CN111269368A - 一种利用raft聚合诱导自组装制备表面微相分离纳米粒子的方法 - Google Patents
一种利用raft聚合诱导自组装制备表面微相分离纳米粒子的方法 Download PDFInfo
- Publication number
- CN111269368A CN111269368A CN202010178029.4A CN202010178029A CN111269368A CN 111269368 A CN111269368 A CN 111269368A CN 202010178029 A CN202010178029 A CN 202010178029A CN 111269368 A CN111269368 A CN 111269368A
- Authority
- CN
- China
- Prior art keywords
- chain transfer
- transfer agent
- macromolecular chain
- polymerization
- microphase separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
- C08F293/005—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2438/00—Living radical polymerisation
- C08F2438/03—Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Graft Or Block Polymers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
本发明公开了一种利用RAFT聚合诱导自组装制备表面微相分离纳米粒子的方法,属于纳米粒子制备技术领域。该制备方法为:通过可逆加成‑断裂链转移聚合(RAFT)制备一种亲水性的大分子链转移剂,再通过单羟基封端的大分子链和含有羧基的小分子链转移剂的酯化反应制备另一种疏水性的大分子链转移剂。利用两种不相容大分子链转移剂的配合使用,共同引发同一种单体发生聚合,随着聚合时间的变化,得到不同形貌的粒子。聚合后由于两种链转移剂在溶剂中溶解性的差异,直接诱导形成了表面微相分离的纳米粒子。表面微相分离的粒子能够储存、运输、释放多种化学上不相容的小分子,该类粒子在生物、医药、催化等很多领域有着广阔的应用前景。
Description
技术领域
本发明涉及纳米粒子领域,具体涉及一种利用RAFT聚合诱导自组装制备表面微相分离纳米粒子的方法。
背景技术
嵌段共聚物自组装在高分子和纳米技术领域引起了广泛的关注,在众多嵌段共聚物组装体中,微相分离的纳米粒子因其结构的多级性与特异性成为了重要的研究方向。现今已经有多种形态的微相分离纳米粒子被制备出来了,其相分离的结构能够储存、运输、释放多种化学上不相容的小分子,该类粒子在生物、医药、催化等很多领域有着广阔的应用前景。但微相分离纳米粒子通常采用传统自组装来制备,这种制备方法存在两大不足而大大限制了实际应用:第一,制备过程复杂,影响纳米粒子形貌的因素多,可控性和重复性较差;第二,固含量通常低于1%,有时甚至低至0.01%。近几年来,基于活性/可控自由基聚合发展起来的聚合诱导自组装(PISA)给我们提供了一种高效制备纳米粒子的新方法。
PISA能在高浓度下形成形貌可控的高分子颗粒,操作简单,重复性好,适合工业化生产。通过PISA能得到不同的形貌,包括球形、蠕虫状和囊泡等。聚集体的形貌主要由成核链段的伸展程度、核壳之间的表面张力及壳层链段之间的排斥力来决定。嵌段共聚物的组成,或者说是憎溶剂链段与亲溶剂链段长度的比值对组装形成的聚集体形貌有着重要影响。当亲溶剂链段长度固定,憎溶剂链段由短变长时,组装形成的聚集体形貌经历了由球状到蠕虫结构、再到囊泡和复杂形貌的转变。制备微相分离的纳米粒子的方法可概括为以下三种:一是线性嵌段聚合物的自组装,特别是线型三嵌段 ABC 聚合物;二是非线性聚合物(例如星型聚合物)的自组装;三是混合嵌段聚合物的自组装,即将两种不同的共聚物在选择溶剂中混合,然后共同自组装为复杂的多相微区纳米粒子。
发明内容
本发明的目的在于提供了一种利用RAFT聚合诱导自组装制备表面微相分离纳米粒子的方法,利用两种大分子链转移剂共同引发单体发生聚合,聚合过程中发生原位自组装生成纳米粒子,在聚合过程中间歇取样,不同的聚合时间得到了不同的形貌。由于两种大分子链转移剂在溶剂中溶解性的差异,生成的不同形貌的粒子都具有表面微相分离的结构,拓展了RAFT聚合诱导自组装制备表面微相分离纳米粒子的途径,且该制备过程简单,形貌可控,结构稳定,在制备微相分离纳米粒子方面具有广阔的应用前景。
本发明的目的通过以下技术方案实现。
一种利用RAFT聚合诱导自组装制备表面微相分离纳米粒子的方法,包括以下步骤:
(1)以亲水单体为原料,通过RAFT聚合制备亲水性大分子链转移剂;
(2)以单羟基封端的大分子链和含羧基的小分子链转移剂为原料,利用二者之间的酯化反应制备疏水性大分子链转移剂;
(3)将步骤(1)所得亲水性大分子链转移剂和步骤(2)所得疏水性大分子链转移剂分散到溶剂中,再加入单体,引发剂,通氮气除氧后加热搅拌,在溶剂中发生RAFT聚合反应,得到表面微相分离纳米粒子分散液。
优选的,步骤(1)所述的亲水单体为甲基丙烯酸二甲氨基乙酯。
优选的,步骤(1)所述的亲水性大分子链转移剂的聚合度为60。
优选的,步骤(2)所述的大分子链为聚合度为46-110的单羟基封端的聚二甲基硅氧烷,进一步优选聚合度为60。
优选的,步骤(2)所述的小分子链转移剂为4-氰基戊酸二硫代苯甲酸。
优选的,步骤(3)所述的溶剂为异丙醇;所述的单体为甲基丙烯酸苄基酯;所述的引发剂为偶氮二异丁腈。
优选的,步骤(3)所述亲水性大分子链转移剂和疏水性大分子链转移剂的摩尔比为1:1-1:2。
优选的,步骤(3)所述反应的温度为60-70℃。
优选的,步骤(3)所述反应的时间为6-30h。
由以上所述的制备方法制得的一种表面微相分离纳米粒子。
本发明利用两种大分子链转移剂共同调节RAFT聚合诱导自组装,原位得到了两种不同嵌段共聚物的混合物,在反应过程中间歇取样,得到憎溶剂链段长度不断增加的纳米粒子分散液,粒子的形貌发生了从球到蠕虫再到囊泡的转变。这些粒子由于壳层两种大分子链转移剂在溶剂中溶解性的差异发生了表面微相分离,扩展了聚合诱导自组装方法制备表面微相分离纳米粒子的途径,且该制备过程简单,聚合过程具有“活性”自由基聚合特性,通过不同时间取样就可以实现对聚合物纳米粒子形貌的控制,得到了稳定的具有表面微相分离结构的球、蠕虫和囊泡。
与现有技术相比,本发明具有以下的优点:
(1)本发明利用两种大分子链转移剂共同调节同一种单体发生聚合,在聚合过程中原位得到了两种不同嵌段共聚物的混合物,它们直接原位自组装形成纳米粒子。
(2)在反应过程中间歇取样,直接得到了具有表面微相分离结构的球、蠕虫和囊泡,过程简单,形貌可控。
(3)RAFT聚合诱导自组装所得聚合物分散液,固含量高,粒子形貌稳定,重复性好,适合工业化生产。
附图说明
图1是亲水性大分子链转移剂的核磁图。
图2是疏水性大分子链转移剂的核磁图。
图3是两种大分子链转移剂共同调节RAFT聚合诱导自组装过程的示意图。
图4是不同形貌表面微相分离的纳米粒子的示意图。
图5a、图5b是反应温度65℃,反应时间6h,两种链转移剂摩尔比PDMS60-macroCTA/
PDMAEMA60-macroCTA=1/1时不染色和CH3I染色的球形粒子的TEM图。
图6a、图6b是反应温度65℃,反应时间7h,两种链转移剂摩尔比PDMS60-macroCTA/
PDMAEMA60-macroCTA=1/1时不染色和CH3I染色的蠕虫形貌粒子的TEM图。
图7a、图7b是反应温度65℃,反应时间18h,两种链转移剂摩尔比PDMS60-macroCTA/
PDMAEMA60-macroCTA=1/1时不染色和CH3I染色的囊泡形貌粒子的TEM图。
图8a、图8b是反应温度65℃,反应时间30h,两种链转移剂摩尔比PDMS60-macroCTA/
PDMAEMA60-macroCTA=1/1时不染色和CH3I染色的囊泡形貌粒子的TEM图。
图9a、图9b是反应温度65℃,反应时间9h,两种链转移剂摩尔比PDMS60-macroCTA/
PDMAEMA60-macroCTA=2/1时不染色和CH3I染色的囊泡形貌粒子的TEM图。
图10a、图10b是反应温度65℃,反应时间28h,两种链转移剂摩尔比PDMS60-macroCTA/
PDMAEMA60-macroCTA=2/1时不染色和CH3I染色的复杂形貌粒子的TEM图。
图11a、图11b是反应温度60℃,反应时间30h,两种链转移剂摩尔比PDMS60-macroCTA/
PDMAEMA46-macroCTA=1/1时不染色和CH3I染色的囊泡形貌粒子的TEM图。
图12a、图12b是反应温度70℃,反应时间30h,两种链转移剂摩尔比PDMS60-macroCTA/
PDMAEMA110-macroCTA=1/1时不染色和CH3I染色的囊泡形貌粒子的TEM图。
具体实施方式
为了更好的理解与解释本发明,以下结合实例与附图对本发明进行进一步的详细描述,但本发明的保护范围不限于以下实例。
实施例1两种大分子链转移剂的制备
(1)合成亲水性大分子链转移剂:史朗克瓶中加入小分子链转移剂4-氰基戊酸二硫代苯甲酸(345.1mg)、单体甲基丙烯酸二甲氨基乙酯(8.0g)、引发剂偶氮二异丁腈(42.0mg),溶解于溶剂四氢呋喃(10mL)中。三次冻脱气后,70℃油浴反应8小时,打开瓶塞,冰水浴停反应。旋转蒸发除去大部分的溶剂,再用过量的石油醚沉淀聚合物,重复三次。室温下真空干燥,得到4.14g产物(PDMAEMA60-macroCTA),产率51.6%,大分子链转移剂的链长为60,核磁图见图1。
(2)合成疏水性大分子链转移剂:250mL圆底烧瓶中加入小分子链转移剂4-氰基戊酸二硫代苯甲酸(1.1176g)溶解于溶剂二氯甲烷中(110mL),再加入聚合度为60的单羟基封端的聚二甲基硅氧烷(10.00g)高分子链、催化剂二环己基碳二亚胺(1.20g)和4-二甲氨基吡啶(36.60mg)。通氮气30min除氧,35℃下反应20小时,打开瓶塞,冰水浴停反应。过滤后,旋转蒸发得到浓缩液,过硅胶柱(二氯甲烷为洗脱剂),收集红色部分,旋蒸后室温下真空干燥,得到5.3g产物(PDMS60-macroCTA),产率53.0%,核磁图见图2。
实施例2两种大分子链转移剂共同调节RAFT聚合诱导自组装
50mL圆底烧瓶中加入PDMS60-macroCTA(0.074g)、PDMAEMA60-macroCTA(0.146g)、单体甲基丙烯酸苄基酯(1.06g)和内标三聚甲醛(80mg)溶于无水异丙醇(13.2mL)中,目标聚合度200,两种大分子链转移剂PDMS60-macroCTA/PDMAEMA60-macroCTA摩尔比为1:1,固含量11wt%,待完全溶解,加入引发剂偶氮二异丁腈(1.5mg),鼓泡通氮气30min除氧,65℃油浴反应,间隔取样。两种大分子链转移剂共同调节RAFT聚合诱导自组装示意图见图3。不同时间取样得到了不同形貌的表面微相分离的纳米粒子,其示意图见图4。反应6h,转化率10.9%,成核链段PBzMA长度22,此时粒子的形貌为球形,其未染色和CH3I染色的透射电镜图见图5a、图5b。因为CH3I蒸汽在染色过程中会和PDMAEMA60-macroCTA中的N原子结合,增加了对比度,因此经过CH3I染色,可在透射电镜图中识别PDMAEMA60-macroCTA的分布,观察到球形纳米粒子的表面发生了微相分离,这是由于壳层链段PDMS60-macroCTA和PDMAEMA60-macroCTA在溶剂中二者不相容而诱导形成的。反应7h,转化率29.8%,成核链段PBzMA长度60,此时粒子的形貌为蠕虫状,其未染色和CH3I染色的透射电镜图见图6a、图6b,经CH3I染色观察到了表面发生微相分离的蠕虫形貌。反应18h,转化率90.5%,成核链段PBzMA长度181,此时粒子的形貌为囊泡,其未染色和CH3I染色的透射电镜图见图7a、图7b,经CH3I染色后观察到囊泡的表面也发生了微相分离。反应30h,转化率92.1%,成核链段PBzMA长度184,此时粒子的形貌为囊泡,其未染色和CH3I染色的透射电镜图见图8a、图8b,经CH3I染色后观察到囊泡的表面也发生了微相分离。
实施例3两种大分子链转移剂共同调节RAFT聚合诱导自组装
50mL圆底烧瓶中加入PDMS60-macroCTA(0.074g)、PDMAEMA60-macroCTA(0.073g)、单体甲基丙烯酸苄基酯(0.80g)和内标三聚甲醛(60mg)溶于无水异丙醇(9.8mL)中,目标聚合度200,两种大分子链转移剂PDMS60-macroCTA/PDMAEMA60-macroCTA摩尔比为2:1,固含量11wt%,待完全溶解,加入引发剂偶氮二异丁腈(1.2mg),鼓泡通氮气30min除氧,65℃油浴反应,间隔取样。
反应9h,转化率50.0%,成核链段PBzMA长度100,此时粒子的形貌为囊泡,其未染色和CH3I染色的透射电镜图见图9a、图9b,经CH3I染色观察到囊泡的表面发生了微相分离。反应28h,转化率56.4%,成核链段PBzMA长度113,此时粒子的形貌为复合胶束,其未染色和CH3I染色的透射电镜图见图10a、图10b,经CH3I染色观察到该粒子也发生了表面微相分离。
实施例4两种大分子链转移剂共同调节RAFT聚合诱导自组装
50mL圆底烧瓶中加入PDMS60-macroCTA(0.074g)、PDMAEMA46-macroCTA(0.056g)、单体甲基丙烯酸苄基酯(0.80g)和内标三聚甲醛(60mg)溶于无水异丙醇(9.6mL)中,目标聚合度200,两种大分子链转移剂PDMS60-macroCTA/PDMAEMA46-macroCTA摩尔比为1:1,固含量11wt%,待完全溶解,加入引发剂偶氮二异丁腈(1.2mg),鼓泡通氮气30min除氧,70℃油浴反应,反应30h,将冰水浴置于冰水浴中终止反应。
反应30h,转化率97.0%,成核链段PBzMA长度194,此时粒子的形貌为囊泡,其未染色和CH3I染色的透射电镜图见图11a、图11b,经CH3I染色观察到囊泡的表面发生了微相分离。
实施例5两种大分子链转移剂共同调节RAFT聚合诱导自组装
50mL圆底烧瓶中加入PDMS60-macroCTA(0.074g)、PDMAEMA110-macroCTA(0.134g)、单体甲基丙烯酸苄基酯(0.80g)和内标三聚甲醛(60mg)溶于无水异丙醇(10.4mL)中,目标聚合度200,两种大分子链转移剂PDMS60-macroCTA/PDMAEMA110-macroCTA摩尔比为1:1,固含量11wt%,待完全溶解,加入引发剂偶氮二异丁腈(1.2mg),鼓泡通氮气30min除氧,60℃油浴反应,反应30h,将冰水浴置于冰水浴中终止反应。
反应30h,转化率96.0%,成核链段PBzMA长度192,此时粒子的形貌为囊泡,其未染色和CH3I染色的透射电镜图见图12a、图12b,经CH3I染色观察到囊泡的表面发生了微相分离。
Claims (10)
1.一种利用RAFT聚合诱导自组装制备表面微相分离纳米粒子的方法,其特征在于,包括以下步骤:
(1)以亲水单体为原料,通过RAFT聚合制备亲水性大分子链转移剂;
(2)以单羟基封端的大分子链和含羧基的小分子链转移剂为原料,利用二者之间的酯化反应制备疏水性大分子链转移剂;
(3)将步骤(1)所得亲水性大分子链转移剂和步骤(2)所得疏水性大分子链转移剂分散到溶剂中,再加入单体,引发剂,通氮气除氧后加热搅拌,在溶剂中发生RAFT聚合反应,得到表面微相分离纳米粒子分散液。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述的亲水单体为甲基丙烯酸二甲氨基乙酯。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述的亲水性大分子链转移剂的聚合度为60。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述的大分子链为聚合度为46-110的单羟基封端的聚二甲基硅氧烷。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述的小分子链转移剂为4-氰基戊酸二硫代苯甲酸。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述的溶剂为异丙醇;所述的单体为甲基丙烯酸苄基酯;所述的引发剂为偶氮二异丁腈。
7.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述亲水性大分子链转移剂和疏水性大分子链转移剂的摩尔比为1:1-1:2。
8.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述反应的温度为60-70℃。
9.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述反应的时间为6-30h。
10.由权利要求1-9任一项所述的制备方法制得的一种表面微相分离纳米粒子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010178029.4A CN111269368B (zh) | 2020-03-13 | 2020-03-13 | 一种利用raft聚合诱导自组装制备表面微相分离纳米粒子的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010178029.4A CN111269368B (zh) | 2020-03-13 | 2020-03-13 | 一种利用raft聚合诱导自组装制备表面微相分离纳米粒子的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111269368A true CN111269368A (zh) | 2020-06-12 |
CN111269368B CN111269368B (zh) | 2021-05-14 |
Family
ID=71002523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010178029.4A Active CN111269368B (zh) | 2020-03-13 | 2020-03-13 | 一种利用raft聚合诱导自组装制备表面微相分离纳米粒子的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111269368B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112375450A (zh) * | 2020-11-23 | 2021-02-19 | 浙江理工大学 | 一种水性raft细乳液聚合制备超疏水涂层的方法 |
CN113336879A (zh) * | 2021-06-23 | 2021-09-03 | 河北省科学院能源研究所 | 一种结构稳定的pH响应性聚合物囊泡的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009067565A2 (en) * | 2007-11-19 | 2009-05-28 | University Of Washington | Marine coatings |
CN104193905A (zh) * | 2014-07-31 | 2014-12-10 | 江南大学 | 一种通过raft聚合诱导大分子自组装制备颗粒乳化剂的方法 |
CN106832158A (zh) * | 2017-02-18 | 2017-06-13 | 湖南工业大学 | 一种pH响应性动态壳交联聚合物纳米粒子及其制备方法 |
-
2020
- 2020-03-13 CN CN202010178029.4A patent/CN111269368B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009067565A2 (en) * | 2007-11-19 | 2009-05-28 | University Of Washington | Marine coatings |
CN104193905A (zh) * | 2014-07-31 | 2014-12-10 | 江南大学 | 一种通过raft聚合诱导大分子自组装制备颗粒乳化剂的方法 |
CN106832158A (zh) * | 2017-02-18 | 2017-06-13 | 湖南工业大学 | 一种pH响应性动态壳交联聚合物纳米粒子及其制备方法 |
Non-Patent Citations (2)
Title |
---|
LI SUN等: ""Facile Fabrication of Water Dispersible Latex Particles with Homogeneous or Chain‐Segregated Surface from RAFT Polymerization Using a Mixture of Two Macromolecular Chain Transfer Agents"", 《MACROMOLECULAR RAPID COMMUNICATIONS》 * |
STEVEN P. ARMES等: ""RAFT Dispersion Polymerization in Silicone Oil"", 《MACROMOLECULES》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112375450A (zh) * | 2020-11-23 | 2021-02-19 | 浙江理工大学 | 一种水性raft细乳液聚合制备超疏水涂层的方法 |
CN113336879A (zh) * | 2021-06-23 | 2021-09-03 | 河北省科学院能源研究所 | 一种结构稳定的pH响应性聚合物囊泡的制备方法 |
CN113336879B (zh) * | 2021-06-23 | 2022-07-29 | 河北省科学院能源研究所 | 一种结构稳定的pH响应性聚合物囊泡的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111269368B (zh) | 2021-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bai et al. | Monodisperse hydrophilic polymer microspheres having carboxylic acid groups prepared by distillation precipitation polymerization | |
Tan et al. | Room temperature synthesis of self-assembled AB/B and ABC/BC blends by photoinitiated polymerization-induced self-assembly (photo-PISA) in water | |
Cai et al. | Morphology transitions in RAFT polymerization | |
Yang et al. | Micellar assembly of a photo-and temperature-responsive amphiphilic block copolymer for controlled release | |
CN111269368B (zh) | 一种利用raft聚合诱导自组装制备表面微相分离纳米粒子的方法 | |
CN1246356C (zh) | 原位聚合高分子接枝的碳纳米管的制备方法 | |
Yan et al. | One-step synthesis of pegylated cationic nanogels of poly (N, N′-dimethylaminoethyl methacrylate) in aqueous solution via self-stabilizing micelles using an amphiphilic macroRAFT agent | |
Lu et al. | Acetals moiety contained pH-sensitive amphiphilic copolymer self-assembly used for drug carrier | |
CN107552806B (zh) | 一种可大规模制备的具有尺寸与分散性可控的Fe3O4@Au核@壳结构纳米棒的制备方法 | |
Wan et al. | Polymerization-induced hierarchical self-assembly: from monomer to complex colloidal molecules and beyond | |
CN104744650A (zh) | 含有poss基杂化共聚物的制备及应用 | |
Zhu et al. | Preparation of novel hybrid inorganic–organic microspheres with active hydroxyl groups using ultrasonic irradiation via one-step precipitation polymerization | |
CN1209382C (zh) | 嵌段聚合物接枝的碳纳米管的制备方法 | |
CN111808281B (zh) | 一种一步合成聚吡唑囊泡的方法 | |
Pei et al. | Biomimetic glycopolymers tethered gold nanoparticles: Preparation, self-assembly and lectin recognition properties | |
Yoon et al. | Surface initiated‐atom transfer radical polymerization of a sugar methacrylate on gold nanoparticles | |
Saleem et al. | Synthesis of ferrocene boronic acid-based block copolymers via RAFT polymerization and their micellization, redox responsive and glucose sensing properties | |
CN102660022B (zh) | 一种导电颗粒乳化剂的制备方法 | |
CN110698617A (zh) | 利用液晶性含氟单体制备棒状纳米颗粒的方法 | |
Tian et al. | Self-assembly of polystyrene with pendant hydrophilic gold nanoparticles: the influence of the hydrophilicity of the hybrid polymers | |
Chen et al. | Self-assembly and morphological transitions of random amphiphilic poly (β-d-glucose-co-1-octyl) phosphazenes | |
Wang et al. | Preparation of shell cross-linked nanoparticles via miniemulsion RAFT polymerization | |
CN101139410A (zh) | 一种聚苯乙烯稳定乳液及其制备方法 | |
Avar et al. | Preparation of switchable polymer latexes under elevated CO2 pressure by using 4, 4'-(diazene-1, 2-diyl) bis (N-(3-(dimethylamino) propyl)-4-methylpentanamide) as a novel CO2-switchable inistab | |
Tan et al. | Grafting of multi-sensitive PDMAEMA brushes onto carbon nanotubes by ATNRC: tunable thickening/thinning and self-assembly behaviors in aqueous solutions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |