CN111292799A - 一种利用血液生化指标评价保育猪个体生长所处环境温湿状态的方法 - Google Patents
一种利用血液生化指标评价保育猪个体生长所处环境温湿状态的方法 Download PDFInfo
- Publication number
- CN111292799A CN111292799A CN202010104970.1A CN202010104970A CN111292799A CN 111292799 A CN111292799 A CN 111292799A CN 202010104970 A CN202010104970 A CN 202010104970A CN 111292799 A CN111292799 A CN 111292799A
- Authority
- CN
- China
- Prior art keywords
- temperature
- blood
- environment
- humidity
- nursery pig
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000004369 blood Anatomy 0.000 title claims abstract description 59
- 239000008280 blood Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 18
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims abstract description 18
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 claims abstract description 18
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 102000004420 Creatine Kinase Human genes 0.000 claims abstract description 10
- 108010042126 Creatine kinase Proteins 0.000 claims abstract description 10
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 claims abstract description 9
- 108010082126 Alanine transaminase Proteins 0.000 claims abstract description 9
- 108010088751 Albumins Proteins 0.000 claims abstract description 9
- 102000009027 Albumins Human genes 0.000 claims abstract description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 9
- 108060003951 Immunoglobulin Proteins 0.000 claims abstract description 9
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 9
- 235000012000 cholesterol Nutrition 0.000 claims abstract description 9
- 229940109239 creatinine Drugs 0.000 claims abstract description 9
- 239000008103 glucose Substances 0.000 claims abstract description 9
- 102000018358 immunoglobulin Human genes 0.000 claims abstract description 9
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 claims abstract description 9
- 108010074051 C-Reactive Protein Proteins 0.000 claims abstract description 8
- 102100032752 C-reactive protein Human genes 0.000 claims abstract description 8
- 235000014655 lactic acid Nutrition 0.000 claims abstract description 7
- 239000004310 lactic acid Substances 0.000 claims abstract description 7
- 108090000340 Transaminases Proteins 0.000 claims abstract description 6
- 102000014898 transaminase activity proteins Human genes 0.000 claims abstract description 6
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims abstract description 4
- 238000012360 testing method Methods 0.000 claims description 14
- 238000000611 regression analysis Methods 0.000 claims description 4
- 108010003415 Aspartate Aminotransferases Proteins 0.000 claims description 3
- 102000004625 Aspartate Aminotransferases Human genes 0.000 claims description 3
- 102000004190 Enzymes Human genes 0.000 claims description 2
- 108090000790 Enzymes Proteins 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000003547 immunosorbent Substances 0.000 claims description 2
- 239000003150 biochemical marker Substances 0.000 claims 1
- 102000004169 proteins and genes Human genes 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 claims 1
- 241000282887 Suidae Species 0.000 description 21
- 238000009395 breeding Methods 0.000 description 16
- 230000001488 breeding effect Effects 0.000 description 16
- 230000007613 environmental effect Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 230000029058 respiratory gaseous exchange Effects 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 4
- 238000010219 correlation analysis Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000008645 cold stress Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000008642 heat stress Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000474 nursing effect Effects 0.000 description 2
- 238000012628 principal component regression Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- KVZLHPXEUGJPAH-UHFFFAOYSA-N 2-oxidanylpropanoic acid Chemical compound CC(O)C(O)=O.CC(O)C(O)=O KVZLHPXEUGJPAH-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 238000001134 F-test Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- QHDUJTCUPWHNPK-UHFFFAOYSA-N methyl 7-methoxy-2h-indazole-3-carboxylate Chemical compound COC1=CC=CC2=C(C(=O)OC)NN=C21 QHDUJTCUPWHNPK-UHFFFAOYSA-N 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 230000022558 protein metabolic process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/02—Breeding vertebrates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/80—Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
- Y02P60/87—Re-use of by-products of food processing for fodder production
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Biology (AREA)
- Medical Informatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Optimization (AREA)
- Databases & Information Systems (AREA)
- Molecular Biology (AREA)
- Software Systems (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Animal Husbandry (AREA)
- Computational Mathematics (AREA)
- Operations Research (AREA)
- Entrepreneurship & Innovation (AREA)
- Educational Administration (AREA)
- Development Economics (AREA)
- Environmental Sciences (AREA)
- Algebra (AREA)
- Evolutionary Computation (AREA)
- Animal Behavior & Ethology (AREA)
- Game Theory and Decision Science (AREA)
Abstract
本发明公开了一种利用血液生化指标评价保育猪个体生长所处环境温湿状态的方法,所述方法是通过同时定量检测保育猪血液中的如下生化指标综合来评价保育猪个体生长所处环境温湿状态:白蛋白、谷丙转氨酶、谷草转氨酶、血尿素氮、肌酐、葡萄糖、甘油三脂、总胆固醇、肌酸激酶、C反应蛋白、乳酸、血氨、免疫球蛋白M。
Description
技术领域
本发明属于生猪养殖环境评价技术领域,具体涉及一种评价保育猪个体所处环境温湿状态的方法,本技术的思想也可以推广到其他动物乃至人的环境温湿体感状态评价领域。
背景技术
养殖环境是决定生猪养殖生产力的因素之一,对生猪养殖的贡献率高达25%,改善养殖环境是提高生猪养殖生产力必要的手段。温湿状态是养殖环境最重要的部分,它可以由温湿指数来评价。温湿环境可以从多角度影响生猪养殖生产力,冷应激和热应激的温湿环境下生猪的免疫力降低,高温下生猪的脂肪沉积降低肉品质,处于非舒适环境温湿状态区域的生猪需要消耗更多能量维持恒定体温导致饲料转化率降低。目前调节养殖场生猪养殖温湿环境的设备有水帘风机降温系统和保温灯暖风机保暖系统,可以调节功率和产热量的保温灯已经被生产,精准养殖概念也被提出并且精准环境控制是精准养殖中的一部分。
生猪养殖的环境准确评价是进行精准环境控制的先决条件,目前生猪养殖过程中环境评价的温湿环境部分一般由温度计和湿度计完成。工人使用温度计和湿度计测量猪舍的温度和湿度再利用温湿指数计算公式计算出温湿指数并以之评价养殖舍的温湿环境,温湿指数可由干球温度(Td,℃)、湿球温度(Tw,℃)、露点(Tdp,℃)和相对湿度(RH,%)中的任意两个值,选用下列各计算公式之一计算:THI=Td+0.36Tdp+41.2或THI=0.81Td+(0.99Td-14.3)RH+46.3或THI=0.72(Td+Tw)+40.6。这种方法能判定某一个时间点养殖舍的温湿环境状态,但对于一段时间内生猪所处的温湿环境状态无法准确评价。养殖舍的温湿状态一般随着时间改变而动态变化,同一畜舍的不同区域温湿状态也有差异,这导致温度计和湿度计在定时定点测量并计算的温湿指数难以评价一段时间内一定区域活动的生猪所处的温湿状态。生猪的血液生化指标浓度会随着环境温湿状态的波动而改变,已有的研究显示冷应激和热应激状态下的生猪血液中蛋白质代谢相关生化指标血氨、尿素氮的浓度会增加,肌酸激酶在应激状态下浓度也会明显升高。
发明内容
本发明针对现有技术的不足,提供一种利用血液生化指标评价保育猪个体生长环境温湿状态的方法。
为了达到上述目的,本发明提供的技术方案为:
所述利用血液生化指标评价保育猪个体所处环境温湿状态的方法是通过同时定量检测保育猪血液中的如下生化指标的浓度来评价保育猪个体所处温湿环境状态:白蛋白(Albumin)、谷丙转氨酶(Alanine aminotransferase)、谷草转氨酶(Aspartateaminotransferase)、血尿素氮(Blood urea nitrogen)、肌酐(Creatinine)、葡萄糖(Glucose)、甘油三脂(Triglyceride)、总胆固醇(Total cholesterol)、肌酸激酶(Creatine kinase)、C反应蛋白(C-reactive protein)、乳酸(Lactic acid)、血氨(Bloodammonia)、免疫球蛋白M(Immunoglobulin M)。
所述方法的具体步骤包括:
(1)建立并选取血液生化指标与反映保育猪个体生长所处环境温湿状态的保育猪所处环境温湿指数的回归模型(选取标准:R2>0.8,涉及p值的要求p<0.05),模型结果为:0.246THI=-12.757+0.048x1-0.27x2-0.014x3-0.073x4-1.175x5+0.12x6+1.42x7+3.147x8+3.194x9-0.002x10+14.096x11-0.146x12-0.003x13;
其中,所述THI为保育猪所处环境温湿指数,x1至x13分别为保育猪血液中白蛋白(g/L)、谷丙转氨酶(U/L)、谷草转氨酶(U/L)、血尿素氮(mmol/L)、肌酐(μmol/L)、葡萄糖(mmol/L)、甘油三脂(mmol/L)、总胆固醇(mmol/L)、肌酸激酶(U/L)、C反应蛋白(mg/L)、乳酸(mmol/L)、血氨(μmol/L)、免疫球蛋白M(g/L)的浓度;括号中为该物质对应的浓度单位。
(2)定量检测保育猪血液生化指标的浓度,将测得的结果带入回归模型,计算求得保育猪所处温湿环境温湿指数。
所述回归模型的类型是PCR(主成分回归)模型,回归分析F检验显著性水平值p<0.05,决定系数R2=0.9311。
其中,所述血液生化指标的浓度采用全自动生化分析仪、酶联免疫吸附试剂盒等技术测定。
下面对本发明作进一步说明:
保证猪养殖过程中的饲料和品种一致,使用呼吸测热舱保证猪处于稳定的温湿环境状态水平并设计重复,血液生化指标浓度的波动只受到温湿环境状态的影响。本发明将不同温湿环境状态试验条件下保育猪每种血液生化指标分别与对应的温湿指数做相关性分析,选取与温湿环境状态相关性较强的血液生化单指标建立模型(选取标准:R2>0.8,p<0.05),也将血液生化指标组合与对应的温湿指数利用Matlab软件建立并选取模型(选取标准:R2>0.80,涉及p值的要求p<0.05),寻找能够准确反应温湿环境状态的血液生化指标或指标组合,使用血液中血清生化指标浓度评定一段时间内保育猪所处的温湿环境状态并用温湿指数预测值表示,这使得保育猪生长的温湿状态评价更客观合理。
本发明中所述的动物为保育猪,亦可推广至生猪其他生长阶段乃至其他动物和人,本发明中提及的血液生化指标定量检测方法并非唯一,其他能够实现准确定量地检测血液生化指标的技术手段可以代替。
本发明中未提及的其他血液生化单指标和指标组合,能够通过一元或者多元回归分析与环境温湿指数值构建模型的;其他猪的生产阶段(育肥猪、育成猪等),利用血液生化单指标和指标组合通过一元或者多元回归分析与环境温湿指数值构建模型并用来评价环境温湿状态的,均在本发明保护范围内。
与现有技术相比,本发明的有益效果为:
本发明通过测定保育猪对应的血液生化指标并利用模型可以准确评价保育猪在过去短时间内所处的温湿环境(以温湿指数值表示)。计算得到的保育猪所处环境温湿指数值对管理者调节保育猪舍的温度、湿度等因子具有指导意义,结合保育猪生长环境标准可以在生产过程中控制保育猪生长温湿环境始终处于最佳状态。
附图说明
图1为试验过程中的温湿指数变化趋势:横坐标为时间,纵坐标为温湿指数值,试验从第一日12:00开始到次日6:00结束,观测时间间隔均匀为30min(观测时间段内呼吸舱的温湿环境已处于稳定状态),图中的温湿指数值由试验呼吸舱温度传感器和湿度传感器测量的干球温度与相对湿度经公式THI=0.81Td+(0.99Td-14.3)RH+46.3计算得到,图中小框内的温湿指数值为试验总过程中的平均值(试验时间段内观测的温湿指数值求平均获得)。
具体实施方式
下述实施实例中所使用的实验方法、材料和试剂如无特殊说明,均为常规方法、材料和试剂,均可从商业途径得到。
1、试验动物
选择体重无显著差异的大白-长白二元杂保育猪40头并随机分为5组,每组8头(n=8),每组中每头试验保育猪都单栏饲养于呼吸舱中,供给足够的饮水,提供相同的普通饲料(营养需要量参照NRC标准),自由采食。
2、试验过程和样品采集
控制试验保育猪在呼吸测热舱中的温湿环境,每组的温湿环境一样,在该试验中温湿环境是通过空调控制的。经后期计算,试验周期内5组试验猪生长的环境温湿指数分别为57.5、62.1、74.4、81.8、83.7(计算过程详见附图说明)。每头试验猪在稳定的温湿环境下饲养约20h,之后通过前腔静脉采血的方式采集试验猪的前腔静脉血。
3、血液样品检测和数据分析
利用全自动生化分析仪(瑞士Roche)定量检测血液样品中的白蛋白、谷丙转氨酶、谷草转氨酶、血尿素氮、肌酐、葡萄糖、甘油三脂、总胆固醇、肌酸激酶、C反应蛋白、乳酸、血氨、免疫球蛋白M的浓度。先利用IBM SPSS Statistics将单指标的血液生化浓度数据与试验环境温湿指数进行相关性分析选取与温湿环境状态相关性较强的血液生化单指标建立模型(选取标准:相关性分析∣r∣>0.6,p<0.05),然后将血液生化指标综合与对应的温湿指数利用Matlab软件建立并选取模型(选取标准:R2>0.80,涉及p值的要求p<0.05),寻找能够准确反应温湿环境状态的血液生化指标组合。
4、试验结果(见表1和表2,图1)
表1 保育猪血清生化单指标与温湿指数相关性分析
(注:r相关系数;p值:假设检验显著性水平值)
表2 利用血液生化指标计算保育猪所处环境温湿指数回归方程
血液生化单指标无法与环境温湿指数建立符合选取标准的回归模型,但利用血液生化指标组合评价保育猪短时期所处的环境温湿指数是可行的。利用血液生化组合评价保育猪生长所处环境温湿状态的最佳模型为:0.246THI=-12.757+0.048x1-0.27x2-0.014x3-0.073x4-1.175x5+0.12x6+1.42x7+3.147x8+3.194x9-0.002x10+14.096x11-0.146x12-0.003x13(LASSO模型,R2=0.9311),其中THI代表保育猪所处环境的温湿指数,x1至x13分别表示保育猪血液中白蛋白(g/L)、谷丙转氨酶(U/L)、谷草转氨酶(U/L)、血尿素氮(mmol/L)、肌酐(μmol/L)、葡萄糖(mmol/L)、甘油三脂(mmol/L)、总胆固醇(mmol/L)、肌酸激酶(U/L)、C反应蛋白(mg/L)、乳酸(mmol/L)、血氨(μmol/L)、免疫球蛋白M(g/L)的浓度。
Claims (4)
1.一种利用血液生化指标评价保育猪个体生长所处环境温湿状态的方法,其特征在于,所述方法是通过同时定量检测保育猪血液中的如下生化指标的浓度来评价保育猪个体生长所处环境温湿状态:白蛋白、谷丙转氨酶、谷草转氨酶、血尿素氮、肌酐、葡萄糖、甘油三脂、总胆固醇、肌酸激酶、C反应蛋白、乳酸、血氨、免疫球蛋白M。
2.如权利要求1所述的方法,其特征在于,所述方法的具体步骤包括:
(1)建立并选取血液生化指标与反映保育猪个体生长所处环境温湿状态的保育猪所处环境温湿指数的回归模型如下:
0.246THI = -12.757 + 0.048x 1 - 0.27x 2 - 0.014x 3 - 0.073x 4 - 1.175x 5 + 0.12x 6 + 1.42x 7 + 3.147x 8 + 3.194x 9 - 0.002x 10 + 14.096x 11 - 0.146x 12 - 0.003x 13;
其中,THI为保育猪所处温湿环境温湿指数,x 1至x 13分别为保育猪血液中白蛋白、谷丙转氨酶、谷草转氨酶、血尿素氮、肌酐、葡萄糖、甘油三脂、总胆固醇、肌酸激酶、C反应蛋白、乳酸、血氨、免疫球蛋白M的浓度;
所述白蛋白的浓度单位为g/L、谷丙转氨酶的浓度单位为U/L、谷草转氨酶的浓度单位为U/L、血尿素氮的浓度单位为mmol/L、肌酐的浓度单位为μmol/L、葡萄糖的浓度单位为mmol/L、甘油三脂的浓度单位为mmol/L、总胆固醇的浓度单位为mmol/L、肌酸激酶的浓度单位为U/L、C反应蛋白的浓度单位为mg/L、乳酸的浓度单位为mmol/L、血氨的浓度单位为μmol/L、免疫球蛋白M的浓度单位为g/L;
(2)定量检测保育猪血液中的生化指标的浓度,将测得的结果带入回归模型,计算获得保育猪所处温湿环境温湿指数。
3.如权利要求2所述的方法,其特征在于,所述回归模型的类型是PCR模型,回归分析F检验显著性水平值p<0.05,决定系数R2=0.9311。
4.如权利要求1所述的方法,其特征在于,所述血液生化指标的浓度采用全自动生化分析仪、酶联免疫吸附试剂盒测定。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010104970.1A CN111292799B (zh) | 2020-02-20 | 2020-02-20 | 一种利用血液生化指标评价保育猪个体生长所处环境温湿状态的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010104970.1A CN111292799B (zh) | 2020-02-20 | 2020-02-20 | 一种利用血液生化指标评价保育猪个体生长所处环境温湿状态的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111292799A true CN111292799A (zh) | 2020-06-16 |
CN111292799B CN111292799B (zh) | 2023-09-08 |
Family
ID=71024675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010104970.1A Active CN111292799B (zh) | 2020-02-20 | 2020-02-20 | 一种利用血液生化指标评价保育猪个体生长所处环境温湿状态的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111292799B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114446465A (zh) * | 2021-10-29 | 2022-05-06 | 华中农业大学 | 一种鸡热应激状态的评价方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6333160B1 (en) * | 1988-08-31 | 2001-12-25 | Keiji Tamura | Method and specific diagnostic system for objectively assessing and monitoring the relative homeostasis and health of animals |
WO2012163361A1 (en) * | 2011-05-31 | 2012-12-06 | Aarhus Universitet | Method and system for identification of physiological imbalance in an animal |
WO2014072823A2 (en) * | 2012-11-06 | 2014-05-15 | Scienmet La, Inc. | Device for blood glucose level determination |
CN104782559A (zh) * | 2014-01-20 | 2015-07-22 | 中国农业科学院北京畜牧兽医研究所 | 一种用于评价肉鸡热舒适性的非侵入性内分泌指标及其应用 |
CN104813980A (zh) * | 2015-05-15 | 2015-08-05 | 中国农业科学院北京畜牧兽医研究所 | 一种用于评价肉鸡热舒适性的非侵入性生理指标及其应用 |
CN105147256A (zh) * | 2015-08-28 | 2015-12-16 | 中粮饲料有限公司 | 一种猪生理状态预测方法及装置 |
CN109871918A (zh) * | 2018-12-25 | 2019-06-11 | 广州中灿信息科技有限公司 | 一种大规模肉猪养殖质量监控方法 |
CN110441505A (zh) * | 2019-07-24 | 2019-11-12 | 运城学院 | 一种长白猪血常规数据分析方法 |
-
2020
- 2020-02-20 CN CN202010104970.1A patent/CN111292799B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6333160B1 (en) * | 1988-08-31 | 2001-12-25 | Keiji Tamura | Method and specific diagnostic system for objectively assessing and monitoring the relative homeostasis and health of animals |
WO2012163361A1 (en) * | 2011-05-31 | 2012-12-06 | Aarhus Universitet | Method and system for identification of physiological imbalance in an animal |
WO2014072823A2 (en) * | 2012-11-06 | 2014-05-15 | Scienmet La, Inc. | Device for blood glucose level determination |
CN104782559A (zh) * | 2014-01-20 | 2015-07-22 | 中国农业科学院北京畜牧兽医研究所 | 一种用于评价肉鸡热舒适性的非侵入性内分泌指标及其应用 |
CN104813980A (zh) * | 2015-05-15 | 2015-08-05 | 中国农业科学院北京畜牧兽医研究所 | 一种用于评价肉鸡热舒适性的非侵入性生理指标及其应用 |
CN105147256A (zh) * | 2015-08-28 | 2015-12-16 | 中粮饲料有限公司 | 一种猪生理状态预测方法及装置 |
CN109871918A (zh) * | 2018-12-25 | 2019-06-11 | 广州中灿信息科技有限公司 | 一种大规模肉猪养殖质量监控方法 |
CN110441505A (zh) * | 2019-07-24 | 2019-11-12 | 运城学院 | 一种长白猪血常规数据分析方法 |
Non-Patent Citations (4)
Title |
---|
冯泽猛: "畜禽养殖环境调控与智能养殖装备技术研究进展", 《中国科学院院刊》, pages 163 - 173 * |
刘春燕,吴中红,王新谋,安永义,江逆,李震钟,王清吉: "京白蛋鸡耐热力评定指标的研究", no. 04, pages 28 - 34 * |
张凡建: "奶牛热应激评价指标研究进展", pages 62 - 64 * |
张根军: "生长猪热应激反应模型及适宜监测指标筛选", pages 1 - 67 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114446465A (zh) * | 2021-10-29 | 2022-05-06 | 华中农业大学 | 一种鸡热应激状态的评价方法 |
CN114446465B (zh) * | 2021-10-29 | 2023-02-28 | 华中农业大学 | 一种鸡热应激状态的评价方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111292799B (zh) | 2023-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Connor | Invited review: Improving feed efficiency in dairy production: Challenges and possibilities | |
Lundy et al. | An automated multi‐calorimeter system: preliminary experiments on laying hens | |
Buyse et al. | Energy and protein metabolism between 3 and 6 weeks of age of male broiler chickens selected for growth rate or for improved food efficiency | |
CN106408114B (zh) | 一种多元线性回归模型在预测肉鸡腹部脂肪量或选育低脂系肉鸡中的应用 | |
CN114793963B (zh) | 一种大数据控制的鱼快速脆化环境控制方法 | |
CN116612820B (zh) | 基于数据分析的乳制品生产智能管理平台 | |
CN111292799A (zh) | 一种利用血液生化指标评价保育猪个体生长所处环境温湿状态的方法 | |
WO2019153823A1 (zh) | 一种基于系谱信息简化选择高生产性能a2a2纯合基因型奶牛的育种方法 | |
de Sousa et al. | Ammonia emission from fattening pig houses in relation to animal activity and carbon dioxide production | |
CN104502615A (zh) | 一种辅助筛选低脂肉鸡的血清生化标记及应用 | |
Cheng et al. | Markers and proxies to monitor ruminal function and feed efficiency in young ruminants | |
Mota et al. | Predicting milk protein fractions using infrared spectroscopy and a gradient boosting machine for breeding purposes in Holstein cattle | |
Liu et al. | Estimating ventilation rates of animal houses through CO2 balance | |
CN109385481A (zh) | serpinA3及vitronectin基因在苏姜公猪选育中的应用及其选育方法 | |
Chládek et al. | Effect of season and herd on rennet coagulation time and other parameters of milk technological quality in Holstein dairy cows | |
CN111273044B (zh) | 一种评价保育猪个体生长所处环境温湿状态的方法 | |
CN111208233A (zh) | 一种利用血液代谢物评价保育猪个体生长所处环境温湿状态的方法 | |
US20050153359A1 (en) | Method for the evaluation of velvet antler | |
Ivanova et al. | Influence of the level of daily milk yield on some blood biochemical parameters in dairy cows reared under the same temperature and humidity conditions. | |
Ariton et al. | Nondestructive methods for milk quality assessment | |
CN111676301B (zh) | 一种基于鼻腔微生物相对丰度评价保育猪所处环境温湿状态的方法 | |
Mauldin | Factors affecting hatchability | |
Reddy et al. | Circadian and seasonal variations in the physio-biochemical parameters in Black Bengal goats (Capra hircus) of semi-arid tropical climate | |
Geers et al. | Variability of energy metabolism and nuclear T3-receptors within the skeletal muscle tissue of pigs different with respect to the halothane gene | |
de Angelis Curtis et al. | Grana Padano cheese: thermoanalytical techniques applied to the study of ripening |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |