CN111298768A - 一种稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料、制备方法及其应用 - Google Patents

一种稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料、制备方法及其应用 Download PDF

Info

Publication number
CN111298768A
CN111298768A CN202010109022.7A CN202010109022A CN111298768A CN 111298768 A CN111298768 A CN 111298768A CN 202010109022 A CN202010109022 A CN 202010109022A CN 111298768 A CN111298768 A CN 111298768A
Authority
CN
China
Prior art keywords
sulfuric acid
composite material
graphene oxide
titanium dioxide
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010109022.7A
Other languages
English (en)
Inventor
王姗
汪恂
张龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202010109022.7A priority Critical patent/CN111298768A/zh
Publication of CN111298768A publication Critical patent/CN111298768A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • B01J35/39
    • B01J35/61
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Abstract

本发明公开了一种稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料、制备方法及其应用。制备方法如下:(1)将钛酸四丁酯加入到乙醇中形成A液;(2)配制乙醇‑硫酸溶液形成B液,将B液滴加到A液中搅匀得到混合液;(3)恒温反应得到浆液;(4)将浆液离心分离,经洗涤、烘干、研磨得到粉末;(5)煅烧后得到硫酸‑二氧化钛;(6)配制氧化石墨烯分散液;(7)将硫酸‑二氧化钛加入氧化石墨烯分散液到中反应形成悬浮液;(8)将悬浮液恒温反应后得粗产物;(9)将粗产物洗涤、烘干后即得复合材料。制备简单、成本低廉、适用于规模化生产。所制备的复合材料纯度高,可高效降解盐酸四环素,在环境污染修复方面具有良好的应用价值。

Description

一种稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料、制备 方法及其应用
技术领域
本发明属于二氧化钛复合材料及水体治理领域,具体涉及一种用于降解盐酸四环素废水的稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料。
背景技术
抗生素具有预防疾病和促生长的作用,因此,广泛应用于疾病治疗和畜牧业生产中。我国是抗生素生产和使用大国,但事实上,被服用的抗生素并不能完全被机体吸收,大部分(约30%~90%)会以母体或代谢物子体的形式随尿液和粪便排出体外,进而污染环境,破坏生态稳定,最终危及人类健康。
有报道称,在我国长江、太湖、珠江、黄浦江上游等水域中以及各地污水厂出水中频繁检测出抗生素。罗方园等对洪泽湖沉积物中四环素、土霉素进行了检测,湖区底泥中均检测出这两种抗生素,两种抗生素的含量范围为1.35~25.43μg·kg-1;方龙飞等对上海黄浦江上游6种典型抗生素进行了调查,发现四环素类抗生素浓度(平均值合计为34.25~211.82ng·L-1)随黄浦江上游从丰水期到枯水期逐渐变高,是黄浦江上游的主要污染抗生素;魏红等水样中共检测出5类15种抗生素,其中土霉素在下游的平均浓度最高;纵亚男等对长三角某城镇典型小流域水体中五大类抗生素的污染分布进行了研究,其中四环类抗生素(TCs)检出率为96.9%,浓度范围为27.10~133.0ng·L-1,集中在农业区和工业区,具有较高的生态风险。
四环素类抗生素通过粪便和尿液排出造成水体严重污染。但是常规水处理工艺去除抗生素的效果并不显著,目前去除水环境中抗生素污染的方法主要有生物降解法、化学氧化法和吸附法。吸附法具有易操作、高效率、不产生高毒性的副产物、对环境好等优点,被公认为是一种很有前途的抗生素残留去除方法。
发明内容
为了解决上述技术问题,本发明提供一种稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料、制备方法及其应用。
本发明两步合成稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料。首先,本发明以稀硫酸为原料,在醇溶液环境下,利用水热法将硫酸根掺杂到二氧化钛上;然后利用硫酸根掺杂的二氧化钛作为原料和氧化石墨烯分散液反应,通过工艺条件的控制,最终制得SO4 2-/TiO2/GO复合材料。制备原料易得,工艺简单,除杂高效,产品纯度高。本发明所制备的复合材料分散性好,比表面积大,对废水中的盐酸四环素可以高效的吸附去除和光催化去除,去除率相比未改性的TiO2大幅提高。
本发明的目的之一在于提供一种稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料的制备方法,包括以下步骤:
(1)将钛酸四丁酯加入到乙醇中形成A液;
(2)配制乙醇-硫酸溶液形成B液,将其滴加到A液中搅匀得到混合液;
(3)将混合液恒温反应,反应完全后冷却得到浆液;
(4)将浆液离心分离得沉淀,经洗涤、烘干、研磨得到粉末;
(5)将粉末煅烧后得到硫酸-二氧化钛复合材料;
(6)配制氧化石墨烯分散液;
(7)将硫酸-二氧化钛复合材料加入到石墨烯分散液中搅拌反应形成悬浮液;
(8)将悬浮液恒温反应后得粗产物;
(9)将粗产物洗涤、烘干后即得SO4 2-/TiO2/GO复合材料。
进一步,所述步骤(1)中钛酸四丁酯和乙醇的体积比为1:2。
进一步,所述步骤(2)中乙醇-硫酸溶液由等体积的无水乙醇和稀硫酸混合制成。
进一步,所述步骤(3)中恒温反应温度为180℃,反应时间为5h。
进一步,所述步骤(4)中洗涤的方法为:先用醇洗2-3次,再用蒸馏水洗至中性;烘干温度为60℃。
进一步,所述步骤(5)中煅烧方法为:200℃保温1h,500℃保温2h;升温速度为3℃/min。
进一步,所述步骤(6)中氧化石墨烯分散液的制备方法如下:将氧化石墨烯加入到乙醇溶液中,超声分散即得。优选的,乙醇溶液由体积比为1:2的乙醇和去离子水配制而成;氧化石墨烯与乙醇的比例为1mg:20ml。
进一步,所述步骤(7)中,氧化石墨烯与硫酸-二氧化钛复合材料的质量比为1:20-100,搅拌反应时间为2h。
进一步,所述步骤(8)中恒温反应的反应温度为180℃,反应时间为3h。
本发明的目的之二在于提供利用上述方法制备的稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料。
本发明的目的之三在于提供上述稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料在降解废水中盐酸四环素的应用。
本发明的有益效果:
(1)本发明采用两步合成稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料。首先,以稀硫酸为原料,在醇溶液环境下,利用水热法将硫酸根掺杂到二氧化钛上;然后利用硫酸根掺杂的二氧化钛作为原料和石墨烯分散液反应,通过工艺条件的控制,最终制得SO4 2-/TiO2/GO复合材料;原料易得,制备工艺简单,除杂高效,适应于规模化生产,产品纯度高;
(2)本发明所制备的复合材料经X射线衍射仪(XRD)和N2吸附解吸物理化学吸附仪(BET)表征,结果表明改性后的TiO2光复合材料样品分散性好,比表面积大;
(3)本发明所制得的复合材料与未经改性的TiO2相比,对盐酸四环素的去除大幅度提高,可用于废水中盐酸四环素的去除,在废水处理中有较大的应用前景。
附图说明
图1为本发明的复合材料的制备流程图;
图2为实施例1样品的X射线衍射光谱图;图2(a)为XRD图谱,图2(b)为部分区域放大图;
图3为实施例1样品的氮气吸脱附等温曲线图;图3(a)为纯TiO2、SO4 2-/TiO2的氮气吸脱附等温曲线图;图3(b)为纯TiO2、SO4 2-/TiO2/GO的氮气吸脱附等温曲线图;
图4为盐酸四环素初始浓度对吸附去除影响图;
图5为pH对盐酸四环素吸附效果的影响图;
图6为实施例3样品对盐酸四环素的光催化降解及暗反应吸附去除图;
图7为实施例3样品对盐酸四环素的光催化降解及光反应吸附去除图;
图8为实施例3最佳实施例所制得复合材对盐酸四环素的光催化降解及暗、光反应吸附去除图。
具体实施方式
下面结合具体实施例对本发明进一步说明,本发明的内容完全不限于此。
一种稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料的制备方法,包括以下步骤:
(1)将钛酸四丁酯加入到乙醇中形成A液;
(2)配制乙醇-硫酸溶液,将其滴加到A液中搅匀得到混合液;
(3)将混合液恒温反应,反应完全后冷却得到浆液;
(4)将浆液离心分离得沉淀,经洗涤、烘干、研磨得到粉末;
(5)将粉末煅烧后得到硫酸-二氧化钛复合材料;
(6)配制氧化石墨烯分散液;
(7)将硫酸-二氧化钛复合材料加入到石墨烯分散液中搅拌反应形成悬浮液;
(8)将悬浮液恒温反应后得粗产物;
(9)将粗产物洗涤、烘干后即得SO4 2-/TiO2/GO复合材料。
进一步,所述步骤(1)中钛酸四丁酯和乙醇的体积比为1:2。
进一步,所述步骤(2)中乙醇-硫酸溶液由等体积的无水乙醇和稀硫酸混合制成。
进一步,所述步骤(3)中恒温反应温度为180℃,反应时间为5h。
进一步,所述步骤(4)中洗涤的方法为:先用醇洗2-3次,再用蒸馏水洗至中性;烘干温度为60℃。
进一步,所述步骤(5)中煅烧方法为:200℃保温1h,500℃保温2h;升温速度为3℃/min。
进一步,所述步骤(6)中氧化石墨烯分散液的制备方法如下:将氧化石墨烯加入到乙醇溶液中,超声分散即得。优选的,乙醇溶液由体积比为1:2的乙醇和去离子水配制而成;氧化石墨烯与乙醇的比例为1mg:20ml。
进一步,所述步骤(7)中,氧化石墨烯与硫酸-二氧化钛复合材料的质量比为1:20-100,搅拌反应时间为2h。
进一步,所述步骤(8)中恒温反应的反应温度为180℃,反应时间为3h。
制备流程如图1所示。
实施例1
本实施例为一种稀硫酸改性二氧化钛复合材料及纯二氧化钛的制备,按如下步骤:
1、制备SO4 2-TiO2
(1)取10mL的钛酸四丁酯加入20mL无水乙醇混合形成A液(注意加入顺序,如将钛酸四丁酯倒入无水乙醇中,会产生大量白色沉淀);
(2)量取10mL无水乙醇和10mL蒸馏水形成B液;将B液逐滴滴入搅拌的A液中,并搅拌0.5h,得到混合液;
(3)将混合液转移至反应釜中,在180℃恒温烘箱中保温5h,自然冷却,得到浆液;
(4)将浆液用高速离心机离心清洗,用醇洗2-3次,蒸馏水洗至中性为止,然后将沉淀物在60℃烘箱中烘干,研磨成粉末;
(5)将粉末在马弗炉中200℃条件下保温1h,500℃条件下保温2h,自然冷却,得到纯SO4 2-TiO2粉体。
2、制备SO4 2-/TiO2/GO复合材料:
(1)将4mgGO加入装有乙醇溶液(40ml去离子水和20ml C2H5OH配制而成)的烧杯中,超声条件下分散2小时,得到均匀稳定的分散液;
(2)在分散液中加入实施例1.1中的SO4 2-/TiO2粉体(160mg)持续搅拌2h,反应液变成均匀悬浮液;
(3)取60ml该悬浮液倒入高压反应釜(100ml)并放入干燥箱180℃条件下持续保温3h得到粗产物;
(4)取粗产物用去离子水漂洗(4~6次),60℃烘干至恒重,制得SO4 2-/TiO2/GO复合材料。
复合材料表征:
图2为实施例1所制备复合材料的XRD图。制备的复合材料均在25.30°、37.79°、48.04°、53.88°、55.06°、62.68°的6处特征峰,分别与锐钛矿(标准卡PDF#99-0008)的(101)、(004)、(200)、(105)、(211)、(204)一一对应,说明合成的是锐钛矿。锐钛矿相比金红石相的间隙能带、表面积都要大,有利于光催化有机降解。未观察到SO4 2-和GO特有的衍射峰,可能是因为样品中SO4 2-和GO含量较低,其衍射峰较弱;也没有观察到其他杂质峰,说明样品合成的纯度高,另一方面也说明了可能在TiO2表面非常小的SO4 2-和GO具有良好的分散性。如图2(b)所示,纯TiO2、SO4 2-/TiO2的(101)衍射峰2θ角分别为25.14°、25.06°、25.18°,与纯TiO2(101)的衍射峰相比,SO4 2-/TiO2峰微微向左偏移,SO4 2-/TiO2/GO峰微微向右偏移,其衍射峰强度都明显减弱,半峰宽也变大了,这可能是SO4 2-和GO进入结构骨架所致。用Scherrer公式(1)计算也可得:样品纯TiO2、SO4 2-TiO2和SO4 2-/TiO2/GO在(101)处结晶尺寸分别为17.1nm、14.1nm、13.7nm,晶粒尺寸呈减小趋势,说明掺杂导致晶粒尺寸减小,有利于盐酸四环素的去除。
Figure BDA0002389307560000051
其中:
Figure BDA0002389307560000052
是hkl衍射方向上晶粒的平均厚度;K是与晶粒形状相关的常数,取0.89;λ是入射X射线的波长,取平均波长值0.154056;cosθhkl是hkl衍射方向的余弦。该公式的关键值是βhkl即衍射峰半峰高处的峰宽,可用公式2.2来校正,其中βhkl是hkl方向由由晶粒细化引起的半高宽;Bhkl是hkl衍射测量到的半高宽;bhkl是hkl衍射方向的工具半高宽。
βhkl=Bhkl-bhkl (2)
图3为本发明实施例1所制备复合材料的N2吸附-脱附等温曲线图。纯TiO2、SO4 2-/TiO2和SO4 2-/TiO2/GO的比表面积分别为61.14m2/g、62.20m2/g、70.42m2/g,可以看出SO4 2-/TiO2/GO比表面积明显增大。根据分析规范,纯TiO2、SO4 2-/TiO2和SO4 2-/TiO2/GO样品脱附曲线远比吸附曲线陡,均为IV(a)型吸附等温线,具有毛细凝结的单层吸附情况,纯TiO2为H2(a)型滞后环、SO4 2-/TiO2和SO4 2-/TiO2/GO为H1型滞后环。此外,SO4 2-/TiO2和SO4 2-/TiO2/GO对氮气的吸附量明显优于纯TiO2,这说明硫酸作为抑制剂合成的二氧化钛对氮气具有更好的吸附性能。
实施例2
测试条件的确定
1、盐酸四环素初始浓度的确定
本实施例为实施例1所制备的SO4 2-/TiO2粉体对盐酸四环素初始浓度对吸附性能影响的试验,具体步骤如下:
称取50mg盐酸四环素配置成1L溶液,按比例稀释到10mg/L、15mg/L、20mg/L、25mg/L、30mg/L、35mg/L、40mg/L,向其中加入50mg材料(纯TiO2、SO4 2-/TiO2),然后在避光、恒温T=30℃、震荡速率V=150rpm的震荡摇床中进行光暗反应,震荡吸附至平衡。取其上清液,离心,测取溶液的吸光光度值。
试验结果如图4所示。结果表明:在不同催化剂作用下,盐酸四环素溶液浓度到25mg/L及其以后,其去除率基本保持不变了,故最佳盐酸四环素浓度为25mg/L。
2、溶液初始pH范围
本实施例为溶液初始pH对吸附性能影响的试验,具体步骤如下:
取50mg材料(纯TiO2、SO4 2-/TiO2粉体),向其中加入25mg/L的盐酸四环素50mL,调节pH为2.02、3.06、4.30(原水)、5.90、9.0、10.1、11.0、12.0、13.0,然后在避光、恒温T=30℃、震荡速率V=150rpm的震荡摇床中进行光暗反应,震荡吸附至平衡。取其上清液,离心,测取溶液的吸光光度值。
试验结果如图5所示。结果表明:在弱酸性和弱碱性条件下,纳米TiO2对盐酸四环素都呈现出相对稳定的吸附性能,其中,SO4 2-/TiO2对盐酸四环素吸附去除率是纯TiO2的两倍左右,较优的pH范围为4-10之间,后续复合材料的性能试验采用盐酸四环素原水(pH=4.30)进行试验。
实施例3
本实施例为采用实施例1的方法制得复合材料不同石墨烯配比的性能试验,具体试验步骤如下:
取50mg材料(不同配比的SO4 2-/TiO2/GO)于100mL的石英试管中,加入50mL的盐酸四环素废水,然后置于光催化反应仪中,搅拌,在暗光、紫外等条件下反应一定时间,每隔一段时间取一次水样并离心,取其上清液测量其吸光光度值。其中GO:SO4 2-/TiO2的质量比分别1:100、1:80、1:60、1:40、1:20,分别记为SO4 2-/TiO2/GO1、SO4 2-/TiO2/GO2、SO4 2-/TiO2/GO3、SO4 2-/TiO2/GO4、SO4 2-/TiO2/GO5。在本次试验中,采用的光催化反应仪参数为:功率P=465w,搅拌转度n=550r/min,试管与灯距离为10cm,反应时间1h,间隔取样时间:15min。
试验结果如图6、图7所示:图6为暗反应下样品的去除率、图7为光反应下样品的去除率。由图6、图7知,复合材料在暗/光反应下60min左右达到相对的去除平衡,很明显不同GO和SO4 2-/TiO2配比的样品在暗反应和光反应下,SO4 2-/TiO2/GO4反应效果更好,即最佳GO和SO4 2-/TiO2质量比为1:40。
实施例4
本实施例为实施例3最佳实施例所制得复合材料的性能试验,具体试验步骤如下:
取50mg材料[纯TiO2、SO4 2-TiO2和SO4 2-/TiO2/GO复合材料(GO和SO4 2-/TiO2质量比为1:40)]于100mL的石英试管中,加入50mL的盐酸四环素废水,然后置于光催化反应仪中,搅拌,在暗光、紫外等条件下反应一定时间,每隔一段时间取一次水样并离心,取其上清液测量其吸光光度值。在本次试验中,采用的光催化反应仪参数为:功率P=465w,搅拌转度n=550r/min,试管与灯距离为10cm,反应时间1h,间隔取样时间:15min。
试验结果如图8所示。由图8知,复合材料在60min左右达到相对的去除平衡,吸附性能SO4 2-/TiO2/GO﹥SO4 2-/TiO2﹥纯TiO2,提升近一倍,说明H2SO4和GO共掺杂改性的TiO2吸附性能得到强化,光条件下去除性能(包括吸附与光催化降解)也有所提升。
以上所述,仅为本发明较佳的具体实施方式,但本发明保护的范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内所做的任何修改,等同替换和改进等,均应包含在发明的保护范围之内。

Claims (10)

1.一种稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料的制备方法,其特征在于,包括以下步骤:
(1)将钛酸四丁酯加入到乙醇中形成A液;
(2)配制乙醇-硫酸溶液形成B液,将B液滴加到A液中搅匀得到混合液;
(3)将混合液恒温反应,反应完全后冷却得到浆液;
(4)将浆液离心分离得沉淀,经洗涤、烘干、研磨得到粉末;
(5)将粉末煅烧后得到硫酸-二氧化钛复合材料;
(6)配制氧化石墨烯分散液;
(7)将硫酸-二氧化钛复合材料加入到氧化石墨烯分散液中搅拌反应形成悬浮液;
(8)将悬浮液恒温反应后得粗产物;
(9)将粗产物洗涤、烘干后即得SO4 2-/TiO2/GO复合材料。
2.根据权利要求1所述的稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料的制备方法,其特征在于:所述步骤(1)中钛酸四丁酯和乙醇的体积比为1:2。
3.根据权利要求1所述的稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料的制备方法,其特征在于:所述步骤(2)中乙醇-硫酸溶液由等体积的无水乙醇和稀硫酸混合制成。
4.根据权利要求1所述的稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料的制备方法,其特征在于:所述步骤(3)中恒温反应温度为180℃,反应时间为5h。
5.根据权利要求1所述的稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料的制备方法,其特征在于,所述步骤(5)中煅烧方法为:200℃保温1h,500℃保温2h。
6.根据权利要求1所述的稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料的制备方法,其特征在于,所述步骤(6)中氧化石墨烯分散液的制备方法如下:将氧化石墨烯加入到乙醇溶液中,超声分散即得。
7.根据权利要求1所述的稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料的制备方法,其特征在于,所述步骤(7)中,氧化石墨烯与硫酸-二氧化钛复合材料的质量比为1:20-100,搅拌反应时间为2h。
8.根据权利要求1所述的稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料的制备方法,其特征在于,所述步骤(8)中恒温反应的反应温度为180℃,反应时间为3h。
9.一种稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料,其特征在于:采用权利要求1-8任一项所述的方法制备。
10.权利要求9所述的稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料在降解废水中盐酸四环素的应用。
CN202010109022.7A 2020-02-21 2020-02-21 一种稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料、制备方法及其应用 Pending CN111298768A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010109022.7A CN111298768A (zh) 2020-02-21 2020-02-21 一种稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010109022.7A CN111298768A (zh) 2020-02-21 2020-02-21 一种稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN111298768A true CN111298768A (zh) 2020-06-19

Family

ID=71160168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010109022.7A Pending CN111298768A (zh) 2020-02-21 2020-02-21 一种稀硫酸和氧化石墨烯共掺改性二氧化钛复合材料、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN111298768A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472007A (zh) * 2002-07-29 2004-02-04 中国科学院广州能源研究所 硫酸与二氧化钛复合光催化剂及其制备方法
CN101588715A (zh) * 2006-10-12 2009-11-25 Nm技术纳米材料微型装置技术有限公司 包含具有抗微生物性质的组合物的材料、物品和产品
CN104941621A (zh) * 2015-05-26 2015-09-30 华南理工大学 一种高效降解抗生素的复合光催化剂及其制备方法与应用
KR20180012525A (ko) * 2016-07-27 2018-02-06 인하대학교 산학협력단 침전 방법을 이용한 TiO2/환원된 그래핀 옥사이드 복합체의 제조방법
CN108654586A (zh) * 2018-05-07 2018-10-16 山东大学 一种石墨化介孔碳-TiO2复合光催化材料及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472007A (zh) * 2002-07-29 2004-02-04 中国科学院广州能源研究所 硫酸与二氧化钛复合光催化剂及其制备方法
CN101588715A (zh) * 2006-10-12 2009-11-25 Nm技术纳米材料微型装置技术有限公司 包含具有抗微生物性质的组合物的材料、物品和产品
CN104941621A (zh) * 2015-05-26 2015-09-30 华南理工大学 一种高效降解抗生素的复合光催化剂及其制备方法与应用
KR20180012525A (ko) * 2016-07-27 2018-02-06 인하대학교 산학협력단 침전 방법을 이용한 TiO2/환원된 그래핀 옥사이드 복합체의 제조방법
CN108654586A (zh) * 2018-05-07 2018-10-16 山东大学 一种石墨化介孔碳-TiO2复合光催化材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVOUD BALARAK等: "Photocatalytic degradation of amoxicillin from aqueous solutons by titanium dioxide nanoparticles loaded on graphene oxide", 《ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH》 *
张虹等: "TiO2/GO纳米复合材料对制药废水的光催化处理", 《工业安全与环保》 *

Similar Documents

Publication Publication Date Title
Bai et al. Kinetics and mechanism of photocatalytic degradation of methyl orange in water by mesoporous Nd-TiO2-SBA-15 nanocatalyst
Khedr et al. Highly active non-metals doped mixed-phase TiO2 for photocatalytic oxidation of ibuprofen under visible light
Kadam et al. Biogenic synthesis of mesoporous N–S–C tri-doped TiO2 photocatalyst via ultrasonic-assisted derivatization of biotemplate from expired egg white protein
Liu et al. A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method
Xia et al. Photocatalytic degradation of Acid Blue 62 over CuO-SnO2 nanocomposite photocatalyst under simulated sunlight
Dong et al. ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole
Xue et al. Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites
Aghdasi et al. Photocatalytic degradation of ciprofloxacin in the presence of synthesized ZnO nanocatalyst: The effect of operational parameters
Hashemzadeh et al. Porous p-NiO/n-Nb2O5 nanocomposites prepared by an EISA route with enhanced photocatalytic activity in simultaneous Cr (VI) reduction and methyl orange decolorization under visible light irradiation
Wu et al. Solvothermal fabrication of La-WO3/SrTiO3 heterojunction with high photocatalytic performance under visible light irradiation
Eddy et al. Synthesis and photocatalytic activity of silica-based sand quartz as the supporting TiO2 photocatalyst
Bian et al. Aerosol-spay assisted assembly of Bi2Ti2O7 crystals in uniform porous microspheres with enhanced photocatalytic activity
CN105618050B (zh) 一种降解含盐废水中有机污染物的可见光响应复合催化剂及其制备方法
Qi et al. Facile synthesis of Pr-doped molecularly imprinted TiO2 mesocrystals with high preferential photocatalytic degradation performance
Hussein et al. Mesoporous spongy Ni–Co oxides@ wheat straw-derived SiO2 for adsorption and photocatalytic degradation of methylene blue pollutants
Xu et al. The effect of TiO2@ CoAl-LDH nanosphere on early hydration of cement and its photocatalytic depollution performance under UV–visible light
CN113941357A (zh) Si-TiO2/g-C3N4三元复合光催化材料及其制备方法
Liu et al. Synthesis of mesoporous SiO2 aerogel/WxTiO2 nanocomposites with high adsorptivity and photocatalytic activity
Park et al. NOx removal of mortar mixed with titania produced from Ti-salt flocculated sludge
Rani et al. Efficient degradation of doxycycline and ofloxacin in an aqueous environment using Fe and Cu doped TiO 2-SiO 2 photocatalyst under sunlight
Kubiak et al. A novel rapid microwave crystallization of photocatalysts for practical utility in the removal of phenol derivatives
CN112028119B (zh) 一种{101}、{100}和{111}-晶面共暴露的锐钛矿型TiO2纳米晶
Kohansal et al. One-pot citric acid/nitrates combustion design of 2D nanosheet mesoporous BiαClβOδ nanostructure: Efficient sunlight photocatalytic elimination of tetracycline-HCl
Jasni et al. Highly Porous Bi (III) Modified Rice Husk Silica Photocatalyst for the Photocatalytic Removal of Cationic Methylene Blue
Shirzad Taghanaki et al. Photocatalytic degradation of ethylbenzene by nano photocatalyst in aerogel form based on titania

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200619

RJ01 Rejection of invention patent application after publication