等特点,并具有易制成任意形状及面积不等的片或管等特点。在力学、光学、声学、电子、测量、医疗保健、军事、交通、信息工程、办公自动化、海洋开发、地质勘探等技术领域广泛使用。如:麦克风、噪声消声麦克风、电话送话器、双压电晶片换能器、耳机、扬声器、加速度器、医用传感器电唱机拾音器、非接触开关、电话盘、打字机及电脑键盘、血压计、光学快门、光纤开关、变焦镜、触觉传感器,显示器、位移传感器、超声发送及接无损检测换能器、成象阵列、水听器、延迟线、光调制器、变焦点换能器、超声显微镜、超声诊断仪, P(VDF-TrFE)薄膜优异的柔韧性和成型性,使其易于应用到许多传感器产品中。
印刷电子广泛应用于多种电子行业,具有很大的市场前景。然而,传统的静电纺丝技术无法实现方向及长度可控的单根纳米线及纳米线阵列的制备。
发明内容:
本发明的目的为针对当前技术中存在的不足,提供一种数码可控打印P(VDF-TrFE)纳米线阵列的方法。该方法以N,N-二甲基甲酰胺和四氢呋喃为混合溶剂,溶解P(VDF-TrFE)制得前驱体溶液,然后利用高分辨率电流体喷印设备打印出纳米线阵列,最后高温退火后制备出P(VDF-TrFE)纳米线阵列。本发明制备出长而连续、尺寸均匀、数码可控的P(VDF-TrFE) 纳米线阵列,为高分子纳米线阵列的制备开辟新径。
本发明的技术方案为:
一种数码可控打印P(VDF-TrFE)纳米线阵列的方法,该方法包括以下步骤:
(1)将N,N-二甲基甲酰胺与四氢呋喃混合,制备为混合溶剂;
其中,质量比为,N,N-二甲基甲酰胺:四氢呋喃=1:1-1:4;
(2)将P(VDF-TrFE)溶于混合溶剂中,常温搅拌0.5-24小时,制备为P(VDF-TrFE)的混合溶液;
其中,混合溶液中,P(VDF-TrFE)的质量浓度为10-20%;
(3)利用电流体喷印设备将混合溶液打印P(VDF-TrFE)纳米线阵列;
其中,控制注射器针头和接收面之间的电压为0.5~2.5kV、注射器针头距基板的距离为 1~6mm,将注射器针头出液流量设置为1~50nL/min,将基板运动速度设置为300-1000mm/s。
所述的IZO纳米线的直径为50~5000nm。
本发明的有益效果为:
作为一种铁电压电材料,目前已报道的P(VDF-TrFE)的绝大部分形态均为块状或薄膜状。到目前为止,P(VDF-TrFE)纳米纤维均采用静电纺丝法制备,但这种方法制备的纳米纤维十分杂乱,无法有序排列。本发明所制备的P(VDF-TrFE)纳米线阵列具有数码可控的特点,能够打印出长而连续的纳米线,并且其排布方式、单根纳米线走向以及纳米线阵列的间距均可控制,有效解决P(VDF-TrFE)纳米线合成方法中的瓶颈问题。
附图说明:
图1为实施例1中P(VDF-TrFE)纳米线阵列的光学显微镜图片。
图2为实施例1中P(VDF-TrFE)纳米线的FESEM图片。
图3为实施例1中P(VDF-TrFE)纳米线阵列的SEM图片。
下面结合附图和具体实施例对本发明作进一步详细说明:
具体实施方式:
实施例1
(1)将质量比为1:2.5的N,N-二甲基甲酰胺与四氢呋喃混合,制备为混合溶剂;
(2)将P(VDF-TrFE)溶于N,N-二甲基甲酰胺/四氢呋喃的混合溶剂中,常温搅拌12小时,制备为P(VDF-TrFE)的混合溶液,其中,P(VDF-TrFE)的质量浓度为15%;
(3)利用电流体喷印设备(E-Jet)将混合溶液打印为P(VDF-TrFE)纳米线阵列,控制注射器针头和接收面之间的电压为1.5kV、注射器针头距基板的距离为1.8mm,将注射器针头出液流量设置为25nL/min,将基板运动速度设置为1000mm/s。
图1和图2分别为实施例1中P(VDF-TrFE)纳米线阵列的光学显微镜及扫描电子显微镜图片,可以看出纳米线阵列排布均匀,纳米线阵列的长度约为750微米,线间距约为200微米。图3为单根P(VDF-TrFE)半导体纳米线的扫描电子显微镜图片,可以看出笔直的纳米线直径约为200纳米。
实施例2
(1)将质量比为1:3的N,N-二甲基甲酰胺与四氢呋喃混合,制备为混合溶剂;
(2)将P(VDF-TrFE)溶于N,N-二甲基甲酰胺/四氢呋喃的混合溶剂中,常温搅拌2小时,制备为P(VDF-TrFE)的混合溶液,其中,P(VDF-TrFE)的质量浓度为12%;
(3)利用电流体喷印设备将混合溶液打印为P(VDF-TrFE)纳米线阵列,控制注射器针头和接收面之间的电压为1.8kV、注射器针头距基板的距离为4.5mm,将注射器针头出液流量设置为40nL/min,将基板运动速度设置为1000mm/s。
实施例3
(1)将质量比为1:2的N,N-二甲基甲酰胺与四氢呋喃混合,制备为混合溶剂;
(2)将P(VDF-TrFE)溶于N,N-二甲基甲酰胺/四氢呋喃的混合溶剂中,常温搅拌20小时,制备为P(VDF-TrFE)的混合溶液,其中,P(VDF-TrFE)的质量浓度为18%;
(3)利用电流体喷印设备将混合溶液打印为P(VDF-TrFE)纳米线阵列,控制注射器针头和接收面之间的电压为2.3kV、注射器针头距基板的距离为3.5mm,将注射器针头出液流量设置为1nL/min,将基板运动速度设置为400mm/s。
本发明未尽事宜为公知技术。

Claims (2)

1.一种数码可控打印P(VDF-TrFE)纳米线阵列的方法,其特征为该方法包括以下步骤:
(1)将N,N-二甲基甲酰胺与四氢呋喃混合,制备为混合溶剂;
其中,质量比为,N,N-二甲基甲酰胺:四氢呋喃=1:1-1:4;
(2)将P(VDF-TrFE)溶于混合溶剂中,常温搅拌0.5-24小时,制备为P(VDF-TrFE)的混合溶液;
其中,混合溶液中,P(VDF-TrFE)的质量浓度为10-20%;
(3)利用高分辨率电流体喷印设备将混合溶液打印为长而连续的P(VDF-TrFE)纳米线阵列;
其中,控制注射器针头和接收面之间的电压为0.5~2.5kV、注射器针头距基板的距离为1~6mm,将注射器针头出液流量设置为1~50nL/min,将基板运动速度设置为300-1000mm/s。
2.如权利要求1所述的数码可控打印P(VDF-TrFE)纳米线阵列的方法,其特征为所述的IZO纳米线的直径为50~5000nm。
CN202010261605.1A 2020-04-04 2020-04-04 一种数码可控打印P(VDF-TrFE)纳米线阵列的方法 Pending CN111300812A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010261605.1A CN111300812A (zh) 2020-04-04 2020-04-04 一种数码可控打印P(VDF-TrFE)纳米线阵列的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010261605.1A CN111300812A (zh) 2020-04-04 2020-04-04 一种数码可控打印P(VDF-TrFE)纳米线阵列的方法

Publications (1)

Publication Number Publication Date
CN111300812A true CN111300812A (zh) 2020-06-19

Family

ID=71155872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010261605.1A Pending CN111300812A (zh) 2020-04-04 2020-04-04 一种数码可控打印P(VDF-TrFE)纳米线阵列的方法

Country Status (1)

Country Link
CN (1) CN111300812A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102529366A (zh) * 2012-01-13 2012-07-04 华中科技大学 一种基于静电喷印制备阵列化图案的装置和方法
CN204479973U (zh) * 2015-02-25 2015-07-15 徐光梅 一种多路电流控制器
CN104820658A (zh) * 2015-04-29 2015-08-05 赛青松 多功能电子产品集成器、终端及附加功能
CN105712316A (zh) * 2015-09-23 2016-06-29 哈尔滨理工大学 一种氧化锌纳米线阵列/碳纳米纤维复合材料的制备
CN110352096A (zh) * 2016-12-19 2019-10-18 夏洛特生物科学公司 多平面微电极阵列装置及其制造和使用方法
CN110714199A (zh) * 2019-09-11 2020-01-21 福建工程学院 一种用于3d打印搭接电子束制备涂层的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102529366A (zh) * 2012-01-13 2012-07-04 华中科技大学 一种基于静电喷印制备阵列化图案的装置和方法
CN204479973U (zh) * 2015-02-25 2015-07-15 徐光梅 一种多路电流控制器
CN104820658A (zh) * 2015-04-29 2015-08-05 赛青松 多功能电子产品集成器、终端及附加功能
CN105712316A (zh) * 2015-09-23 2016-06-29 哈尔滨理工大学 一种氧化锌纳米线阵列/碳纳米纤维复合材料的制备
CN110352096A (zh) * 2016-12-19 2019-10-18 夏洛特生物科学公司 多平面微电极阵列装置及其制造和使用方法
CN110714199A (zh) * 2019-09-11 2020-01-21 福建工程学院 一种用于3d打印搭接电子束制备涂层的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WENLONG XU等: "Recent progress on electrohydrodynamic nanowire Printing", 《SCIENCE CHINA MATERIALS》 *

Similar Documents

Publication Publication Date Title
JP5970033B2 (ja) 電気音響変換フィルム、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
US8451694B2 (en) Ultrasonic sensor unit and electronic device
Holmes-Siedle et al. PVdF: An electronically-active polymer for industry
JP6018108B2 (ja) 高分子複合圧電体
US20110260584A1 (en) Piezoelectric polymer fibers
Safaryan et al. Diphenylalanine-based microribbons for piezoelectric applications via inkjet printing
Tian et al. A flexible piezoelectric strain sensor array with laser-patterned serpentine interconnects
JP6043673B2 (ja) 電気音響変換用高分子複合圧電体
Zhuang et al. Flexible composites with Ce-doped BaTiO3/P (VDF-TrFE) nanofibers for piezoelectric device
US11957058B2 (en) Piezoelectric transducers based on vertically aligned PZT and graphene nanoplatelets
JPWO2016002677A1 (ja) 電気音響変換フィルムおよびデジタルスピーカ
CN111300812A (zh) 一种数码可控打印P(VDF-TrFE)纳米线阵列的方法
Qiao et al. Preparation of high piezoelectric and flexible polyvinylidene fluoride nanofibers via lead zirconium titanate doping
Akai et al. Miniature ultrasound acoustic imaging devices using 2-D pMUTs array on epitaxial PZT/SrRuO 3/Pt/³-Al 2 O 3/Si structure
Liao et al. A Review of Flexible Acceleration Sensors Based on Piezoelectric Materials: Performance Characterization, Parametric Analysis, Frontier Technologies, and Applications
Jiang et al. Single flexible nanofibers to achieve simultaneous construction of piezoelectric elements and nanoresistance networks for tiny force sensing
Park et al. Textile speaker using polyvinylidene fluoride/ZnO nanopillar on Au textile for enhancing the sound pressure level
WO2024103819A1 (zh) 一种柔弹性薄膜传感阵列及其制备方法
CN107990918B (zh) 通过多级结构设计制备高敏感度压阻式传感器的方法
CN114636467B (zh) 一种仿人耳蜗外耳毛细胞阵列的高性能压电声学传感器的制备方法
Li et al. Enhanced-sensitivity and highly flexible stress/strain sensor based on PZT nanowires-modified graphene with wide range carrier mobility
Wang et al. Electrohydrodynamic jet printed bioinspired piezoelectric hair-like sensor for high-sensitivity air-flow detection
Pickwell et al. Structurally integrated thick film acoustic emission sensors
EP4319197A1 (en) Piezoelectric film
Akai et al. Sensitivity and resonance frequency with changing the diaphragm diameter of piezoelectric micromachined ultrasonic transducers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200619

WD01 Invention patent application deemed withdrawn after publication