CN111283686A - 一种用于带电作业机器人抓取支线场景下的抓取姿态计算方法 - Google Patents

一种用于带电作业机器人抓取支线场景下的抓取姿态计算方法 Download PDF

Info

Publication number
CN111283686A
CN111283686A CN202010149285.0A CN202010149285A CN111283686A CN 111283686 A CN111283686 A CN 111283686A CN 202010149285 A CN202010149285 A CN 202010149285A CN 111283686 A CN111283686 A CN 111283686A
Authority
CN
China
Prior art keywords
degree
pose
degrees
below zero
searching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010149285.0A
Other languages
English (en)
Other versions
CN111283686B (zh
Inventor
程敏
林欢
毛成林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yijiahe Technology Co Ltd
Original Assignee
Yijiahe Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yijiahe Technology Co Ltd filed Critical Yijiahe Technology Co Ltd
Priority to CN202010149285.0A priority Critical patent/CN111283686B/zh
Publication of CN111283686A publication Critical patent/CN111283686A/zh
Priority to PCT/CN2020/113906 priority patent/WO2021174796A1/zh
Application granted granted Critical
Publication of CN111283686B publication Critical patent/CN111283686B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种用于带电作业机器人抓取支线场景下的抓取姿态计算方法,包括步骤:(1)根据抓线点位置预先划分工作空间;(2)在划分的工作空间内确定搜索范围;(3)选择抓线点所属工作空间搜索范围中心作为计算初始位姿的姿态;(4)以计算初始位姿的姿态为起始点,在抓线点所属工作空间的机械臂运动姿态的搜索范围内确定全部搜索姿态;(5)使用碰撞检测筛选确定的全部搜索位姿;(6)使用评价函数对筛选后的搜索位姿进行排序,并进行模拟规划,如果某一候选搜索位姿成功规划,则选出候选搜索位姿。本发明为带电作业机器人抓取支线场景计算作业目标位姿,指导后续运动规划,本发明搜索精度高,最优姿态判断达到1度。

Description

一种用于带电作业机器人抓取支线场景下的抓取姿态计算 方法
技术领域
本发明涉及带电作业机器人领域,尤其涉及一种用于带电作业机器人抓取支线场景下的抓取姿态计算方法。
背景技术
带电作业机器人是一个新兴行业,带电作业机器人作业目标是在高空中使用机械臂完成电缆的主支线搭接作业,其中一个基本动作是使用机械臂去接近并抓取支线。现在机械臂执行动作的方法包括示教方法和使用逆运动学和运动规划算法的方法,目前在流水线上经常使用的示教方法主要用于固定作业场景。基于带电作业机器人在高空作业的特性,以及作业环境的复杂程度,示教方法是不可能的;而使用逆运动学和运动规划算法虽然比较灵活,但是需要知道明确的目标位姿。
在机器人几何中心建立坐标系,一旦建立了坐标系,就能用一个3X1的位置矢量给坐标系中的任何点定位。我们通常获取的抓取支线的抓线点通常就是这样一个位置矢量。然而为了使用工具去到达抓线点,只知道位置信息是不够的,我们必须描述工具到达抓线点时的姿态,位置和姿态合起来称为位姿。由于工作空间的存在,工具可能有很多可以选择的姿态。其中有些姿态可能无法规划出合适的路径到达,有些姿态可能产生碰撞,有些姿态虽然可以到达也不会产生碰撞,但是运动范围过大,也不适合选择。
对于姿态的描述,我们采用旋转角、俯仰角和偏转角的定义(又称RPY角)。RPY角来源于(航空)航海领域中方向的表示,将参考坐标系绕x轴旋转角度被称为旋转角,将参考坐标系绕y轴旋转角度被称为俯仰角,将参考坐标系绕z轴旋转角度被称为滚动角。目前关于这一姿态选择的问题尚且缺乏研究。
发明内容
发明目的:本发明针对带电作业中抓取支线的实际应用场景,提出了一种用于带电作业机器人抓取支线场景下的抓取姿态计算方法,解决抓取支线作业的目标姿态选择问题,为后续手臂的运动规划提供目标指导。
技术方案:
一种用于带电作业机器人抓取支线场景下的抓取位姿计算方法,包括步骤:
(1)根据抓线点位置预先划分机械臂的工作空间;
(2)在步骤(1)划分的工作空间内确定机械臂运动姿态的搜索范围;
(3)选择抓线点所属工作空间的机械臂运动姿态的搜索范围中心作为计算初始位姿的姿态,初始位置为抓线点位置;
(4)设定搜索步长,并设定搜索步长的预设值,以计算初始位姿的姿态为起始点,在抓线点所属工作空间的机械臂运动姿态的搜索范围内确定全部搜索姿态;全部搜索姿态和一个固定的初始位置构成了全部搜索位姿;
(5)使用碰撞检测作为约束条件筛选步骤(4)确定的全部搜索位姿,剔除发生碰撞的搜索位姿,得到候选搜索位姿;
(6)对步骤(5)处理之后的候选搜索位姿使用运动规划算法对机械臂从计算初始位姿到候选搜索位姿的路径进行模拟规划,如果某一候选搜索位姿成功规划,则跳转至第(7)步;如全部候选搜索位姿规划失败,则返回失败;
(7)以成功规划的候选搜索位姿作为新的计算初始位姿,减半搜索步长,当减半后的搜索步长减至小于等于预设值时,则将最终选出的候选搜索位姿返回;当减半后的搜索步长大于预设值时,则回到第(4)步重复执行相应操作。
步骤(1)中,根据抓线点位置预先划分工作空间具体为:
在机器人几何中心建立坐标系,根据抓线点的x坐标的正负值,首先将工作空间划分成两组,然后根据机械臂的运动范围,在每组里将工作空间划分为9个,分别是:
当x>0时
Figure BDA0002400525140000021
Figure BDA0002400525140000031
当x<0时
x z
A2 x<-0.3&&x>-0.8 z<-0.25&&z>-0.65
B2 x>=-1.3&&x<=-0.8 z<-0.25&&z>-0.65
C2 x>-1.8&&x<-1.3 z<-0.25&&z>-0.65
D2 x<-0.3&&x>-0.8 z>=-0.25&&z<=0.25
E2 x>=-1.3&&x<=-0.8 z>=-0.25&&z<=0.25
F2 x>-1.8&&x<-1.3 z>=-0.25&&z<=0.25
G2 x<-0.3&&x>-0.8 z>0.25&&z<0.65
H2 x>=-1.3&&x<=-0.8 z>0.25&&z<0.65
I2 x>-1.8&&x<-1.3 z>0.25&&z<0.65
在工作空间之外的抓线点视为不适宜工作点;
步骤(2)中,在步骤(1)划分的工作空间内确定机械臂运动姿态的搜索范围,得到:
当x>0时
旋转角 俯仰角 偏转角
A1 -40度~-10度 -40度~-10度 0度
B1 -15度~15度 -40度~-10度 0度
C1 10度~40度 -40度~-10度 0度
D1 -40度~-10度 -15度~15度 0度
E1 -15度~15度 -15度~15度 0度
F1 10度~40度 -15度~15度 0度
G1 -40度~-10度 10度~40度 0度
H1 -15度~15度 10度~40度 0度
I1 10度~40度 10度~40度 0度
当x<0时
旋转角 俯仰角 偏转角
A1 10度~40度 -40度~-10度 0度
B1 -15度~15度 -40度~-10度 0度
C1 -40度~-10度 -40度~-10度 0度
D1 10度~40度 -15度~15度 0度
E1 -15度~15度 -15度~15度 0度
F1 -40度~-10度 -15度~15度 0度
G1 10度~40度 10度~40度 0度
H1 -15度~15度 10度~40度 0度
I1 -40度~-10度 10度~40度 0度
所述步骤(4)中设定的搜索步长为5度,预设值为1度。
在步骤(5)剔除发生碰撞的搜索位姿后,对每个筛选后的搜索位姿进行如下处理对候选搜索位姿进行排序:
分别计算搜索位姿υ和运动初始位姿
Figure BDA0002400525140000041
之间的距离
Figure BDA0002400525140000042
和搜索位姿υ和计算初始位姿ψ之间的距离D(υ-ψ),其中,D为计算距离函数;再将得到的距离进行加权和
Figure BDA0002400525140000043
其中α+β=1,且β>α;
对每个候选搜索位姿计算得到的加权和数值进行从小到大排序,通过步骤(7)对每个候选搜索位姿根据排序使用运动规划算法对机械臂从计算初始位姿到候选搜索位姿的路径进行模拟规划。
所述运动规划算法使用ompl库来实现。
有益效果:本发明为带电作业机器人抓取支线场景计算作业目标位姿,指导后续运动规划,本发明搜索精度高,最优姿态判断达到1度。
附图说明
图1为本发明的流程图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
图1为本发明的流程图。如图1所示,本发明用于带电作业机器人抓取支线场景下的抓取位姿计算方法包括如下步骤:
(1)根据抓线点位置预先划分机械臂的工作空间,具体为:
在本例中首先在机器人几何中心建立坐标系,根据抓线点所在位置距离原点的距离在x、y、z轴上的分量确定抓线点的坐标,距离单位为米;根据抓线点的x坐标的正负值,首先将工作空间划分成两组,然后根据机械臂的运动范围,在每组里将工作空间划分为9个(不限于9个),分别是:
当x>0时
x z
A1 x>0.3&&x<0.8 z<-0.25&&z>-0.65
B1 x>=0.8&&x<=1.3 z<-0.25&&z>-0.65
C1 x>1.3&&x<1.8 z<-0.25&&z>-0.65
D1 x>0&&x<0.8 z>=-0.25&&z<=0.25
E1 x>=0.8&&x<=1.3 z>=-0.25&&z<=0.25
F1 x>1.3&&x<1.8 z>=-0.25&&z<=0.25
G1 x>0.3&&x<0.8 z>0.25&&z<0.65
H1 x>=0.8&&x<=1.3 z>0.25&&z<0.65
I1 x>1.3&&x<1.8 z>0.25&&z<0.65
当x<0时
x z
A2 x<-0.3&&x>-0.8 z<-0.25&&z>-0.65
B2 x>=-1.3&&x<=-0.8 z<-0.25&&z>-0.65
C2 x>-1.8&&x<-1.3 z<-0.25&&z>-0.65
D2 x<-0.3&&x>-0.8 z>=-0.25&&z<=0.25
E2 x>=-1.3&&x<=-0.8 z>=-0.25&&z<=0.25
F2 x>-1.8&&x<-1.3 z>=-0.25&&z<=0.25
G2 x<-0.3&&x>-0.8 z>0.25&&z<0.65
H2 x>=-1.3&&x<=-0.8 z>0.25&&z<0.65
I2 x>-1.8&&x<-1.3 z>0.25&&z<0.65
在工作空间之外的抓线点视为不适宜工作点,不同规格的机械臂的最大运动距离不同导致工作空间大小不同,本发明采用的机械臂型号为UR10;
(2)根据机械臂的运动姿态范围,在步骤(1)划分的工作空间里确定机械臂运动姿态的搜索范围,机械臂的运动姿态范围指的是机械臂在运动范围内运动至各位置时的姿态;
当x>0时
旋转角 俯仰角 偏转角
A1 -40度~-10度 -40度~-10度 0度
B1 -15度~15度 -40度~-10度 0度
C1 10度~40度 -40度~-10度 0度
D1 -40度~-10度 -15度~15度 0度
E1 -15度~15度 -15度~15度 0度
F1 10度~40度 -15度~15度 0度
G1 -40度~-10度 10度~40度 0度
H1 -15度~15度 10度~40度 0度
I1 10度~40度 10度~40度 0度
当x<0时
旋转角 俯仰角 偏转角
A1 10度~40度 -40度~-10度 0度
B1 -15度~15度 -40度~-10度 0度
C1 -40度~-10度 -40度~-10度 0度
D1 10度~40度 -15度~15度 0度
E1 -15度~15度 -15度~15度 0度
F1 -40度~-10度 -15度~15度 0度
G1 10度~40度 10度~40度 0度
H1 -15度~15度 10度~40度 0度
I1 -40度~-10度 10度~40度 0度
(3)根据抓线点所处的工作空间,确定计算的初始位姿(即位置和姿态,下文简称计算初始位姿);
此处计算的初始位姿并不等同于运动开始时机械臂实际所在的位姿,运动初始位姿是机械臂在开始运动前的实际位姿下文简称运动初始位姿。计算初始位姿的姿态为工作空间搜索范围的中心,初始位置为抓线点位置,是预先给定的。以区域E1为例,计算初始位姿的姿态为旋转角为0度,俯仰角为0度,偏转角为0度。
(4)以设定搜索步长确定全部搜索姿态:
以计算初始位姿的姿态为起始点,全部搜索姿态必须位于搜索范围中。在本例中开始设定的搜索步长为5度。以区域E1为例,包含全部搜索姿态的搜索空间为
(-15度,-15度,0度) (-15度,-10度,0度) (-15度,-5度,0度)
(-15度,-0度,0度) (-15度,5度,0度) (-15度,10度,0度)
(-15度,15度,0度) (-10度,-15度,0度) (-10度,-10度,0度)
(-10度,-5度,0度) (-10度,0度,0度) (-10度,5度,0度)
(-10度,10度,0度) (-10度,15度,0度) (-5度,-15度,0度)
(-5度,-10度,0度) (-5度,-5度,0度) (-5度,0度,0度)
(-5度,5度,0度) (-5度,10度,0度) (-5度,15度,0度)
(0度,-15度,0度) (0度,-10度,0度) (0度,-5度,0度)
(0度,0度,0度) (0度,5度,0度) (0度,10度,0度)
(0度,15度,0度) (5度,-15度,0度) (5度,-10度,0度)
(5度,-5度,0度) (5度,0度,0度) (5度,5度,0度)
(5度,10度,0度) (5度,15度,0度) (10度,-15度,0度)
(10度,-10度,0度) (10度,-5度,0度) (10度,0度,0度)
(10度,5度,0度) (10度,10度,0度) (10度,15度,0度)
(15度,-15度,0度) (15度,-10度,0度) (15度,-5度,0度)
(15度,0度,0度) (15度,5度,0度) (15度,10度,0度)
(15度,15度,0度)
全部搜索姿态和一个固定的初始位置构成了全部搜索位姿。
(5)使用定义的约束条件来筛选全部搜索位姿,得到筛选后的搜索位姿;本例中定义的约束条件为碰撞检测,碰撞检测算法采用FCL库,剔除会发生碰撞的搜索位姿。
(6)使用评价函数对筛选后的候选搜索位姿进行排序:
本发明采用以下评价函数对每个筛选后的候选搜索位姿进行计算获得待排序的加权和数值:
a.计算搜索位姿υ和运动初始位姿
Figure BDA0002400525140000061
之间的距离
Figure BDA0002400525140000062
D为计算距离函数;
b.计算搜索位姿υ和计算初始位姿ψ之间的距离D(υ-ψ);
c.将步骤a和步骤b中得到的距离进行加权和
Figure BDA0002400525140000071
其中α+β=1。α和β的数值大小与
Figure BDA0002400525140000072
和D(υ-ψ)所占比重大小成正比,β>α;在本例中α=0.4,β=0.6;
因为D是距离函数,机械臂优选距离近的候选搜索位姿为抓取位姿,即加权和数值小的候选搜索位姿为优选搜索位姿,所以,根据步骤c得到的加权和数值对筛选后的候选搜索位姿进行从小到大排序。
(7)按照步骤(6)的排序顺序对对应的候选搜索位姿使用运动规划算法对机械臂的计算初始位姿到候选搜索位姿的路径进行模拟规划,此处的运动规划算法使用ompl库来实现。如果某一候选搜索位姿成功规划时,则开始执行第(8)步,不再对其他候选搜索位姿进行模拟规划;如果全部候选搜索位姿规划失败,则返回失败。
(8)以成功规划的候选搜索位姿作为新的计算初始位姿,减半搜索步长,当减半后的搜索步长减至预设值时,本例为1度,则将最终选出的候选搜索位姿返回;当减半后的搜索步长大于预设值时,则回到第(4)步重复执行相应操作。
本发明通过划分工作空间进行搜索,根据抓线点位置和对应的工作空间确定计算的初始位姿,并基于此提出优化的评价函数a、b、c,先条件筛选,再排序,后使用运动规划算法计算的流程进行路径的模拟规划。先获得一个抓取位姿,再使用迭代变步长以获得的抓取位姿为初始位姿进行进一步搜索,最终得到最优的抓取位姿。
以上详细描述了本发明的优选实施方式,但是本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换(如数量、形状、位置等),这些等同变换均属于本发明的保护。

Claims (5)

1.一种用于带电作业机器人抓取支线场景下的抓取姿态计算方法,其特征在于:包括步骤:
(1)根据抓线点位置预先划分机械臂的工作空间;
(2)在步骤(1)划分的工作空间内确定机械臂运动姿态的搜索范围;
(3)选择抓线点所属工作空间的机械臂运动姿态的搜索范围中心作为计算初始位姿的姿态,初始位置为抓线点位置;
(4)设定搜索步长,并设定搜索步长的预设值,以计算初始位姿的姿态为起始点,在抓线点所属工作空间的机械臂运动姿态的搜索范围内确定全部搜索姿态;
(5)使用碰撞检测作为约束条件筛选步骤(4)确定的全部搜索位姿,剔除发生碰撞的搜索位姿,得到候选搜索位姿;全部搜索姿态和一个固定的初始位置构成全部搜索位姿;
(6)对步骤(5)处理之后的候选搜索位姿使用运动规划算法对机械臂从计算初始位姿到候选搜索位姿的路径进行模拟规划,如果某一候选搜索位姿成功规划,则跳转至第(7)步;如全部候选搜索位姿规划失败,则返回失败;
(7)以成功规划的候选搜索位姿作为新的计算初始位姿,减半搜索步长,当减半后的搜索步长减至小于等于预设值时,则将最终选出的候选搜索位姿返回;当减半后的搜索步长大于预设值时,则回到第(4)步重复执行相应操作。
2.根据权利要求1所述的用于带电作业机器人抓取支线场景下的抓取位姿计算方法,其特征在于:步骤(1)中,根据抓线点位置预先划分工作空间具体为:
在机器人几何中心建立坐标系,根据抓线点的x坐标的正负值,首先将工作空间划分成两组,然后根据机械臂的运动范围,在每组里将工作空间划分为9个,分别是:
当x>0时
Figure FDA0002400525130000011
Figure FDA0002400525130000021
当x<0时
x z A2 x<-0.3&&x>-0.8 z<-0.25&&z>-0.65 B2 x>=-1.3&&x<=-0.8 z<-0.25&&z>-0.65 C2 x>-1.8&&x<-1.3 z<-0.25&&z>-0.65 D2 x<-0.3&&x>-0.8 z>=-0.25&&z<=0.25 E2 x>=-1.3&&x<=-0.8 z>=-0.25&&z<=0.25 F2 x>-1.8&&x<-1.3 z>=-0.25&&z<=0.25 G2 x<-0.3&&x>-0.8 z>0.25&&z<0.65 H2 x>=-1.3&&x<=-0.8 z>0.25&&z<0.65 I2 x>-1.8&&x<-1.3 z>0.25&&z<0.65
在工作空间之外的抓线点视为不适宜工作点;
步骤(2)中,在步骤(1)划分的工作空间内确定机械臂运动姿态的搜索范围,得到:
当x>0时
旋转角 俯仰角 偏转角 A1 -40度~-10度 -40度~-10度 0度 B1 -15度~15度 -40度~-10度 0度 C1 10度~40度 -40度~-10度 0度 D1 -40度~-10度 -15度~15度 0度 E1 -15度~15度 -15度~15度 0度 F1 10度~40度 -15度~15度 0度 G1 -40度~-10度 10度~40度 0度 H1 -15度~15度 10度~40度 0度 I1 10度~40度 10度~40度 0度
当x<0时
旋转角 俯仰角 偏转角 A1 10度~40度 -40度~-10度 0度 B1 -15度~15度 -40度~-10度 0度 C1 -40度~-10度 -40度~-10度 0度 D1 10度~40度 -15度~15度 0度 E1 -15度~15度 -15度~15度 0度 F1 -40度~-10度 -15度~15度 0度 G1 10度~40度 10度~40度 0度 H1 -15度~15度 10度~40度 0度 I1 -40度~-10度 10度~40度 0度
3.根据权利要求1所述的用于带电作业机器人抓取支线场景下的抓取位姿计算方法,其特征在于:所述步骤(4)中设定的搜索步长为5度,预设值为1度。
4.根据权利要求1所述的用于带电作业机器人抓取支线场景下的抓取位姿计算方法,其特征在于:在步骤(5)剔除发生碰撞的搜索位姿后,对每个筛选后的搜索位姿进行如下处理对候选搜索位姿进行排序:
分别计算搜索位姿υ和运动初始位姿
Figure FDA0002400525130000031
之间的距离
Figure FDA0002400525130000032
和搜索位姿υ和计算初始位姿ψ之间的距离D(υ-ψ),其中,D为计算距离函数;再将得到的距离进行加权和
Figure FDA0002400525130000033
其中α+β=1,且β>α;
对每个候选搜索位姿计算得到的加权和数值进行从小到大排序,通过步骤(7)对每个候选搜索位姿根据排序使用运动规划算法对机械臂的运动初始位姿到候选搜索位姿的路径进行模拟规划。
5.根据权利要求1或4所述的用于带电作业机器人抓取支线场景下的抓取位姿计算方法,其特征在于:所述运动规划算法使用ompl库来实现。
CN202010149285.0A 2020-03-05 2020-03-05 一种用于带电作业机器人抓取支线场景下的抓取位姿计算方法 Active CN111283686B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010149285.0A CN111283686B (zh) 2020-03-05 2020-03-05 一种用于带电作业机器人抓取支线场景下的抓取位姿计算方法
PCT/CN2020/113906 WO2021174796A1 (zh) 2020-03-05 2020-09-08 用于带电作业机器人抓取支线场景下的抓取姿态计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010149285.0A CN111283686B (zh) 2020-03-05 2020-03-05 一种用于带电作业机器人抓取支线场景下的抓取位姿计算方法

Publications (2)

Publication Number Publication Date
CN111283686A true CN111283686A (zh) 2020-06-16
CN111283686B CN111283686B (zh) 2021-11-19

Family

ID=71017762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010149285.0A Active CN111283686B (zh) 2020-03-05 2020-03-05 一种用于带电作业机器人抓取支线场景下的抓取位姿计算方法

Country Status (2)

Country Link
CN (1) CN111283686B (zh)
WO (1) WO2021174796A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112109086A (zh) * 2020-09-03 2020-12-22 清华大学深圳国际研究生院 面向工业堆叠零件的抓取方法、终端设备及可读存储介质
CN112936279A (zh) * 2021-02-10 2021-06-11 大连理工大学 一种移动作业机器人目标抓取作业最短时间求解方法
WO2021174796A1 (zh) * 2020-03-05 2021-09-10 亿嘉和科技股份有限公司 用于带电作业机器人抓取支线场景下的抓取姿态计算方法
CN113492409A (zh) * 2021-09-07 2021-10-12 国网瑞嘉(天津)智能机器人有限公司 配网带电作业机器人抓线方法、装置、电子设备及介质
CN114782529A (zh) * 2022-03-25 2022-07-22 国网湖北省电力有限公司电力科学研究院 一种面向带电作业机器人的抓线点高精度定位方法、系统及存储介质
CN115290098A (zh) * 2022-09-30 2022-11-04 成都朴为科技有限公司 一种基于变步长的机器人定位方法和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114384918A (zh) * 2022-01-14 2022-04-22 厦门大学 基于落足点调整的四足机器人对角步态柔顺控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408224B1 (en) * 1999-11-10 2002-06-18 National Aerospace Laboratory Of Science Technology Agency Rotary articulated robot and method of control thereof
CN103377470A (zh) * 2013-07-03 2013-10-30 奇瑞汽车股份有限公司 一种车载全景视频系统的图像拼接方法
CN104154917A (zh) * 2013-11-19 2014-11-19 深圳信息职业技术学院 一种机器人避碰路径的规划方法、装置
CN109108978A (zh) * 2018-09-11 2019-01-01 武汉科技大学 基于学习泛化机制的三自由度空间机械臂运动规划方法
CN110398964A (zh) * 2019-07-16 2019-11-01 浙江大学 一种低能量损耗机器人全覆盖路径规划方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040066A (ja) * 2014-08-13 2016-03-24 キヤノン株式会社 経路生成方法、経路生成装置、ロボット装置、プログラム及び記録媒体
JP6693291B2 (ja) * 2016-06-20 2020-05-13 トヨタ自動車株式会社 移動ロボットの移動経路計画方法
CN107953334A (zh) * 2017-12-25 2018-04-24 深圳禾思众成科技有限公司 一种基于a星算法的工业机械臂无碰撞路径规划方法
CN110509279B (zh) * 2019-09-06 2020-12-08 北京工业大学 一种仿人机械臂的运动路径规划方法及系统
CN111283686B (zh) * 2020-03-05 2021-11-19 亿嘉和科技股份有限公司 一种用于带电作业机器人抓取支线场景下的抓取位姿计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408224B1 (en) * 1999-11-10 2002-06-18 National Aerospace Laboratory Of Science Technology Agency Rotary articulated robot and method of control thereof
CN103377470A (zh) * 2013-07-03 2013-10-30 奇瑞汽车股份有限公司 一种车载全景视频系统的图像拼接方法
CN104154917A (zh) * 2013-11-19 2014-11-19 深圳信息职业技术学院 一种机器人避碰路径的规划方法、装置
CN109108978A (zh) * 2018-09-11 2019-01-01 武汉科技大学 基于学习泛化机制的三自由度空间机械臂运动规划方法
CN110398964A (zh) * 2019-07-16 2019-11-01 浙江大学 一种低能量损耗机器人全覆盖路径规划方法及系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021174796A1 (zh) * 2020-03-05 2021-09-10 亿嘉和科技股份有限公司 用于带电作业机器人抓取支线场景下的抓取姿态计算方法
CN112109086A (zh) * 2020-09-03 2020-12-22 清华大学深圳国际研究生院 面向工业堆叠零件的抓取方法、终端设备及可读存储介质
CN112109086B (zh) * 2020-09-03 2021-08-10 清华大学深圳国际研究生院 面向工业堆叠零件的抓取方法、终端设备及可读存储介质
CN112936279A (zh) * 2021-02-10 2021-06-11 大连理工大学 一种移动作业机器人目标抓取作业最短时间求解方法
CN112936279B (zh) * 2021-02-10 2023-09-19 大连理工大学 一种移动作业机器人目标抓取作业最短时间求解方法
CN113492409A (zh) * 2021-09-07 2021-10-12 国网瑞嘉(天津)智能机器人有限公司 配网带电作业机器人抓线方法、装置、电子设备及介质
CN113492409B (zh) * 2021-09-07 2021-11-23 国网瑞嘉(天津)智能机器人有限公司 配网带电作业机器人抓线方法、装置、电子设备及介质
CN114782529A (zh) * 2022-03-25 2022-07-22 国网湖北省电力有限公司电力科学研究院 一种面向带电作业机器人的抓线点高精度定位方法、系统及存储介质
CN114782529B (zh) * 2022-03-25 2024-06-25 国网湖北省电力有限公司电力科学研究院 一种面向带电作业机器人的抓线点高精度定位方法、系统及存储介质
CN115290098A (zh) * 2022-09-30 2022-11-04 成都朴为科技有限公司 一种基于变步长的机器人定位方法和系统

Also Published As

Publication number Publication date
WO2021174796A1 (zh) 2021-09-10
CN111283686B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN111283686B (zh) 一种用于带电作业机器人抓取支线场景下的抓取位姿计算方法
CN107877517B (zh) 基于CyberForce遥操作机械臂的运动映射方法
CN107791248B (zh) 基于不满足Pieper准则的六自由度串联机器人的控制方法
CN109344477B (zh) 一种6自由度机械臂逆运动学求解方法
CN105382835A (zh) 一种可穿越腕部奇异点的机器人路径规划方法
CN112405541B (zh) 激光3d精密切割双机器人协同作业方法
CN114072807B (zh) 基于小样本迁移学习的铣削机器人多模态频响预测方法
CN108608425B (zh) 六轴工业机器人铣削加工离线编程方法及系统
CN110543727A (zh) 一种基于改进粒子群算法的全向移动智能轮椅机器人参数辨识方法
CN113119109A (zh) 基于伪距离函数的工业机器人路径规划方法和系统
CN110561420A (zh) 臂型面约束柔性机器人轨迹规划方法及装置
Wong et al. A novel clustering-based algorithm for solving spatially constrained robotic task sequencing problems
CN111709095B (zh) 一种面向复杂曲面6d虚拟夹具构造方法
Wang et al. A deep learning based automatic surface segmentation algorithm for painting large-size aircraft with 6-DOF robot
CN116872212A (zh) 一种基于A-Star算法和改进人工势场法的双机械臂避障规划方法
CN111002292B (zh) 基于相似性度量的机械臂仿人运动示教方法
CN108555904B (zh) 一种表面改性机器人操作性能的优化方法
CN115533896B (zh) 一种递推式的机器人双臂协同作业路径规划方法
Dash et al. A inverse kinematic solution of a 6-dof industrial robot using ANN
CN109129558A (zh) 一种控制机械臂末端执行空间曲线动作的方法
Bai et al. Coordinated motion planning of the mobile redundant manipulator for processing large complex components
CN110815230A (zh) 一种基于虚拟采样的六轴码垛机器人位姿适配方法
Filaretov et al. A new approach to automatization of non-rigid parts machining at their deformation by using multilink manipulators with vision system
CN114905521B (zh) 机器人原点位置校准方法、装置、电子设备和存储介质
Shen et al. Path planning based on the analytical inverse kinematics of the rail-mounted industrial robot for continuous-trajectory tracking

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant