CN111286715A - 制备燃料电池用催化剂的方法和设备 - Google Patents

制备燃料电池用催化剂的方法和设备 Download PDF

Info

Publication number
CN111286715A
CN111286715A CN201911207074.1A CN201911207074A CN111286715A CN 111286715 A CN111286715 A CN 111286715A CN 201911207074 A CN201911207074 A CN 201911207074A CN 111286715 A CN111286715 A CN 111286715A
Authority
CN
China
Prior art keywords
bed reactor
fluidized bed
group
catalytic metal
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911207074.1A
Other languages
English (en)
Other versions
CN111286715B (zh
Inventor
洪雄杓
权世薰
李雨宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
University Industry Cooperation Foundation of Pusan National University
Kia Corp
Original Assignee
Hyundai Motor Co
Kia Motors Corp
University Industry Cooperation Foundation of Pusan National University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, Kia Motors Corp, University Industry Cooperation Foundation of Pusan National University filed Critical Hyundai Motor Co
Publication of CN111286715A publication Critical patent/CN111286715A/zh
Application granted granted Critical
Publication of CN111286715B publication Critical patent/CN111286715B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/40Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to vibrations or pulsations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/122Metal aryl or alkyl compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/32Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with introduction into the fluidised bed of more than one kind of moving particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4407Cleaning of reactor or reactor parts by using wet or mechanical methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/442Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/94Non-porous diffusion electrodes, e.g. palladium membranes, ion exchange membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1946Details relating to the geometry of the reactor round circular or disk-shaped conical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30207Sphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30433Glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及制备燃料电池用催化剂的方法和设备。具体地,本发明涉及一种生产燃料电池用催化剂的方法,其包括:a)将碳颗粒注入流化床反应器;b)抽空流化床反应器以形成基准压力;c)将催化金属前体与载气一起引入流化床反应器,使催化金属前体与碳颗粒接触;d)将吹扫气体吹入流化床反应器;e)将反应气体引入流化床反应器以将催化金属前体附着到碳颗粒上;以及f)将吹扫气体吹入流化床反应器,其中,使催化金属以纳米尺寸点的形式附着在碳颗粒上。

Description

制备燃料电池用催化剂的方法和设备
技术领域
本公开涉及一种催化剂生产方法以及用于燃料电池的生产设备。更具体地,本公开涉及一种使用流化床反应器生产用于燃料电池的催化剂的方法和设备。
背景技术
除了燃料电池的电极材料外,催化剂也在不断提高性能,并且所提出的催化剂包括作为载体的炭黑和掺入其中的铂点。铂是一种非常昂贵的金属,使用量尽可能少,但使表面积最大化。因此,即使使用相同量的铂,也希望具有铂点小、均匀且活跃的形式。传统上,这种催化剂通过例如湿法工艺来制造。
在常规湿法工艺中,大规模生产过程几乎要花费一周。此外,由于使用化学药品、由于环境问题、后处理以及由于处理化学药品而需要的稳定剂投入,制造成本很高。此外,炭黑载体中掺入的铂点的大小不等,从小团块到大团块。此时,不希望使用大尺寸的铂点,因为它们会抵消相对于铂含量的表面积扩大。另外,当铂点的尺寸不恒定时,大聚集点生长,同时通过奥斯特瓦尔德熟化效应吸收小尺寸点。这导致了铂催化剂的性能降低的问题。然而,在如上所述的常规湿法工艺中,几乎不可能控制铂点的尺寸。
还尝试了通过原子层沉积(以下称为ALD)制备用于燃料电池的铂/碳催化剂的方法。它属于通过干法生产催化剂的方法,与上述湿法相比,可以缩短生产时间。它也是环境友好的,因为没有使用化学药品的废水排放。已经进行了现有研究以将铂催化剂担载在附着或生长于平板上的碳材料上,但是这种方法不能进行大规模生产。
发明内容
[要解决的问题]
用少量的催化金属,可以生产用于燃料电池的催化剂,其具有的催化金属点小、均匀且表面积大。本公开还提供了一种生产用于燃料电池的催化剂的方法和能够大规模生产的设备。
[问题解决方案]
根据本公开实施方式的一种用于生产燃料电池用催化剂的方法,包括:
a)将碳颗粒注入流化床反应器;b)抽空流化床反应器以形成基准压力;c)将催化金属前体与载气一起引入流化床反应器,使催化金属前体与碳颗粒接触;d)将吹扫气体吹入流化床反应器;e)将反应气体引入流化床反应器以将催化金属前体附着到碳颗粒上;和f)将吹扫气体吹入流化床反应器,其中,使催化金属以纳米尺寸点的形式附着在碳颗粒上。
该方法可以重复步骤c)至f)多次,以生长附着在碳颗粒上的催化金属点。
步骤c)进行90到150秒。
步骤d)进行60到120秒。
步骤e)进行60至120秒。
步骤f)进行60到120秒。
步骤c)至步骤f)可以是周期性地对流化床反应器施加振动,以去除上部网中的粘附材料。
在抽空流化床反应器以形成基准压力的步骤中,压力为0.1至0.5托。
在步骤c)至f)中的流化床反应器的内部温度为200至400℃。
催化金属前体是从由Pt、Co、Ru、Pd、Cu、Ni、Ag、Ir、Mo、Fe、W、Au、Rh及它们的组合组成的组中选择的前体。
Pt前体选自于三甲基(甲基环戊二烯基)铂(MeCpPtMe3)、乙酰丙酮铂(II)(Pt(acac)2)、[(1,2,5,6·η)·1,5·己二烯]二甲基铂(II)(HDMP)、二甲基(N,N-二甲基-3-丁烯-1-胺-N)铂(DDAP)及它们的组合。
Co前体选自于双(N,N'-二-异-丙基乙脒基)钴(II)(Co(iPrNCMeNiPr)2)、双(环戊二烯基)钴(II)(CoCp2)、环戊二烯基钴二羰基(CoCp(CO)2)、羰基钴(八羰基二钴)(Co2(CO)8)及它们的组合。
Ru前体选自于双(环戊二烯基)钌(Ru(Cp)2)、双(乙基环戊二烯基)钌(II)(Ru(EtCp)2)、甲基环戊二烯基乙基环戊二烯基钌((EtCp)Ru(MeCp))、(Me3NEtCp)RuCp、环戊二烯基乙基(二羰基)钌(Ru(Cp)(CO)2Et)、N,N-二甲基-1-钌茂基乙胺(RuCp(CpCh(Me)(NMe2)))、三(2,2,6,6-四甲基-3,5-庚二酮酸)钌(III)(Ru(thd)3)、双(N,N-二-叔丁基乙脒基)钌(II)二羰基(Ru(tBuAMD)2(CO)2)、Rudic、Carish及它们的组合。
Pd前体选自于六氟乙酰丙酮钯(II)(Pd(hfac)2)、四甲基庚二酮酸钯(Pd(thd)2)、钯-酮亚胺(Pd(keim2)2)及它们的组合。
Cu前体选自于氯化铜(I)(CuCl)、六氟乙酰丙酮铜(II)水合物(Cu(hfac)2)、乙酰丙酮铜(II)(Cu(acac)2)、双(2,2,6,6-四甲基-3,5-庚烷二酮)铜(Cu(thd)2)、双(二甲基氨基-2-丙氧基)铜(II)(Cu(dmap)2)、双(N,N'-二-异-丙基乙脒基)铜(II)([Cu(iPrNCMeNiPr)]2)、双(N,N'-二-仲丁基乙脒基)二铜(I)([Cu(sBuNCMeNsBu)]2)及它们的组合。
Ni前体选自于双(N,N'-二-异-丙基乙脒基)镍(II)(Ni(iPrNCMeNiPr)2)、乙酰丙酮镍(II)(Ni(acac)2)、七氟异丙基镍(Ni(hfip)2)及它们的组合。
Ag前体选自于(2,2-二甲基丙酸)银(I)三乙基膦(Ag(O2CtBu)(PEt3))、(1,5-环辛二烯)(六氟乙酰丙酮)银(I)(Ag(hfac)(cod))及它们的组合。
Ir前体选自于乙酰丙酮铱(III)(Ir(acac)3)、铱(乙基环戊二烯基)(1,5-环辛二烯)(Ir(EtCp)(cod))、1-乙基环戊二烯基-1,3-环己二烯铱(I)(Ir(MeCp)(chd))及它们的组合。
Mo前体是MoCl5
Fe前体是双(N,N'-二-仲丁基乙脒基)铁(I)(Fe(iBuNCMeNtBu)2)。
W前体是WF6
碳颗粒选自于炭黑、石墨烯、碳纳米管(CNT)及它们的组合。
反应气体包含选自于O2、O3、空气、H2、NH3、H2等离子体、NH3等离子体和O2等离子体中的反应气体。
吹扫气体是氩气、氦气或氮气。
在步骤a)将碳颗粒注入流化床反应器之前,该方法还包括以下步骤:将玻璃珠填充到位于流化床反应器出口处的上部网的内部部分和位于流化床反应器进口处的下部网的外部部分中。
吹扫气体为氩气,反应气体为氧气,碳颗粒为炭黑,催化金属前体为三甲基(甲基环戊二烯基)铂(MeCpPtMe3)。
步骤c)至f)的流化床反应器的内部压力为1至5托。
吹扫气体的流入速率为50至200sccm。
反应气体的流动速率为10至200sccm。
一种根据本公开另一实施方式的生产用于燃料电池的催化剂的设备,包括:
流化床反应器;真空泵,其连接到流化床反应器的上部并控制流化床反应器内部的压力;连接到流化床反应器下部的吹扫气体储罐;连接到流化床反应器下部的反应气体储罐;连接吹扫气体储罐和流化床反应器的第一管道;连接反应气体储罐和流化床反应器的第二管道;和连接到第一管道的容器,所述容器储存催化金属前体。
其中,所述流化床反应器包括:位于流化床反应器上部出口的上部网,其包括其中的中空部分且由网状材料制成,并且包括所述上部网的上表面的开口形式;填充在上部网中的上部玻璃珠;联接到所述上部网的上表面的上表面网;布置在流化床反应器入口处的下部网,包括其中的中空部分且由网状材料制成;和填充在流化床反应器的下部的下部玻璃珠。
玻璃珠的直径为1到3mm。
所述设备还包括附接到所述上部网并且周期性振动上部网的振动器。
下部玻璃珠的填充高度比下部网的高度高0.5至3cm。
流化床反应器内部的温度为200至400℃。
第一管道和第二管道的内部温度为50至150℃。
容器内部的温度为10至50℃。
[效果]
通过使用流化床反应器,在碳颗粒上形成尺寸小且尺寸均匀并且分布均匀的催化剂金属点,由此产生具有大的催化剂金属表面积的燃料电池催化剂。
此外,使用流化床反应器,可以大规模生产燃料电池催化剂。
另外,通过使碳颗粒、催化金属前体和反应气体均匀地漂浮在流化床反应器中,可以使碳颗粒和催化金属前体更有效地暴露于反应物中。
附图说明
图1是根据本公开一个实施方式的用于生产燃料电池用催化剂的设备的示意图。
图2是根据本公开一个实施方式的流化床反应器的示意图。
图3是根据本公开一个实施方式的上部网的示意图。
图4是根据本公开一个实施方式的下部网的示意图。
图5是显示根据本公开一个实施方式制备的催化剂的ALD循环的催化剂的Pt含量的图。
图6是根据本公开一个实施方式制备的催化剂的高分辨率透射电子显微镜(HRTEM)照片。
图7是根据本公开一个实施方式制备的催化剂的根据ALD循环的Pt点尺寸的高斯分布。
图8是根据本公开一个实施方式制备的Pt/C催化剂在电极上的循环伏安图。
具体实施方式
在下文中,将详细描述本公开的实施方式。然而,这仅作为示例给出,本公开不限于此,并且本公开仅由描述的权利要求的范围限定。
在本说明书中,诸如第一、第二和第三等术语用于描述各种部件、组件、区域、层和/或区段,但不限于这些。这些术语仅用于区分一个部件、组件、区域、层或区段与另一部件、组件、区域、层或区段。因此,在不脱离本公开的范围的情况下,下面描述的第一部分、组件、区域、层或区段可以被称为第二部分、组件、区域、层或区段。
在本说明书中,当一部件被说成“包括”某个组件时,除非另有说明,除了排除其他组件,表示它可以进一步包括其他组件。
本文所使用的术语仅出于参考特定实施方式的目的,并不旨在限制本公开。如本文所用,单数形式“一个”、“一种”和“该/所述”也包括复数形式,除非这些短语清楚地表明相反的意思。
如本文所用,包括在马库什形式的表达中的术语“它们的组合”是指选自于由马库什形式表示中描述的要素组成的组中的一种或多种混合物或组合,其是指包括选自于由上述组件组成的组中的一个或多个。
在下文中,将参考附图详细描述本公开的示例性实施方式,以便本领域技术人员可以容易地实现本公开。如本领域技术人员将认识到的,可以以各种不同的方式修改所描述的实施方式,而全部不脱离本公开的精神或范围。
当层、膜、区域、板等的一部分被称为在另一部分“上”或“之上”时,这不仅包括其中所述另一部分“正好在上方”的情形,还包括另一部分在中间的情形。此外,在整个说明书中,“在…上”是指位于目标部分的上方或下方,并且不一定意味着位于重力方向的上方。
本公开提供了一种生产催化剂的方法和设备,其中将催化剂金属掺入碳载体中,其可以大量生产,并且可以形成具有较小且均匀尺寸的铂点的催化剂点,从而以少量的催化剂金属而具有较大的表面积。
生产燃料电池催化剂的方法
一种根据本公开实施方式的用生产燃料电池用催化剂的方法,包括:
a)将碳颗粒注入流化床反应器;b)抽空流化床反应器以形成基准压力;c)将催化金属前体与载气一起引入流化床反应器,使催化金属前体与碳颗粒接触;d)将吹扫气体吹入流化床反应器;e)将反应气体引入流化床反应器以将催化金属前体附着到碳颗粒上;和f)将吹扫气体吹入流化床反应器,其中,使催化金属以纳米尺寸点的形式附着在碳颗粒上。
具体地,可以进行将碳颗粒引入到流化床反应器的步骤a)。
其次,可以进行抽空流化床反应器以形成基准压力的步骤(步骤b)。
图1是FRB-ALD设备的示意图。可以使用图1中所示的真空泵200,将流化床反应器100内的压力调整至0.1至0.5托。具体地,可以将其调整为0.4托。当在流化床反应器中形成基准压力时,引入的碳颗粒会流化并漂浮。当满足压力范围时,碳颗粒可以被有效地流化。
随后,可以将催化金属前体与载气一起引入流化床反应器,从而使碳颗粒和催化金属前体彼此接触,使催化剂金属以点形式粘附到碳颗粒上(步骤c)。
载气用于将催化金属前体移至流化床反应器,并且可以使用不与催化金属前体反应的气体。具体地,可以使用氩气、氦气或氮气。
通过将催化金属前体与载气引入到流化床反应器以使碳颗粒与催化金属前体接触可以包括以50至200sccm的流动速率将催化金属前体与载气一起引入流化床反应器。其可以进行90至150秒。具体而言,流动速率可以为50至150sccm。当满足上述范围时,催化金属前体和碳颗粒可充分接触。
碳颗粒可以选自炭黑、石墨烯、CNT及它们的组合。
催化金属前体可以是包括含有选自由Pt、Co、Ru、Pd、Cu、Ni、Ag、Ir、Mo、Fe、W、Au、Rh及它们的组合组成的组中的金属的前体。
Pt前体可以选自于三甲基(甲基环戊二烯基)铂(MeCpPtMe3)、乙酰丙酮铂(II)(Pt(acac)2)、[(1,2,5,6·η)·1,5·己二烯]二甲基铂(II)(HDMP)、二甲基(N,N-二甲基-3-丁烯-1-胺-N)铂(DDAP)及它们的组合。
Co前体可以选自于双(N,N'-二-异-丙基乙脒基)钴(II)(Co(iPrNCMeNiPr)2)、双(环戊二烯基)钴(II)(CoCp2)、环戊二烯基钴二羰基(CoCp(CO)2)、羰基钴(八羰基二钴)(Co2(CO)8)及它们的组合。
Ru前体可以选自于双(环戊二烯基)钌(Ru(Cp)2)、双(乙基环戊二烯基)钌(II)(Ru(EtCp)2)、甲基环戊二烯基乙基环戊二烯基钌((EtCp)Ru(MeCp))、(Me3NEtCp)RuCp、环戊二烯基乙基(二羰基)钌(Ru(Cp)(CO)2Et)、N,N-二甲基-1-钌茂基乙胺(RuCp(CpCh(Me)(NMe2)))、三(2,2,6,6-四甲基-3,5-庚二酮酸)钌(III)(Ru(thd)3)、双(N,N-二-叔丁基乙脒基)钌(II)二羰基(Ru(tBuAMD)2(CO)2)、Rudic、Carish及它们的组合。
Pd前体可以选自于六氟乙酰丙酮钯(II)(Pd(hfac)2)、四甲基庚二酮酸钯(Pd(thd)2)、钯-酮亚胺(Pd(keim2)2)及它们的组合。
Cu前体可以选自于氯化铜(I)(CuCl)、六氟乙酰丙酮铜(II)水合物(Cu(hfac)2)、乙酰丙酮铜(II)(Cu(acac)2)、双(2,2,6,6-四甲基-3,5-庚烷二酮)铜(Cu(thd)2)、双(二甲基氨基-2-丙氧基)铜(II)(Cu(dmap)2)、双(N,N'-二-异-丙基乙脒基)铜(II)([Cu(iPrNCMeNiPr)]2)、双(N,N'-二-仲丁基乙脒基)二铜(I)([Cu(sBuNCMeNsBu)]2)及它们的组合。
Ni前体可以选自于双(N,N'-二-异-丙基乙脒基)镍(II)(Ni(iPrNCMeNiPr)2)、乙酰丙酮镍(II)(Ni(acac)2)、七氟异丙基镍(Ni(hfip)2)及它们的组合。
Ag前体可以选自于(2,2-二甲基丙酸)银(I)三乙基膦(Ag(O2CtBu)(PEt3))、(1,5-环辛二烯)(六氟乙酰丙酮)银(I)(Ag(hfac)(cod))及它们的组合。
Ir前体可以选自于乙酰丙酮铱(III)(Ir(acac)3)、铱(乙基环戊二烯基)(1,5-环辛二烯)(Ir(EtCp)(cod))、1-乙基环戊二烯基-1,3-环己二烯铱(I)(Ir(MeCp)(chd))及它们的组合。
Mo前体可以是MoCl5
Fe前体可以是双(N,N'-二-仲丁基乙脒基)铁(I)(Fe(iBuNCMeNtBu)2)。
W前体可以是WF6
吹扫气体可以是不与碳颗粒和催化金属前体反应的气体。具体地,它可以是惰性气体,例如氩气、氦气或氮气。
随后,可以进行将吹扫气体吹入流化床反应器的步骤d)。吹扫步骤可以通过以50至200sccm的流动速率提供吹扫气体来进行,并且可以进行60至120秒。当满足范围时,它可以有效地除去不参与反应的残留自由基。具体而言,它可以以50至150sccm的流动速率供应。
随后,可以通过将反应气体引入流化床反应器以使催化金属前体与碳颗粒反应,从而进行将催化金属前体附着到碳颗粒上的步骤e)。
反应气体可以包括选自于O2、O3、空气、H2、NH3、H2等离子体、NH3等离子体和O2等离子体中的反应气体。
反应气体的流入速率可以为10至200sccm,并且可以进行60至120秒。当满足上述范围时,催化金属前体和碳颗粒与反应气体充分反应,从而催化金属前体可以有效地附着在碳颗粒表面上。
随后,可以进行将吹扫气体吹入流化床反应器的步骤(步骤f)。
吹扫气体入口速率可以为50至200sccm,并且可以吹扫60至120秒。如果满足上述范围,则可以有效地除去流化床反应器中未反应的自由基。
可以重复进行步骤c)至f)多次,以生长附着在碳颗粒上的催化金属点。即,通过控制步骤c)至f)的循环数,可以调节附着在碳颗粒上的催化金属点的大小。
步骤c)至f)可在流化床反应器内维持在1-5托压力下。如果满足上述范围,则可以有效地吹飞碳颗粒。
在步骤c)至步骤f)中,可以进行周期性地对流化床反应器施加振动的步骤以去除上部网中的粘附材料。当进行催化剂制备的每个步骤时,可以将碳颗粒等附着到安装在流化床反应器出口中的上部网上。根据本发明的一个实施方式,通过对流化床反应器施加周期性的振动,可以去除附着在上部网上的诸如碳颗粒等物质,并且可以防止碳颗粒之间的聚集。此外,将附着在上部网上的碳颗粒送回到流化床反应器,从而使催化金属前体与反应气体接触以提高催化剂的收率。
在步骤c)至f)中的流化床反应器的内部温度可以为200至400℃。当满足所述温度范围时,可以提供反应所需的足够量的能量,而催化金属前体和反应气体不分解。
在a)将碳颗粒注入到流化床反应器中的步骤之前,所述方法还可包括以下步骤:将玻璃珠填充到位于流化床反应器出口处的上部网的内部部分和位于流化床反应器入口处的下部网的外部部分中。根据本公开实施方式的制备用于燃料电池的催化剂的方法可包括这样的配置,其中玻璃珠填充在位于流化反应器上部的出口中和位于其下部的入口部分中。在这种情况下,流过所述入口和催化金属前体的气体可以在通过填充在流化床反应器下部中的玻璃珠之间时均匀地分布并且均匀地供给到流化床反应器。
在下文中,将描述根据本公开另一实施方式的用于燃料电池的催化剂制造设备。与先前在燃料电池催化剂制造方法中描述的描述重复的描述将被省略。
生产燃料电池用催化剂的设备
一种根据本公开另一个实施方式的生产燃料电池用催化剂的设备,包括:
流化床反应器;真空泵,其连接到流化床反应器的上部并控制流化床反应器内部的压力;连接到流化床反应器下部的吹扫气体储罐;连接到流化床反应器下部的反应气体储罐;连接吹扫气体储罐和流化床反应器的第一管道;连接反应气体储罐和流化床反应器的第二管道;和连接到第一管道的容器,所述容器储存催化金属前体。
所述流化床反应器包括:
位于流化床反应器上部出口的上部网,包括其中的中空部分且由网状材料制成,并且包括所述上部网的上表面的开口形式;填充在上部网中的上部玻璃珠;联接到所述上部网的上表面的上表面网;放置在流化床反应器入口处的下部网,包括其中的中空部分且由网状材料制成;和填充在流化床反应器的下部的下部玻璃珠。
图2示出了根据本公开一个实施方式的流化床反应器。
在流化床反应器的底部,可以设置用于引入碳颗粒、催化金属前体和气体的入口。
出口可位于流化床反应器上方。
图3示出了根据本公开一个实施方式的上部网,其位于流化床反应器的上部出口中并且上部玻璃珠填充在该上部网内。
图4示出了根据本公开一个实施方式的流化床反应器的下部、下部玻璃珠和下部网。
流化床反应器包括下部玻璃珠,该下部玻璃珠填充在其中定位有入口的流化床反应器的下部,从而使通过该入口供给到流化床反应器中的反应气体和催化金属前体在经过下部玻璃珠之间时均匀分散到流化床反应器。可以均匀供应整个区域,并且碳颗粒可以均匀流动。另外,通过包括下部网,可以防止下部玻璃珠丢失到所述入口。
流化床反应器可以具有其中下部朝向底部变窄的形式,并且在这种情况下,通过入口引入的气体、催化金属前体和碳颗粒可以有效地分散和引入。
上部玻璃珠和下部玻璃珠的直径可以为1-3mm。
如果玻璃珠直径太大,则通过入口供应到流化床反应器中的反应气体和催化金属前体可能无法充分均匀地分散。如果直径太小,可能会阻止反应气体和催化金属前体的顺利流入。
下部玻璃珠的填充高度比下部网的高度高0.5至3cm。当满足上述范围时,可以将流入到流化床反应器的气体均匀地引入到整个反应器区域,以使碳颗粒以相同的方式流动。当下部玻璃珠的填充高度过低时,通过入口供给到流化床反应器中的反应气体和催化金属前体不能充分均匀地分散。如果玻璃珠的填充高度过高,可能会阻止反应气体和催化金属前体的顺利流入,并且由于不必要的大量填充玻璃珠,可能发生反应的内部空间可能会相对变狭窄。
上部网内部可装有上部玻璃珠。具体地,上部网的内部可完全充满上部玻璃珠。填充有玻璃珠的上部网降低真空泵的泵送传导率(pumping conductance),从而尽管反应气体流速高,仍可确保炭黑的适当流动性。
联接到上部为开口形状的上部网103的上表面的上表面网105防止上部玻璃珠丢失。
流化床反应器可以进一步包括振动器,用于周期性地对流化床反应器施加振动。详细地,振动器可以附接到上部网并且可以周期性地对上部网施加振动。随着振动器的运行,附着于上部网的碳粒子等粘附材料从上部网脱附,返回至流化床反应器,从而抑制碳粒子之间的粘附并且提高催化剂的收率。振动器可以产生10到500Hz的振动。具体而言,可以是100至400Hz、200至400Hz或250至350Hz。当满足上述范围时,可以有效地抑制碳颗粒之间的粘附。
流化床反应器内部的温度可能为200到400℃。当满足所述温度范围时,可以提供用于反应的足够能量而不会引起催化金属前体和/或反应气体的分解反应。
第一管道和第二管道的内部温度可以为50至150℃。当满足上述范围时,可以通过维持催化金属前体的蒸发压力将其有效地注入反应器中。
容器内的温度可以为10至50℃。当满足上述范围时,可以通过催化金属前体的汽化产生蒸发压力以有效地移入反应器。真空泵还可包括第三管道,该第三管道连接到位于流化床反应器上方的出口。第三管道的内部温度可以为50至150℃。
在本公开的一个实施方式中,吹扫气体为氩气,反应气体为氧气,碳颗粒为炭黑,且催化金属前体为MeCpPtMe3
在下文中,描述了本公开的优选实施例和比较例。然而,以下实施例仅是本公开的优选实施例,并且本公开不限于以下实施例。
制备例(载体的预处理)
为了将原子层沉积(ALD)方法应用于本公开的Pt/C催化剂,需要碳载体预处理工艺以产生碳载体的官能团,从而制备能够顺利担载Pt催化剂的表面。
以相同的量加入柠檬酸和炭黑,并且加入蒸馏水(DI水),然后使用超声波进行混合。在这一实施例中,加入20g柠檬酸和炭黑,500ml蒸馏水,并进行超声波搅拌约1小时。
通过过滤从混合物中提取浆料,用蒸馏水洗涤,得到滤出物。可以将获得的滤出物在250至350℃下热处理约30至90分钟。在本实施例中,在300℃下进行60分钟的热处理。
实施例
根据本公开的一个实施方式的流化床反应器100还用作ALD处理室。
在将上述制备例的预处理的炭黑颗粒放入流化床反应器100中之后,首先使用真空泵200将流化床反应器100内部的压力抽至0.4托。
流化床反应器100的内部反应温度保持在300℃,第一和第二管道的温度为100℃,并且存储铂催化前体(MeCpPtMe3)的容器300的内部温度保持在30℃。
除了在处理过程中引入反应气体的步骤之外,将氩气以100sccm的流速通过氩气存储器400连续地引入流化床反应器中。因此,炭黑颗粒被流化并漂浮在流化床反应器100的坩埚中。将铂前体(MeCpPtMe3)与氩气一起引入到流化床反应器中,并且铂前体接触炭黑。
此后,将吹扫气体(如氩气)吹入反应器100中,并且将作为反应气体的氧气注入以使铂点附着到炭黑上。之后,再次注入氩气并吹扫。在此阶段进行氩气吹扫可除去未参与反应的残留自由基。
在本实施方式中,在催化金属沉积过程中,工作压力保持在约3托,并且氩气的气体流速为100sccm且氧气的流速为30sccm。将铂前体注入时间120秒、氩气吹扫90秒,氧气注入时间90秒、氩气吹扫90秒设为一个单位循环。
分别进行五次、十次、十五次、二十次和二十五次循环,以获得用于燃料电池的催化剂。
评价例1
图5是根据ALD循环通过TGA(热重分析)测量的根据实施例制备的Pt/C催化剂的Pt含量。
在图5中可以看出,Pt含量几乎与循环数成正比。即,根据本公开的一个实施方式,可以看出,可以根据需要控制沉积在炭黑上的Pt含量。
评价例2
图6是根据实施方式制备的Pt/C催化剂的HRTEM照片。
参照图6,可以看出Pt点随着循环次数的增加而增加。
通常,可以看到1至5nm大小的铂点几乎均匀地附着在炭黑上。具体而言,当进行相同的循环时,生长的铂点的大小几乎相同,并且总体上呈现出均匀的分布。可以看出,如果循环次数少,则可以使用少量的铂来最大化表面积。
评价例3
图7显示根据ALD循环对根据实施例制备的Pt/C催化剂的Pt点尺寸分布进行了计数。如整体高斯分布所示,点尺寸随循环次数的增加而增加。
评价例4
图8显示了将根据本公开制备的Pt/C催化剂置于电极上并进行循环伏安法。此外,显示了通过循环伏安法获得的值计算的QH、铂催化剂的质量%、工作电极的铂负载量以及电化学活性表面积(ESCA)。
在电极上测量Pt/C催化剂时,负载了相同的催化剂重量。因此,电极上Pt/C催化剂中Pt的量根据处理循环的不同而不同。
据此,尽管每个循环的电流密度没有显著差异,但是循环次数越小,解吸氢所需的电荷量QH越小。
电化学活性表面积(Pt)表明,循环数越小,计算所得的电化学活性表面积越大。
根据上述观察结果,可以得出以下结论,通过流化床ALD,随着ALD循环的最小化,Pt/C催化剂可以获得具有高活性表面积的高效催化剂。这些结论表明,通过流化床ALD高效控制和生产Pt/C催化剂意味着高生产率,从而具有出色的大规模应用性。
本公开不限于以上实施方式,而是可以以各种形式制造,并且本公开所属领域的技术人员在不改变本公开的技术精神或基本特征的情况下本公开可以实践为另一种具体形式。因此,应该理解的是,上述实施方式在所有方面都是示例性的,而不是限制性的。
[符号说明]
100:流化床反应器
101:上部网
102:下部网
103:上部玻璃珠
104:下部玻璃珠
105:上表面网
200:真空泵
300:容器
400:吹扫气体储罐
500:反应气体储罐
600:第一管道
700:第二管道
800:第三管道。

Claims (19)

1.一种生产燃料电池用催化剂的方法,所述方法包括:
a)将碳颗粒注入流化床反应器;
b)抽空所述流化床反应器以形成基准压力;
c)将催化金属前体与载气一起引入所述流化床反应器,使所述催化金属前体与所述碳颗粒接触;
d)将吹扫气体吹入所述流化床反应器;
e)将反应气体引入所述流化床反应器以将所述催化金属前体附着到所述碳颗粒上;以及
f)将吹扫气体吹入所述流化床反应器,
其中,使所述催化金属以纳米尺寸点的形式附着在所述碳颗粒上。
2.根据权利要求1所述的方法,还包括重复步骤c)至f)多次以生长附着在所述碳颗粒上的催化金属点。
3.根据权利要求1所述的方法,
其中,步骤c)进行90至150秒,
其中,步骤d)进行60至120秒,
其中,步骤e)进行60至120秒,和
其中,步骤f)进行60至120秒。
4.根据权利要求1所述的方法,其中,所述方法还包括以下步骤:在步骤c)至f)中以10至500Hz的频率向所述流化床反应器施加振动以去除上部网中的粘附材料。
5.根据权利要求1所述的方法,其中,在抽空所述流化床反应器以形成基准压力的步骤中,压力为0.1至0.5托。
6.根据权利要求1所述的方法,其中,在步骤c)至f)中所述流化床反应器的内部温度为200至400℃。
7.根据权利要求1所述的方法,其中,所述催化金属前体包括含有选自由Pt、Co、Ru、Pd、Cu、Ni、Ag、Ir、Mo、Fe、W、Au、Rh及它们的组合组成的组中的金属的前体。
8.根据权利要求7所述的方法,
其中,含有Pt的所述前体包括选自由三甲基(甲基环戊二烯基)铂(MeCpPtMe3)、乙酰丙酮铂(II)(Pt(acac)2)、[(1,2,5,6·η)·1,5·己二烯]二甲基铂(II)(HDMP)、二甲基(N,N-二甲基-3-丁烯-1-胺-N)铂(DDAP)及它们的组合组成的组中的一种,
其中,含有Co的所述前体包括选自由双(N,N'-二-异-丙基乙脒基)钴(II)(Co(iPrNCMeNiPr)2)、双(环戊二烯基)钴(II)(CoCp2)、环戊二烯基钴二羰基(CoCp(CO)2)、羰基钴(八羰基二钴)(Co2(CO)8)及它们的组合组成的组中的一种,
其中,含有Ru的所述前体包括选自由双(环戊二烯基)钌(Ru(Cp)2)、双(乙基环戊二烯基)钌(II)(Ru(EtCp)2)、甲基环戊二烯基乙基环戊二烯基钌((EtCp)Ru(MeCp))、(Me3NEtCp)RuCp、环戊二烯基乙基(二羰基)钌(Ru(Cp)(CO)2Et)、N,N-二甲基-1-钌茂基乙胺(RuCp(CpCh(Me)(NMe2)))、三(2,2,6,6-四甲基-3,5-庚二酮酸)钌(III)(Ru(thd)3)、双(N,N-二-叔丁基乙脒基)钌(II)二羰基(Ru(tBuAMD)2(CO)2)、Rudic、Carish及它们的组合组成的组中的一种,
其中,含有Pd的所述前体包括选自由六氟乙酰丙酮钯(II)(Pd(hfac)2)、四甲基庚二酮酸钯(Pd(thd)2)、钯-酮亚胺(Pd(keim2)2)及它们的组合组成的组中的一种,
其中,含有Cu的所述前体包括选自由氯化铜(I)(CuCl)、六氟乙酰丙酮铜(II)水合物(Cu(hfac)2)、乙酰丙酮铜(II)(Cu(acac)2)、双(2,2,6,6-四甲基-3,5-庚烷二酮)铜(Cu(thd)2)、双(二甲基氨基-2-丙氧基)铜(II)(Cu(dmap)2)、双(N,N'-二-异-丙基乙脒基)铜(II)([Cu(iPrNCMeNiPr)]2)、双(N,N'-二-仲丁基乙脒基)二铜(I)([Cu(sBuNCMeNsBu)]2)及它们的组合组成的组中的一种,
其中,含有Ni的所述前体包括选自由双(N,N'-二-异-丙基乙脒基)镍(II)(Ni(iPrNCMeNiPr)2)、乙酰丙酮镍(II)(Ni(acac)2)、七氟异丙基镍(Ni(hfip)2)及它们的组合组成的组中的一种,
其中,含有Ag的所述前体包括选自由(2,2-二甲基丙酸)银(I)三乙基膦(Ag(O2CtBu)(PEt3))、(1,5-环辛二烯)(六氟乙酰丙酮)银(I)(Ag(hfac)(cod))及它们的组合组成的组中的一种,
其中,含有Ir的所述前体包括选自由乙酰丙酮铱(III)(Ir(acac)3)、铱(乙基环戊二烯基)(1,5-环辛二烯)(Ir(EtCp)(cod))、1-乙基环戊二烯基-1,3-环己二烯铱(I)(Ir(MeCp)(chd))及它们的组合组成的组中的一种,
其中,含有Mo的所述前体包括MoCl5
其中,含有Fe的所述前体包括双(N,N'-二-仲丁基乙脒基)铁(I)(Fe(iBuNCMeNtBu)2),并且
其中,含有W的所述前体包括WF6
9.根据权利要求1所述的方法,其中,所述碳颗粒包含选自由炭黑、石墨烯、CNT及它们的组合组成的组中的一种。
10.根据权利要求1所述的方法,其中,所述反应气体包含选自由O2、O3、空气、H2、NH3、H2等离子体、NH3等离子体和O2等离子体组成的组中的一种。
11.根据权利要求1所述的方法,其中,所述吹扫气体包含氩气、氦气或氮气。
12.根据权利要求1所述的方法,
在步骤a)将碳颗粒注入流化床反应器之前,
所述方法还包括以下步骤:将玻璃珠填充到位于所述流化床反应器出口处的上部网的内部部分和位于所述流化床反应器入口处的下部网的外部部分。
13.根据权利要求1所述的方法,
其中,所述吹扫气体包括氩气,
其中,所述反应气体包括氧气,
其中,所述碳颗粒包括炭黑,并且
其中,所述催化金属前体包括MeCpPtMe3
14.根据权利要求1所述的方法,
其中,步骤c)至f)的所述流化床反应器的内部压力为1至5托,
所述吹扫气体的流入速率为50至200sccm,并且
其中,所述反应气体的流速为10至200sccm。
15.一种生产燃料电池用催化剂的设备,所述设备包括:
流化床反应器;
真空泵,其连接到所述流化床反应器的上部并控制所述流化床反应器内部的压力;
吹扫气体储罐,连接到所述流化床反应器下部;
反应气体储罐,连接到所述流化床反应器下部;
第一管道,连接所述吹扫气体储罐和所述流化床反应器;
第二管道,连接所述反应气体储罐和所述流化床反应器;和
连接到所述第一管道的容器,所述容器储存所述催化金属前体;
其中,所述流化床反应器包括:
位于所述流化床反应器上部出口的上部网,所述上部网包括其中的中空部分且由网状材料制成,并且包括所述上部网的上表面的开口形式;
填充在所述上部网中的上部玻璃珠;
联接到所述上部网的上表面的上表面网;
布置在所述流化床反应器入口处的下部网,所述下部网包括其中的中空部分并且由网状材料制成;和
填充在所述流化床反应器的下部的下部玻璃珠。
16.根据权利要求15所述的设备,其中所述玻璃珠的直径为1至3mm。
17.根据权利要求15所述的设备,所述设备还包括
附接到所述上部网并且周期性地振动所述上部网的振动器。
18.根据权利要求15所述的设备,其中所述下部玻璃珠的填充高度要比所述下部网的高度高0.5至3cm。
19.根据权利要求15所述的设备,其中
所述流化床反应器内部的温度为200到400℃,
所述第一管道和所述第二管道的内部温度为50至150℃,并且
所述容器内部的温度为10至50℃。
CN201911207074.1A 2018-12-07 2019-11-29 制备燃料电池用催化剂的方法和设备 Active CN111286715B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0157501 2018-12-07
KR1020180157501A KR102644427B1 (ko) 2018-12-07 2018-12-07 연료전지용 촉매 제조 방법, 및 제조 장치

Publications (2)

Publication Number Publication Date
CN111286715A true CN111286715A (zh) 2020-06-16
CN111286715B CN111286715B (zh) 2023-10-10

Family

ID=70776448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911207074.1A Active CN111286715B (zh) 2018-12-07 2019-11-29 制备燃料电池用催化剂的方法和设备

Country Status (4)

Country Link
US (1) US11433368B2 (zh)
KR (1) KR102644427B1 (zh)
CN (1) CN111286715B (zh)
DE (1) DE102019132015A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950283B (zh) * 2022-06-24 2023-06-16 洛阳融惠化工科技有限公司 一种超细颗粒表面包覆的流化反应系统及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040235650A1 (en) * 2001-05-30 2004-11-25 Khashayar Saleh Method for making supported metallic nanoparticles on fluidised bed
US20060086834A1 (en) * 2003-07-29 2006-04-27 Robert Pfeffer System and method for nanoparticle and nanoagglomerate fluidization
US20110008707A1 (en) * 2009-05-04 2011-01-13 Nanosys, Inc. Catalyst Layer for Fuel Cell Membrane Electrode Assembly, Fuel Cell Membrane Electrode Assembly Using the Catalyst Layer, Fuel Cell, and Method for Producing the Catalyst Layer
US20110236575A1 (en) * 2010-03-23 2011-09-29 King David M Semi-Continuous Vapor Deposition Process for the Manufacture of Coated Particles
CN105406087A (zh) * 2015-11-11 2016-03-16 大连理工大学 一种低温燃料电池用核壳电催化剂的制备方法及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334889B1 (en) * 1999-09-01 2002-01-01 Praxair Technology, Inc. Bed restraint for an adsorber
US20110198756A1 (en) * 2005-11-28 2011-08-18 Thenappan Ue Organometallic Precursors and Related Intermediates for Deposition Processes, Their Production and Methods of Use
WO2010135107A1 (en) * 2009-05-11 2010-11-25 Regents Of The University Of Colorado, A Body Corporate Ultra-thin metal oxide and carbon-metal oxide films prepared by atomic layer deposition (ald)
US9139442B2 (en) * 2011-10-18 2015-09-22 Toagosei Co. Ltd. Method for producing chloropolysilane and fluidized-bed reactor
KR101592739B1 (ko) 2014-07-24 2016-02-12 현대자동차주식회사 연료전지 애노드 촉매
US20190109330A1 (en) * 2017-10-09 2019-04-11 Uchicago Argonne, Llc Thin-film catalyst with enhanced catalyst-support interactions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040235650A1 (en) * 2001-05-30 2004-11-25 Khashayar Saleh Method for making supported metallic nanoparticles on fluidised bed
US20060086834A1 (en) * 2003-07-29 2006-04-27 Robert Pfeffer System and method for nanoparticle and nanoagglomerate fluidization
US20110008707A1 (en) * 2009-05-04 2011-01-13 Nanosys, Inc. Catalyst Layer for Fuel Cell Membrane Electrode Assembly, Fuel Cell Membrane Electrode Assembly Using the Catalyst Layer, Fuel Cell, and Method for Producing the Catalyst Layer
US20110236575A1 (en) * 2010-03-23 2011-09-29 King David M Semi-Continuous Vapor Deposition Process for the Manufacture of Coated Particles
CN105406087A (zh) * 2015-11-11 2016-03-16 大连理工大学 一种低温燃料电池用核壳电催化剂的制备方法及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ARJEN P.DIDDEN.ET.AL.: ""fluidized bed atomic layer deposition reactor for the synthesis of core shell nanoparticles"", 《REVIEW OF SCIENTIFIC INSTRUMENTS》 *
ARJEN P.DIDDEN.ET.AL.: ""fluidized bed atomic layer deposition reactor for the synthesis of core shell nanoparticles"", 《REVIEW OF SCIENTIFIC INSTRUMENTS》, vol. 85, no. 1, 30 January 2014 (2014-01-30), pages 013905, XP055173241, DOI: 10.1063/1.4863099 *
BRANDON J. O’NEILL.ET.AL: ""Catalyst Design with Atomic Layer Deposition"", 《ACS CATALYSIS》 *
BRANDON J. O’NEILL.ET.AL: ""Catalyst Design with Atomic Layer Deposition"", 《ACS CATALYSIS》, 31 May 2015 (2015-05-31), pages 1804 - 1825 *

Also Published As

Publication number Publication date
KR102644427B1 (ko) 2024-03-06
US20200179893A1 (en) 2020-06-11
KR20200069922A (ko) 2020-06-17
DE102019132015A1 (de) 2020-06-10
CN111286715B (zh) 2023-10-10
US11433368B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
US20050003089A1 (en) Method of forming a carbon nano-material layer using a cyclic deposition technique
US20040091636A1 (en) Methods and apparatus for the formation of a metal film
CN1007915B (zh) 形成非晶态多元金属合金覆层的方法
US8815766B2 (en) Metal containing composites
TW200825200A (en) Metal aminotroponiminates, bis-oxazolinates and guanidinates
CN1354690A (zh) 生产铂族金属催化剂的方法
Assaud et al. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid
US6811814B2 (en) Method for growing thin films by catalytic enhancement
CN111286715B (zh) 制备燃料电池用催化剂的方法和设备
JP7207637B2 (ja) パルス薄膜蒸着のプロセス
Assaud et al. Systematic increase of electrocatalytic turnover at nanoporous platinum surfaces prepared by atomic layer deposition
Tyczkowski Cold plasma produced catalytic materials
CN116075606A (zh) 用于对电化学电池的基板提供催化材料的方法
KR101368569B1 (ko) 원자층 증착법을 이용한 니켈 촉매의 제조방법
JP4661130B2 (ja) 化学気相成長方法
CN112553600B (zh) 一种原子层沉积技术生长VxC纳米材料的方法
JP2013046883A (ja) Pt高分散担持触媒及びその製造方法
JP2006144084A (ja) 薄膜製造方法
JP2008303117A (ja) カーボンナノチューブ製造装置及びカーボンナノチューブの製造方法
KR100576362B1 (ko) 순환증착기술을 사용하여 탄소나노물질막을 형성하는 방법
TW202323566A (zh) 氣相沉積製程
JPH05177137A (ja) ルテニウム触媒の製造方法及び製造装置
JP2006062924A (ja) カーボンナノチューブ生成における密度制御方法
JP2008188519A (ja) 炭素担持触媒及びその製造方法
Tolmachev et al. Electrocatalytic properties of Pt monolayers on Ni prepared by Atomic Layer Deposition.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant