CN111268779B - 一种将废液中磷酸三丁酯快速转化为多聚磷酸铁絮凝剂的方法 - Google Patents

一种将废液中磷酸三丁酯快速转化为多聚磷酸铁絮凝剂的方法 Download PDF

Info

Publication number
CN111268779B
CN111268779B CN202010159517.0A CN202010159517A CN111268779B CN 111268779 B CN111268779 B CN 111268779B CN 202010159517 A CN202010159517 A CN 202010159517A CN 111268779 B CN111268779 B CN 111268779B
Authority
CN
China
Prior art keywords
emulsion
phosphate
waste liquid
tributyl phosphate
hydrolyzed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010159517.0A
Other languages
English (en)
Other versions
CN111268779A (zh
Inventor
黄涛
徐娇娇
刘万辉
金俊勋
刘龙飞
宋东平
周璐璐
张树文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN202010159517.0A priority Critical patent/CN111268779B/zh
Publication of CN111268779A publication Critical patent/CN111268779A/zh
Application granted granted Critical
Publication of CN111268779B publication Critical patent/CN111268779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/40Polyphosphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

本发明公开将废液中磷酸三丁酯快速转化为多聚磷酸铁絮凝剂的方法,包括以下步骤:将磷酸三丁酯废液加入到氢氧化钠溶液,充分混合,得碱乳液;对碱乳液进行低温等离子体照射,得水解乳液,低温等离子体照射过程中同时用氧气对碱乳液进行曝气;向水解乳液中滴入浓硫酸,配制酸性水解乳液;向酸性水解乳液中加入硫酸铁,搅拌至硫酸铁完全溶解,得载铁酸性水解乳液;最后对载铁酸性水解乳液进行低温等离子体照射20~40分钟,陈化12~24小时,真空烘干、研磨、得到多聚磷酸铁絮凝剂产物。本发明还公开了多聚磷酸铁絮凝剂及其应用。本发明的多聚磷酸铁絮凝剂最高可去除生活垃圾渗滤液中99%COD、98%总磷、98%氨氮、99%汞离子。

Description

一种将废液中磷酸三丁酯快速转化为多聚磷酸铁絮凝剂的 方法
技术领域
本发明涉及对磷酸三丁酯废液安全处置及资源化利用领域,尤其涉及一种将废液中磷酸三丁酯快速转化为多聚磷酸铁絮凝剂的方法。
背景技术
磷酸三丁酯(TBP)是常用萃取剂之一,可用于对铀、钍、碘、铬、铟、锂、钛、磷酸、对氯苯酚等多种物质的萃取。然而,任何萃取剂都不可能无限次循环利用下去。随着萃取-反萃取次数的增加,酸碱交替作用,部分TBP萃取剂自身也会发生降解、聚合及其它化学反应导致自身分子结构的破坏,从而影响萃取剂萃取、反萃、分离等性能。当TBP萃取剂一旦因性能退化无法继续使用时,就会随着废液被一起排出。然而TBP不仅对皮肤和呼吸道有强烈刺激作用,而且可致全身中毒,并有潜在致癌性。人若饮用含有TBP的水体会引起抽搐、麻痹、呼吸困难等症状。同时TBP受热后会分解产生有剧毒的氧化磷烟气,因此若对TBP废液胡乱堆放或未经处理后恣意排放不仅危害生态环境还易引发严重的安全事故。
然而,关于对磷酸三丁酯废液的处置,相关研究报道较少。现有通过絮凝或添加强氧化剂的方法均无法有效地将磷酸三丁酯从废液中去除。因此,换个角度出发,若能研发出一种方法,将废液中的TBP有效转发并资源化利用,这不仅可以避开TBP去除不彻底的问题,而且还可将废TBP充分利用起来。
发明内容
发明目的:本发明所要解决的技术问题是提供了一种将废液中磷酸三丁酯快速转化为多聚磷酸铁絮凝剂的方法。
本发明还要解决的技术问题是提供了多聚磷酸铁絮凝剂及其应用。
为解决上述技术问题,本发明采用的技术方案如下:本发明提供了一种将废液中磷酸三丁酯快速转化为多聚磷酸铁絮凝剂的方法,包括以下步骤:
1)将磷酸三丁酯废液加入到氢氧化钠溶液,充分混合,得碱乳液;
2)对碱乳液进行低温等离子体照射30~60分钟,得水解乳液,低温等离子体照射过程中同时用氧气对碱乳液进行曝气;
3)向水解乳液中滴入浓硫酸,配制酸性水解乳液;
4)向酸性水解乳液中加入硫酸铁,搅拌至硫酸铁完全溶解,得载铁酸性水解乳液;
5)最后对载铁酸性水解乳液进行低温等离子体照射20~40分钟,陈化12~24小时,真空烘干、研磨、得到多聚磷酸铁絮凝剂产物。
其中,所述步骤1)中的氢氧化钠溶液浓度为5~10M。
其中,所述步骤1)中磷酸三丁酯废液与氢氧化钠溶液体积比10~30∶100。
其中,所述步骤1)中磷酸三丁酯废液中磷酸三丁酯质量百分比为30%~70%。
其中,所述步骤2)中低温等离子体照射作用电压为40~120KV。
其中,所述步骤2)酸性水解乳液的pH为2~4。
其中,所述步骤4)硫酸铁与酸性水解乳液固液比2~4∶100mg/mL。
其中,所述步骤5)低温等离子体照射作用电压为30~90KV。
本发明内容包括所述的方法制备得到的多聚磷酸铁絮凝剂。
本发明内容包括所述的多聚磷酸铁絮凝剂在污染物去除中的应用。
其中,所述的应用包括将多聚磷酸铁絮凝剂在生活垃圾中的COD、磷、氨氮、汞离子去除中的应用。
反应机理:低温等离子体照射作用过程中,释放出高能电子束、热量、紫外线、微波。高能电子束作用于氧气和水分子,产生氧自由基、氢氧根自由基、氢自由基、水合电子。在热激发作用下,磷酸三丁酯与氢氧化钠反应,生成磷酸二丁酯钠盐、磷酸一丁脂钠盐、磷酸盐和丁醇。在紫外线和微波照射及氧自由基和氢氧根自由基氧化作用下,磷酸二丁酯钠盐和磷酸一丁脂钠盐进一步向磷酸盐和丁醇转化。对载铁酸性水解乳液进行低温等离子体照射可通过氢氧根自由基和直接将丁醇转化为二氧化碳和水。氧自由基可与氢离子结合生成双氧水,而铁离子可与氢自由基和水合电子结合生成氢离子和亚铁离子。在紫外线和微波照射作用下,亚铁离子可与双氧水反应,诱发更多的氢氧根自由基产生。在氢离子和氢氧根自由基作用下,磷酸盐发生水解、聚合,生成多聚磷酸。多聚磷酸吸附铁离子生成多聚磷酸铁絮凝剂。
有益效果:本发明工艺简单,可操作性强,可通过两步法将磷酸三丁酯转化成磷酸钠,并通过氢离子和氢氧根自由基诱发磷酸钠水解、聚合生成多聚磷酸,并最终生成多聚磷酸铁产物。本发明制备的多聚磷酸铁絮凝剂最高可去除生活垃圾渗滤液中99%COD、98%总磷、98%氨氮、99%汞离子。
附图说明
图1为本发明处理方法的流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
实施例1磷酸三丁酯废液与氢氧化钠溶液体积比对制备的多聚磷酸铁絮凝剂污染物去除性能影响
按照含量30%量取磷酸三丁酯加入到水中,搅拌均匀制备磷酸三丁酯废液。称取氢氧化钠溶于水中,配制5M的氢氧化钠溶液。分别按照体积比5∶100、7∶100、9∶100、10∶100、20∶100、30∶100、31∶100、33∶100、35∶100将磷酸三丁酯废液加入到氢氧化钠溶液,充分混合,得九组碱乳液。对九组碱乳液分别进行低温等离子体照射30分钟,得九组水解乳液,其中低温等离子体照射作用电压为40KV,低温等离子体照射过程中同时用氧气对碱乳液进行曝气。向九组水解乳液中分别滴入浓硫酸,配制得到九组酸性水解乳液,其中酸性水解乳液的pH为2。按照固液比2∶100mg/mL向九组酸性水解乳液中分别加入硫酸铁,搅拌至硫酸铁完全溶解,得九组载铁酸性水解乳液。最后对九组载铁酸性水解乳液进行低温等离子体照射20分钟,陈化12小时,真空烘干、研磨、得到九组多聚磷酸铁絮凝剂产物,其中低温等离子体照射作用电压为30KV,曝气气氛为氧气。
生活垃圾渗滤液采样与基本性质说明:试验用垃圾渗滤液取自连云港市海州区青城山生活垃圾卫生填埋场。该批次城市生活垃圾渗滤液的COD质量浓度为1256mg/L,总磷的浓度为138mg/L,氨氮的浓度为796mg/L,汞离子的浓度为0.84mg/L。
COD浓度检测及COD去除率的计算:渗滤液化学需氧量COD浓度按照国家标准《水质化学需氧量的测定重铬酸盐法》(GB 11914-1989)进行测定。COD去除率按照公式(1)计算,其中RCOD为COD去除率,c0和ct分别为生活垃圾渗滤液处置前和处置后的COD浓度(mg/L)。
Figure BDA0002404844260000031
总磷浓度检测及总磷去除率计算:渗滤液总磷浓度按照标准《水质磷酸盐和总磷的测定连续流动-钼酸铵分光光度法》(HJ 670-2013)进行测定。总磷去除率按照公式(2)计算,其中RTp为总磷去除率,cTp0和cTPt分别为生活垃圾渗滤液处置前和处置后的总磷浓度(mg/L)。
Figure BDA0002404844260000032
氨氮浓度检测及氨氮去除率计算:渗滤液氨氮的浓度按照《水质氨氮的测定水杨酸分光光度法》(HJ536-2009)进行测定。氨氮去除率按照公式(3)计算,其中RN为氨氮去除率,cN0为处置前渗滤液中氨氮初始浓度(mg/L),cNt为处理后的渗滤液中氨氮剩余浓度(mg/L)。
Figure BDA0002404844260000041
汞离子浓度检测及去除率计算:渗滤液中汞离子浓度按照《水质汞、砷、硒、铋和锑的测定原子荧光法》(HJ 695-2014)进行测定。汞离子去除率按照公式(4)计算,其中RH为汞离子去除率,cH0为处置前渗滤液中汞离子初始浓度(mg/L),cHt为处理后的渗滤液中汞离子浓度(mg/L)。
Figure BDA0002404844260000042
COD、总磷、氨氮、汞离子去除率结果见表1。
表1磷酸三丁酯废液与氢氧化钠溶液体积比对制备的多聚磷酸铁絮凝剂污染物去除性能影响
Figure BDA0002404844260000043
由表1可看出,当磷酸三丁酯废液与氢氧化钠溶液体积比小于10∶100(如表1中,磷酸三丁酯废液与氢氧化钠溶液体积比=9∶100、7∶100、5∶100时以及表1中未列举的更低值),混合液中磷酸三丁酯较少,磷酸三丁酯分解、水解、聚合产生的聚磷酸聚合度较低,生成的聚磷酸铁絮凝剂对垃圾渗滤液中COD、总磷、氨氮、汞离子去除率均低于87%且随着磷酸三丁酯废液与氢氧化钠溶液体积比减少而显著降低。当磷酸三丁酯废液与氢氧化钠溶液体积比等于10~30∶100(如表1中,磷酸三丁酯废液与氢氧化钠溶液体积比=10∶100、20∶100、30∶100时),在热激发作用下,磷酸三丁酯与氢氧化钠反应,生成磷酸二丁酯钠盐、磷酸一丁脂钠盐、磷酸盐和丁醇。在紫外线和微波照射及氧自由基和氢氧根自由基氧化作用下,磷酸二丁酯钠盐和磷酸一丁脂钠盐进一步向磷酸盐和丁醇转化。在氢离子和氢氧根自由基作用下,磷酸盐发生水解、聚合,生成多聚磷酸。多聚磷酸吸附铁离子生成多聚磷酸铁絮凝剂。最终,生成的聚磷酸铁絮凝剂对垃圾渗滤液中COD、总磷、氨氮、汞离子去除率均大于90%。当磷酸三丁酯废液与氢氧化钠溶液体积比大于30∶100(如表1中,磷酸三丁酯废液与氢氧化钠溶液体积比=31∶100、33∶100、35∶100时以及表1中未列举的更高值),混合液中磷酸三丁酯过量,磷酸三丁酯分解和水解不充分,聚合产生的聚磷酸聚合度和纯度较低,生成的聚磷酸铁絮凝剂对垃圾渗滤液中COD、总磷、氨氮、汞离子去除率随着磷酸三丁酯废液与氢氧化钠溶液体积比进一步增加而显著降低。因此,综合而言,结合效益与成本,磷酸三丁酯废液与氢氧化钠溶液体积比等于10~30∶100时,制备的多聚磷酸铁絮凝剂污染物去除性能最好。
实施例2酸性水解乳液的pH对制备的多聚磷酸铁絮凝剂污染物去除性能影响
按照含量50%量取磷酸三丁酯加入到水中,搅拌均匀制备磷酸三丁酯废液。称取氢氧化钠溶于水中,配制7.5M的氢氧化钠溶液。按照体积比30∶100将磷酸三丁酯废液加入到氢氧化钠溶液,充分混合,得碱乳液。对碱乳液进行低温等离子体照射45分钟,得水解乳液,其中低温等离子体照射作用电压为80KV,低温等离子体照射过程中同时用氧气对碱乳液进行曝气。向水解乳液中滴入浓硫酸,配制九组不同pH酸性水解乳液,其中酸性水解乳液的pH分别为0.5、1、1.5、2、3、4、4.5、5、5.5。按照固液比3∶100mg/分别向九组不同pH的酸性水解乳液中加入硫酸铁,搅拌至硫酸铁完全溶解,得九组载铁酸性水解乳液。最后对九组载铁酸性水解乳液分别进行低温等离子体照射30分钟,陈化18小时,真空烘干、研磨、得到九组多聚磷酸铁絮凝剂产物,其中低温等离子体照射作用电压为60KV,曝气气氛为氧气。
生活垃圾渗滤液采样与基本性质、COD浓度检测及COD去除率的计算、总磷浓度检测及总磷去除率计算、氨氮浓度检测及氨氮去除率计算、汞离子浓度检测及去除率计算均同实施例1,COD、总磷、氨氮、汞离子去除率结果见表2。
表2酸性水解乳液的pH对制备的多聚磷酸铁絮凝剂污染物去除性能影响
Figure BDA0002404844260000061
由表2可看出,当酸性水解乳液的pH小于2(如表2中,酸性水解乳液的pH=1.5、1、0.5时以及表1中未列举的更低值),溶液中氢离子过多,生成的部分多聚磷酸发生解聚,聚磷酸聚合度将低,生成的聚磷酸铁絮凝剂对垃圾渗滤液中COD、总磷、氨氮、汞离子去除率均低于89%且随着酸性水解乳液的pH减少而显著降低。当酸性水解乳液的pH等于2~4(如表2中,酸性水解乳液的pH=2、3、4时),在氢离子和氢氧根自由基作用下,磷酸盐发生水解、聚合,生成多聚磷酸。多聚磷酸吸附铁离子生成多聚磷酸铁絮凝剂。最终,生成的聚磷酸铁絮凝剂对垃圾渗滤液中COD、总磷、氨氮、汞离子去除率均大于92%。当酸性水解乳液的pH大于4(如表2中,酸性水解乳液的pH=4.5、5、5.5时以及表2中未列举的更高值),溶液中氢离子较少,磷酸盐水解、聚合不充分,聚磷酸聚合度将低,生成的聚磷酸铁絮凝剂对垃圾渗滤液中COD、总磷、氨氮、汞离子去除率均随着酸性水解乳液的pH进一步增加而显著降低。因此,综合而言,结合效益与成本,当酸性水解乳液的pH等于2~4时,制备的多聚磷酸铁絮凝剂污染物去除性能最好。
实施例3硫酸铁与酸性水解乳液固液比对制备的多聚磷酸铁絮凝剂污染物去除性能影响
按照含量70%量取磷酸三丁酯加入到水中,搅拌均匀制备磷酸三丁酯废液。称取氢氧化钠溶于水中,配制10M的氢氧化钠溶液。按照体积比30∶100将磷酸三丁酯废液加入到氢氧化钠溶液,充分混合,得碱乳液。对碱乳液进行低温等离子体照射60分钟,得水解乳液,其中低温等离子体照射作用电压为120KV,低温等离子体照射过程中同时用氧气对碱乳液进行曝气。向水解乳液中滴入浓硫酸,配制酸性水解乳液,其中酸性水解乳液的pH为4。分别按照固液比0.5∶100mg/mL、1∶100mg/mL、1.5∶100mg/mL、2∶100mg/mL、3∶100mg/mL、4∶100mg/mL、4.5∶100mg/mL、5∶100mg/mL、5.5∶100mg/mL向酸性水解乳液中加入硫酸铁,搅拌至硫酸铁完全溶解,得九组载铁酸性水解乳液。最后对九组载铁酸性水解乳液进行低温等离子体照射40分钟,陈化24小时,真空烘干、研磨、得到九组多聚磷酸铁絮凝剂产物,其中低温等离子体照射作用电压为90KV,曝气气氛为氧气。
生活垃圾渗滤液采样与基本性质、COD浓度检测及COD去除率的计算、总磷浓度检测及总磷去除率计算、氨氮浓度检测及氨氮去除率计算、汞离子浓度检测及去除率计算均同实施例1,COD、总磷、氨氮、汞离子去除率结果见表3。
表3硫酸铁与酸性水解乳液固液比对制备的多聚磷酸铁絮凝剂污染物去除性能影响
Figure BDA0002404844260000071
Figure BDA0002404844260000081
由表3可看出,当硫酸铁与酸性水解乳液固液比小于2∶100(如表3中,硫酸铁与酸性水解乳液固液比=1.5∶100、1∶100、0.5∶100时以及表1中未列举的更低值),溶液中铁离子较少,铁离子与氢自由基和水合电子结合生成的氢离子和亚铁离子减少,相应地在紫外线和微波照射作用下亚铁离子可与双氧水反应生成较少的氢氧根自由,这使得聚磷酸聚合度降低,生成聚磷酸铁絮凝剂掺有其它较多阳离子杂元素,导致其对垃圾渗滤液中COD、总磷、氨氮、汞离子去除率均低于91%且随着硫酸铁与酸性水解乳液固液比减少而显著降低。当硫酸铁与酸性水解乳液固液比等于2~4∶100(如表3中,硫酸铁与酸性水解乳液固液比=2∶100、3∶100、4∶100时),铁离子可与氢自由基和水合电子结合生成氢离子和亚铁离子。在紫外线和微波照射作用下,亚铁离子可与双氧水反应,诱发更多的氢氧根自由基产生。在氢离子和氢氧根自由基作用下,磷酸盐发生水解、聚合,生成多聚磷酸。多聚磷酸吸附铁离子生成多聚磷酸铁絮凝剂。最终,生成的聚磷酸铁絮凝剂对垃圾渗滤液中COD、总磷、氨氮、汞离子去除率均大于95%。当硫酸铁与酸性水解乳液固液比大于4∶100(如表3中,硫酸铁与酸性水解乳液固液比=4.5∶100、5∶100、5.5.5∶100时以及表3中未列举的更高值),溶液中铁离子过多,聚磷酸上过多的活性位点被铁离子占据,导致生成的磷酸铁絮凝剂对垃圾渗滤液中COD、总磷、氨氮、汞离子去除率随着硫酸铁与酸性水解乳液固液比进一步增加而显著降低。因此,综合而言,结合效益与成本,当硫酸铁与酸性水解乳液固液比等于2~4∶100时,制备的多聚磷酸铁絮凝剂污染物去除性能最好。

Claims (10)

1.一种将废液中磷酸三丁酯快速转化为多聚磷酸铁絮凝剂的方法,其特征在于,包括以下步骤:
1)将磷酸三丁酯废液加入到氢氧化钠溶液,充分混合,得碱乳液;
2)对碱乳液进行低温等离子体照射30~60分钟,得水解乳液,低温等离子体照射过程中同时用氧气对碱乳液进行曝气;
3)向水解乳液中滴入浓硫酸,配制酸性水解乳液;
4)向酸性水解乳液中加入硫酸铁,搅拌至硫酸铁完全溶解,得载铁酸性水解乳液;
5)最后对载铁酸性水解乳液进行低温等离子体照射20~40分钟,陈化12~24小时,真空烘干、研磨、得到多聚磷酸铁絮凝剂产物。
2.根据权利要求1所述的方法,其特征在于,所述步骤1)中的氢氧化钠溶液浓度为5~10M。
3.根据权利要求1所述的方法,其特征在于,所述步骤1)中磷酸三丁酯废液与氢氧化钠溶液体积比10~30:100。
4.根据权利要求1所述的方法,其特征在于,所述步骤1)中磷酸三丁酯废液中磷酸三丁酯质量百分比为30%~70%。
5.根据权利要求1所述的方法,其特征在于,所述步骤2)中低温等离子体照射作用电压为40~120 KV。
6.根据权利要求1所述的方法,其特征在于,所述步骤2)酸性水解乳液的pH为2~4。
7.根据权利要求1所述的方法,其特征在于,所述步骤4)硫酸铁与酸性水解乳液固液比2~4:100mg/mL。
8.根据权利要求1所述的方法,其特征在于,所述步骤5)低温等离子体照射作用电压为30~90 KV。
9.权利要求1~8任一项所述的方法制备得到的多聚磷酸铁絮凝剂。
10.权利要求9所述的多聚磷酸铁絮凝剂在污染物去除中的应用。
CN202010159517.0A 2020-03-09 2020-03-09 一种将废液中磷酸三丁酯快速转化为多聚磷酸铁絮凝剂的方法 Active CN111268779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010159517.0A CN111268779B (zh) 2020-03-09 2020-03-09 一种将废液中磷酸三丁酯快速转化为多聚磷酸铁絮凝剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010159517.0A CN111268779B (zh) 2020-03-09 2020-03-09 一种将废液中磷酸三丁酯快速转化为多聚磷酸铁絮凝剂的方法

Publications (2)

Publication Number Publication Date
CN111268779A CN111268779A (zh) 2020-06-12
CN111268779B true CN111268779B (zh) 2022-03-08

Family

ID=70994581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010159517.0A Active CN111268779B (zh) 2020-03-09 2020-03-09 一种将废液中磷酸三丁酯快速转化为多聚磷酸铁絮凝剂的方法

Country Status (1)

Country Link
CN (1) CN111268779B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112264031B (zh) * 2020-09-29 2022-11-25 常熟理工学院 一种镀锌废液净化及制备锌铁催化材料的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191328A (ja) * 1998-12-25 2000-07-11 Taki Chem Co Ltd 硫酸第二鉄溶液の製造方法
JP2012030139A (ja) * 2010-07-28 2012-02-16 Hitachi Ltd 希土類金属凝集剤
CN104709992A (zh) * 2015-03-26 2015-06-17 重庆大学 一种聚磷硫酸铁絮凝剂及其制备方法和应用
CN108083400A (zh) * 2017-12-21 2018-05-29 上海万狮环保科技有限公司 一种含磷聚硫酸铁的制备方法及其处理焦化废水的应用
CN109021168A (zh) * 2018-08-07 2018-12-18 重庆大学 一种利用等离子体引发合成壳聚糖基絮凝剂的方法
CN110615422A (zh) * 2019-09-26 2019-12-27 常熟理工学院 一种聚磷氯化铁铝絮凝剂的制备方法
CN110697855A (zh) * 2019-11-04 2020-01-17 常熟理工学院 一种絮凝剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191328A (ja) * 1998-12-25 2000-07-11 Taki Chem Co Ltd 硫酸第二鉄溶液の製造方法
JP2012030139A (ja) * 2010-07-28 2012-02-16 Hitachi Ltd 希土類金属凝集剤
CN104709992A (zh) * 2015-03-26 2015-06-17 重庆大学 一种聚磷硫酸铁絮凝剂及其制备方法和应用
CN108083400A (zh) * 2017-12-21 2018-05-29 上海万狮环保科技有限公司 一种含磷聚硫酸铁的制备方法及其处理焦化废水的应用
CN109021168A (zh) * 2018-08-07 2018-12-18 重庆大学 一种利用等离子体引发合成壳聚糖基絮凝剂的方法
CN110615422A (zh) * 2019-09-26 2019-12-27 常熟理工学院 一种聚磷氯化铁铝絮凝剂的制备方法
CN110697855A (zh) * 2019-11-04 2020-01-17 常熟理工学院 一种絮凝剂及其制备方法和应用

Also Published As

Publication number Publication date
CN111268779A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
Yang et al. Enhanced visible-light activation of persulfate by Ti3+ self-doped TiO2/graphene nanocomposite for the rapid and efficient degradation of micropollutants in water
Ye et al. Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud
Martins et al. Treatment improvement of urban landfill leachates by Fenton-like process using ZVI
Chu et al. Effect of gamma irradiation on activities and physicochemical characteristics of sewage sludge
Benatti et al. Fenton’s process for the treatment of mixed waste chemicals
CN111939866B (zh) 一种高效处置生活垃圾渗滤液并制备改性铝铁基吸附剂的方法
Gu et al. Degradation of recalcitrant organics in landfill concentrated leachate by a microwave-activated peroxydisulfate process
Gu et al. Treatment of semi-aerobic aged-refuse biofilter effluent from treating landfill leachate with the Fenton method
Khajouei et al. Treatment of composting leachate using electro-Fenton process with scrap iron plates as electrodes
Liu et al. Ferric ion promoted degradation of acetaminophen with zero− valent copper activated peroxymonosulfate process
Umamaheswari et al. A feasibility study on optimization of combined advanced oxidation processes for municipal solid waste leachate treatment
CN105906099A (zh) 稀土放射性废水的快速处理方法
Mokhtari et al. Removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated sewage sludge using advanced oxidation process (hydrogen peroxide and sodium persulfate)
CN106045130A (zh) 一种利用白云鄂博矿石催化过硫酸盐降解有机废水的方法
CN111268779B (zh) 一种将废液中磷酸三丁酯快速转化为多聚磷酸铁絮凝剂的方法
CN112299518A (zh) 一种镁铁锰基高效废水处理剂的制备方法及其应用
Vilve et al. Effects of reaction conditions on nuclear laundry water treatment in Fenton process
Sabour et al. Evaluation of the main parameters affecting the Fenton oxidation process in municipal landfill leachate treatment
Bah et al. Systematic literature review of solar-powered landfill leachate sanitation: Challenges and research directions over the past decade
CN104399315B (zh) 一种同时对蓝藻进行脱毒和脱水的方法
CN105110518A (zh) 酸性有机废水的处理方法
CN110615501A (zh) 一种垃圾渗滤液的处理方法
CN106745661B (zh) 一种基于铁-二硅酸配合物的高级氧化水处理方法
Zheng et al. Influence of gamma irradiation on uranium determination by Arsenazo III in the presence of Fe (II)/Fe (III)
Guo et al. Gamma irradiation-induced Cd2+ and Pb2+ removal from different kinds of water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant