CN111260157A - 一种基于优化小生境遗传算法的熔炼配料优化方法 - Google Patents

一种基于优化小生境遗传算法的熔炼配料优化方法 Download PDF

Info

Publication number
CN111260157A
CN111260157A CN202010106328.7A CN202010106328A CN111260157A CN 111260157 A CN111260157 A CN 111260157A CN 202010106328 A CN202010106328 A CN 202010106328A CN 111260157 A CN111260157 A CN 111260157A
Authority
CN
China
Prior art keywords
objective function
function
optimization
difference
algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010106328.7A
Other languages
English (en)
Other versions
CN111260157B (zh
Inventor
冯海领
袁夕霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Development Zone Jingnuo Hanhai Data Technology Co ltd
Original Assignee
Tianjin Development Zone Jingnuo Hanhai Data Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Development Zone Jingnuo Hanhai Data Technology Co ltd filed Critical Tianjin Development Zone Jingnuo Hanhai Data Technology Co ltd
Priority to CN202010106328.7A priority Critical patent/CN111260157B/zh
Publication of CN111260157A publication Critical patent/CN111260157A/zh
Application granted granted Critical
Publication of CN111260157B publication Critical patent/CN111260157B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Development Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Probability & Statistics with Applications (AREA)
  • Educational Administration (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于优化小生境遗传算法的熔炼配料方法,包括下述步骤:S1.建立多目标函数,提出各种参数的指标为多约束条件,建立配料优化数学模型;S2.基于差值粒子群优化方法对多目标函数进行加权处理,将多目标模型转化为单目标函数的问题;S3.根据K均值聚类算法把种群分为K个聚类并确定聚类中心;S4.选择、自适应交叉、自适应变异和小生境淘汰操作;S5.判断是否满足终止条件得到最终配料的加入量。本发明针对配料优化中现存的多目标求解难和易陷入局部最优解等问题,对基于优化小生境遗传算法的熔炼配料方法中的多目标函数确定权值、小生境半径和交叉和变异算子这三个过程进行改进,并且有效显著提高配料比的准确度,节约成本。

Description

一种基于优化小生境遗传算法的熔炼配料优化方法
技术领域
本发明涉及配料技术领域,具体涉及一种基于优化小生境遗传算法的熔炼配 料方法。
背景技术
如何在保证成分要求和操作工艺的前提下,降低配料成本和提高产品质量近 来成为研究热点。应用智能优化技术研究更有效、更科学和更便捷的配料方法是 改变当前配料优化过程单凭配料经验、很少考虑配料成本、手工操作落后等状况 的重要途径和必然方法。
近年来,随着国家对基础设施的大额投入以及中国工业化的大力推进,我国 总产量和需求量节节攀升,越来越多的研究人员将智能优化方法应用于配料优化 领域。传统的配料优化算法大多为线性规划、神经网络、模拟退火、专家系统、 蚁群算法等,文章[张学锋等.基于线性规划的智能炼铁配料系统[J].计算机系统 应用,2019,28(04):87-93.]采用线性规划的方法建立炼铁配料的数学模型,利用单 纯形法求解达到成本最优;文章[赵宏博等.球团矿优化配料方法及应用研究[J]. 烧结球团,2018,v.43(04):43-47.]建立以成品球团矿的化学成分指标为约束条件, 将成本最低作为寻优目标的配料模型,并选用非线性规划方法进行模型求解。这 些方法能够解决配料模型较为简单的问题,但是在配料模型中约束条件越来越复 杂情况下,难以得到最佳配料比,且收敛速度较慢、易陷入局部最优,具有局限 性,不适合处理复杂的配料模型。智能优化算法以其通用性强广泛应用于生产调度和模式识别等领域。目前已有学者将智能优化算法应用于配料优化计算,有效 的解决了传统计算配料模型存在的问题。文章[杜家楠.基于遗传算法与非线性规 划优化烧结成本[J].市场研究,2018,No.472(08):26-27.]提出用遗传算法优化烧结 配料,由于建模中的约束条件比较多,利用罚函数来处理约束条件使求解更加便 利,成功地运用遗传算法降低了传统的炼钢成本。随着工厂的需求逐渐增加,传 统智能优化算法法出现了新的问题:不仅需要考虑配料成本的问题,也要同时考 虑产品质量和原料用量的问题,因此,如何求得多目标函数的最佳配料比并满足 复杂的约束条件成为新的问题焦点。
发明内容
为了解决现有技术问题,本发明提供一种基于优化小生境遗传算法的熔炼配 料方法,首先建立以生产成本、原料用量和质量为优化目标,以元素含量、非负 等为约束条件的多目标优化模型。其次,采用差值粒子群算法将多目标优化问题 转化为单目标优化问题。最后,根据工厂生产的实际执行因素,将基于改进的K 均值聚类算法优化自适应小生境遗传算法与实际工厂生产过程相结合,合理地生 成配料比,达到减小生产成本、降低生产能耗、提高产品质量的效果。
为解决上述技术问题,本发明所采取的技术方案是:
一种基于优化小生境遗传算法的熔炼配料方法,包括下述步骤:
S1:建立生产成本、原料用量和产品质量的多目标函数,提出了生产过程中 的各种参数的指标为多约束条件,建立熔炼配料优化数学模型;
S2:针对多目标的特点提出一种基于差值粒子群优化方法对多目标函数进行 加权处理,将多目标模型转化为单目标函数的问题;
S3:初始化种群,随机生成M个个体,并计算各个个体的适应度值,对每 个个体的适应度进行计算按降序排列,并记忆前N个个体;
S4:根据基于密度值改进的K均值聚类算法把种群分为K个聚类并确定聚类 中心;
S5:进行选择操作,采用最优保存策略,个体依适应度值高低进行排序,选 取适应度值高的一半个体作为父代,在每个聚类中随机选取个体进行自适应交叉 和变异,产生新个体然后进入下一代种群;
S6:小生境淘汰操作,将S3得到的M个个体记忆的N个个体合并起来,得 到了一个含有M+N个个体的新群体,在每一个聚类中计算每两个个体Xi和Xj的适应度大小,并对其中适应度较低的个体加罚函数;
S7:计算新的适应度并记忆前N个个体;
S8:若满足终止条件,则输出算法结果,算法完成,若不满足终止条件,则 将种群及种群代数计数器更新。
进一步的,所述步骤S1中,建立配料优化数学模型为:
目标函数为原料成本,公式如下:
Figure BDA0002388577890000031
其中,F表示使用原料成本,n表示有n种原料,ci表示第i种生产的原料的 单价(元/kg),xi表示第i种加入原料的用量。
目标函数为原料加入总量,公式如下:
Figure BDA0002388577890000032
其中,G表示使用原料总量,n表示有n种原料,xi表示第i种加入原料的 用量。
目标函数为产品质量,公式如下:
Figure BDA0002388577890000041
其中,Z表示生产产品的质量,m表示有m个元素约束,n表示有n种原料, xi表示第i种加入原料的用量,aij表示第i种原料含有的第j种元素的元素含量, zj表示产品中第j种元素含量最佳控制点,G表示加入原料总量。
约束条件为工艺性能要求,公式如下:
Figure BDA0002388577890000042
其中,xi表示第i种原料的加入量,n表示有n种原料,nj是目标产品的第j 种元素的成分要求下限,mj是目标产品的第j种元素的成分要求上限,aij是第i 种原料的第j种元素含量。
约束条件为总量要求,公式如下:
Figure BDA0002388577890000043
其中,xi表示第i种原料的加入量,n表示有n种原料,G为原料加入总量。
约束条件为非负要求,公式如下:
xi≥0
其中,xi表示第i种原料的加入量。
进一步的,所述步骤S2中,利用基于差值粒子群优化方法对多目标函数对 配料优化多目标数学模型进行加权处理,包括以下步骤:
1-1)已知有3个目标函数,利用粒子群算法分别求出各子目标函数的最优 解,记做Xi,i=1,2,3;
1-2)将各目标函数得到的最优解代入不同的目标函数,获取相应的目标函 数值fi(xj),即fi(xj)表示第i个目标函数的最优解代入第j个目标函数的函数值;
1-3)计算第i个目标函数的差值θi
Figure BDA0002388577890000051
其中,θi表示第i个目标函数的差值,j表示第j个目标函数,fi(xj)表示第 i个目标函数的最优解代入第j个目标函数的函数值,fi(xi)表示第i个目标函数的 最优解代入第i个目标函数的函数值。
1-4)按照公式计算第i个目标函数的平均差值;
Figure BDA0002388577890000052
其中,ui表示第i个目标函数的平均差值,j表示第j个目标函数,θi表示 第i个目标函数的差值。
1-5)按照公式计算权重系数λi
Figure BDA0002388577890000053
其中,m表示m个目标函数,ui表示第i个目标函数的平均差值,λi表示权 值。
1-6)为了均衡有效解的范围,将上述加权系数按大小进行排序,按照差值 大的目标函数乘以较小的加权系数,差值小的目标函数乘以较大的加权系数,重 新构造目标函数。
进一步的,所述步骤S4中,利用基于密度值改进的K均值聚类算法来确定 小生境半径,具体步骤如下:
2-1)以每个样本点为初始聚类中心,以r1为半径划定一个球形特征空间, 统计落在该球形区域的点的数量作为该点的密度;
2-2)将密度最大的样本数据设置为第1个初始聚类中心;
2-3)选择1个整数r2<r1,统计第1个初始聚类中心点的r2半径范围之外的 数据中,选取密度次大的样本数据作为第2个初始聚类中心;
2-4)按照2-3)的方法,依次得到剩余的初始聚类中心,若M=K,则算法 结束;
进一步的,所述步骤S5中,自适应的交叉和变异算子,具体为:
Figure BDA0002388577890000061
其中,Pc(x)为第x代的交叉概率,Pc为初始交叉概率,GEN为总的进化代 数,x表示进化代数。
Figure BDA0002388577890000062
其中,Pm(x)为第x代的交叉概率,Pm为初始交叉概率,GEN为总的进化代 数,x表示进化代数。
采用上述技术方案所产生的有益效果在于:
本发明提出的一种基于优化小生境遗传算法的熔炼配料方法针对配料中现 存的存在的多目标求值难,易陷入局部最优解等问题,本发明基于优化小生境遗 传算法的熔炼配料方法对确定多目标权值、小生境半径和交叉和变异算子这三个 过程进行改进。本发明改进后小生境遗传算法称为一种基于优化小生境遗传算法 的熔炼配料方法(ImprovedNiche Genetic Algorithm,简称INGA),该方法与传 统配料优化相比既增加了目标函数的考虑,又能满足约束条件的限制,从而解决 配料优化问题。
本发明与传统粒子群算法和小生境遗传算法相比:(1)提出一种基于差值 粒子群优化方法对多目标函数进行加权处理,将多目标模型转化为单目标函数的 问题;(2)根据基于密度值改进的K均值聚类算法把种群分为K个聚类并确定 聚类中心来确定小生境半径;(3)在小生境遗传算法中加入了自适应的交叉和 变异算子,使其在解决复杂的全局优化问题时也能展现出良好的鲁棒性;(4) 配料数学模型的建立,并且提出配料数学模型和基于优化小生境遗传算法的熔炼 配料方法结合,根据实际配料过程,从而达到提高生产效率及节约成本等的要求。
将本发明提出的方法应用于双金属锤头的配料优化,通过试验分析,验证了 提出的INGA配料优化模型的有效性,对比线性规划使成本下降了5486.17元, 质量提升了0.75%,相比其他智能优化算法成本平均下降了20.78元,质量提升 了0.105%,能够实现配料优化的合理配料。
附图说明
图1是一种基于优化小生境遗传算法的熔炼配料方法流程图
图2是基于差值粒子群优化方法流程图;
图3是基于密度值改进的K均值聚类算法流程图;
图4是Sigmoid函数图;
图5是轮廓系数图;
图6是十种不同工艺采用不同算法的成本对比图;
图7是十种不同工艺采用不同算法的产品质量对比图;
图8是十种不同工艺采用不同算法的性价比对比图;
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明。
本发明以配料优化为载体,以INGA算法作为主要的算法框架,其流程图如 图1所示,包括下述步骤:
S1.建立了生产成本、原料用量和产品质量的多目标函数,提出了生产过程 中的各种参数的指标为多约束条件,建立配料优化数学模型。
本发明的试验验证构建了配料优化数学模型,目标函数为原料成本,公式如 下:
Figure BDA0002388577890000081
其中,F表示使用原料成本,ci表示第i种生产产品的原料的单价(元/kg),xi表示第i种加入原料的用量。
目标函数为原料加入总量,公式如下:
Figure BDA0002388577890000082
其中,G表示使用原料总量,xi表示第i种加入原料的用量。
目标函数为产品质量,公式如下:
Figure BDA0002388577890000083
其中,Z表示生产产品的质量,m表示有m个元素约束,n表示有n种原料, xi表示第i种加入原料的用量,aij表示第i种原料含有的第j种元素的元素含量, zj表示产品中第j种元素含量最佳控制点,G表示加入原料总量。
约束条件为工艺性能要求,公式如下:
Figure BDA0002388577890000084
其中,xi表示第i种原料的加入量,n表示有n种原料,nj是目标产品的第j 种元素的成分要求下限,mj是目标产品的第j种元素的成分要求上限,aij是第i 种原料的第j种元素含量。
约束条件为总量要求,公式如下:
Figure BDA0002388577890000091
其中,xi表示第i种原料的加入量,n表示有n种原料,G为原料加入总量。
约束条件为非负要求,公式如下:
xi≥0
其中,xi表示第i种原料的加入量。
S2.针对多目标的特点提出一种基于差值粒子群优化方法对多目标函数进行 加权处理,将多目标模型转化为单目标函数的问题。
配料优化中某一目标函数的差值是指取不同配料比时与最优值之间的差距。
本文提出的基于差值粒子群算法步骤描述如下,算法流程图如图2所示。
1-1)已知有3个目标函数,利用粒子群算法分别求出各子目标函数的最优 解,记做Xi,i=1,2,3;
1-2)将各目标函数得到的最优解代入不同的目标函数,获取相应的目标函 数值fi(xj),即fi(xj)表示第i个目标函数的最优解代入第j个目标函数的函数值;
1-3)计算第i个目标函数的差值θi
Figure BDA0002388577890000092
其中,θi表示第i个目标函数的差值,j表示第j个目标函数,fi(xj)表示第 i个目标函数的最优解代入第j个目标函数的函数值,fi(xi)表示第i个目标函数的 最优解代入第i个目标函数的函数值。
1-4)按照公式计算第i个目标函数的平均差值;
Figure BDA0002388577890000101
其中,ui表示第i个目标函数的平均差值,j表示第j个目标函数,θi表示 第i个目标函数的差值。
1-5)按照公式计算权重系数λi
Figure BDA0002388577890000102
其中,m表示m个目标函数,ui表示第i个目标函数的平均差值,λi表示权 值。
1-6)为了均衡有效解的范围,将上述加权系数按大小进行排序,按照差值 大的目标函数乘以较小的加权系数,差值小的目标函数乘以较大的加权系数,重 新构造目标函数。
S3.初始化种群,随机生成M个个体,并计算各个个体的适应度值,对每个 个体的适应度进行计算按降序排列,并记忆前N个个体;
S4.根据基于密度值改进的K均值聚类算法把种群分为K个聚类并确定聚类 中心。
使用评价指标和密度来优化K均值聚类算法的K值和初始类中心,将参数 的不确定性对聚类结果的影响降到最低。用基于密度值改进的K均值聚类算法就 可以无需事先确定小生境的数目和半径,可以通过轮廓系数和密度值来确定K值 和初始类的中心,以此来提高算法的准确性,加快算法的收敛速度。算法流程图 如图3所示,具体步骤如下:
2-1)以每个样本点为初始聚类中心,以r1为半径划定一个球形特征空间, 统计落在该球形区域的点的数量作为该点的密度;
2-2)将密度最大的样本数据设置为第1个初始聚类中心;
2-3)选择1个整数r2<r1,统计第1个初始聚类中心点的r2半径范围之外 的数据中,选取密度次大的样本数据作为第2个初始聚类中心;
2-4)按照2-3)的方法,依次得到剩余的初始聚类中心,若M=K,则算法结 束。
S5:进行选择操作,采用最优保存策略,个体依适应度值高低进行排序,选 取适应度值高的一半个体作为父代,在每个聚类中随机选取个体进行自适应交叉 和变异,产生新个体然后进入下一代种群。
交叉和变异操作是小生境遗传算法中十分重要的两个操作,常见的小生境遗 传算法采用固定的交叉和变异概率,对于求解一般的全局最优问题具有较好的鲁 棒性,而在解决一些复杂的优化问题时存在早熟和稳定性差的缺点。通过引入 Sigmoid函数,使得交叉概率和变异概率呈现出S型,具体函数如图4所示。本 发明提出一种自适应的交叉和变异算子,具体为:
Figure BDA0002388577890000111
其中,Pc(x)为第x代的交叉概率,Pc为初始交叉概率,GEN为总的进化代 数,x表示进化代数。
Figure BDA0002388577890000112
其中,Pm(x)为第x代的交叉概率,Pm为初始交叉概率,GEN为总的进化代 数,x表示进化代数。
S6:小生境淘汰操作,将S3得到的M个个体记忆的N个个体合并起来,得 到一个含有M+N个个体的新群体,在每一个聚类中计算每两个个体Xi和Xj的 适应度大小,并对其中适应度较低的个体加罚函数;
S7:计算新的适应度并记忆前N个个体;
S8:若满足终止条件,则输出算法结果,算法完成,若不满足终止条件,则 将种群及种群代数计数器更新。
基于上述步骤,本发明有效解决配料优化问题,首先该方法建立了生产成本、 原料用量和产品质量的多目标函数,提出了生产过程中的各种参数的指标为多约 束条件,建立配料优化数学模型。其次,针对多目标的特点提出一种基于差值粒 子群优化方法对多目标函数进行加权处理,将多目标模型转化为单目标函数的问 题。最后,将得到的单目标函数利用基于改进的K均值聚类算法优化自适应小生 境遗传算法得到最佳配料比。本发明显著提高配料比的准确度,同时克服了配料 优化中多变量、多约束、多目标等特性带来的问题,实现了工厂降低产品成本, 提高经济效益。
本发明基于优化小生境遗传算法的熔炼配料方法的试验验证:
1、数据描述
试验数据来源于某熔炼工厂。数据共分为两个部分,分别是原料具体数据和 工艺详细数据。其中原料具体数据包括原料名称、原料价格、各化学成分的含量; 工艺详细数据由工艺名称、各化学成分的上限、各化学成分的下限和各化学成分 的控制点组成。
1)工艺要求各种化学成分的上、下限如表1所示:
表1合金中各种化学成分的上、下限
元素符号 元素名称 下限(%) 上限(%) 最优值(控制点)
C 2.8 3 2.9
Si 0 1 0.2
Mn 0.5 1 0.75
P 0 0.05 0.03
S 0 0.05 0.03
Cr 25 26 25.5
Ni 0.2 0.3 0.25
Mo 0.2 0.3 0.25
Cu 0.2 0.3 0.25
2)各原料中详细信息如表2所示:
表2原料中各种化学成分的上、下限
Figure BDA0002388577890000141
首先建立配料优化是多目标数学模型,然后利用粒子群算法计算每个单目标 函数的最优解,因为原料用量、原料成本和产品质量存在一定的数量级差距,因 此将数据进行规范化处理,按比例缩放,使之落入一个小的特定区间,去除数据 的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行 比较和加权。
计算单个目标函数的最优解,结果如表3所示。
表3各目标函数的最大最小值
W(原料成本) G(原料用量) Z(产品质量)
最大值 5625.92 769.53 1.35
最小值 120.45 19.67 0.46
Figure BDA0002388577890000151
得到各规范化目标函数:
Figure BDA0002388577890000152
其中,
Figure BDA0002388577890000153
表示原料成本的规范函数,W表示原料成本。
Figure BDA0002388577890000154
其中,
Figure BDA0002388577890000155
表示原料加入量的规范函数,G表示原料加入量。
Figure BDA0002388577890000156
其中,
Figure BDA0002388577890000157
表示产品质量的规范函数,Z表示产品质量。
通过上述公式可以得到规范化的结果,如表4所示。
表4单目标函数最优解
Figure BDA0002388577890000158
根据表4,进行差值计算,计算结果如表5所示。
表5差值结果
Figure BDA0002388577890000161
根据表4的差值取到其平均值和平均值之和,在进行比值计算得到在进行比 值计算得到λ1=0.97,λ2=0.018,λ3=0.012,根据差值的平均值可以看出,产品质 量的差值最小即权重应该最大,同理可得,产品质量权重最大,其次原料成本, 最后是产品用量。最终结果得到单目标函数:
Figure BDA0002388577890000162
其中,
Figure BDA0002388577890000163
表示原料成本的规范函数,
Figure BDA0002388577890000164
表示原料加入量的规范函数,
Figure BDA0002388577890000165
表示产品质量的规范函数。
f即反映了该配料比的性价比,f值越小则性价比越高。
用轮廓系数(Silhouette Coefficient)来选取聚类的类别数,轮廓系数结合了凝聚度和分离度,能够较好的用于评价聚类结果的优劣。轮廓系数的计算方式如 下:
Figure BDA0002388577890000166
其中,a(i)表示i向量到所有它属于的簇中其它点的平均距离,b(i)表 示i向量到各个非本身所在簇的所有点平均距离的最小值。轮廓系数的取值范围 为[-1,1],越趋近于1代表内聚度和分离度都相对较优。若大多数结点都有很 高的轮廓系数值,那么聚类适当。反之则说明分类过多或者过少。将簇类别的取 值范围定于3~8之间进行讨论。令初始聚类数目k从3到8递增,分别计算相应 k值下聚类结果总的轮廓系数st,实验结果如图5所示,计算结果如表6所示。 对比st可知,当聚类数目k为5时,聚类结果总的轮廓系数最大,聚类效果最好。 因此本文选取初始聚类数目为5。
表6轮廓系数平均值
k K的轮廓系数 k K的轮廓系数
3 0.7687 6 0.7924
4 0.7541 7 0.7781
5 0.8125 8 0.7122
设置参数,种群数为100,基因编码长度为20,最大进化代数200,初始交 叉概率为0.2,初始变异概率为0.8。实验结果如表7所示。
表7实验结果
Figure BDA0002388577890000171
通过表7的配料比计算他们的原料用量,原料成本以及产品质量。结果如表8 所示。
表8实验结果
Figure BDA0002388577890000181
通过上面的表格可以看到,INGA得到最终配料比,原料用量、成本和质量 明显小于粒子群和遗传算法计算得到的结果,与线性规划相比,线性规划只能得 到单目标最优,不利于工厂的实际生产操作,从f值可以看出,INGA的性价比 最好。为了验证算法的有效性采用十种不同工艺进行对比,成本对比结果如图6 所示,由图6可以看出,线性规划单目标成本最低时成本最少,线性规划单目标 质量最优时成本最高,粒子群、遗传算法和INGA算法的结果位于线性规划之间, 但是INGA算法明显低于粒子群和遗传算法计算的结果。产品质量对比结果如图 7所示,由图7可以看出,线性规划单目标成本最低时质量最差,线性规划单目 标质量最优时质量最好,粒子群、遗传算法和INGA算法的结果位于线性规划之 间,但是INGA算法明显高于粒子群和遗传算法计算的结果。性价比对比结果如 图8所示,由图8可以看出,线性规划单目标成本最低时f值最大,其次为遗传 算法,然后是粒子群算法和线性规划质量最优,采用INGA算法时f值最小即说 明此方法生产产品的性价比最高。通过上述对比图可以看出,该模型较为稳定, 能计算出既能成本较少又能产品质量较优的产品。
5、结论
为解决配料优化过程中参与配料的原料种类多、质量指标约束条件多和优化 目标多等问题,本文提出了一种基于优化小生境遗传算法的熔炼配料方法的配料 优化模型,采用差值粒子群算法将配料优化多目标模型转为单目标模型,并采用 基于改进的K均值聚类算法优化自适应小生境遗传算法来求解单目标函数,使得 能过够获得更加成本更小同时质量更好的配料比。通过试验分析,验证了提出的 INGA配料优化模型的有效性,对比线性规划使成本下降了5486.17元,质量提 升了0.75%,原料用量下降749kg,相比其他智能优化算法成本平均下降了20.78 元,质量提升了0.105%,能够实现配料优化的合理配料。
但是将所提方法应用于实际工业领域的配料优化还存在一些问题,由于配料 优化就是在考虑所有原料充足的情况下,对各工艺进行配料优化,但是实际生产 过程中可能存在原料加入的种类较少,减轻工人的工作负担,因此将加入种类较 少的情况是未来的研究方向之一。

Claims (4)

1.一种基于优化小生境遗传算法的熔炼配料方法,其特征在于,包括下述步骤:
S1:建立生产成本、原料用量和产品质量的多目标函数,提出生产过程中的各种参数的指标为多约束条件,建立配料优化数学模型;
S2:针对多目标的特点提出一种基于差值粒子群优化方法对多目标函数进行加权处理,将多目标模型转化为单目标函数的问题;
S3:初始化种群,随机生成M个个体,并计算每个个体的适应度值,对每个个体的适应度进行计算按降序排列,并记忆前N个个体;
S4:根据基于密度值改进的K均值聚类算法把种群分为K个聚类并确定聚类中心;
S5:进行选择操作,在每个聚类中随机选取个体进行自适应交叉和变异;
S6:小生境淘汰操作,将S3得到的M个个体记忆的N个个体合并起来,得到了一个含有M+N个个体的新群体,确定新群体中的个体属于哪个聚类,在每一个聚类中计算每两个个体Xi和Xj的适应度大小,并对其中适应度较低的个体加罚函数;
S7:计算新的适应度并记忆前N个个体;
S8:若满足终止条件,则输出算法结果,算法完成,若不满足终止条件,则将种群及种群代数计数器更新。
2.根据权利要求1所述的一种基于优化小生境遗传算法的熔炼配料方法,其特征在于:所述步骤S1中,建立的多目标配料优化数学模型的目标函数中产品质量的计算:
产品质量是指生产出产品品质的好坏,通过计算成分偏差来反映产品的品质,即成分偏差越小产品质量越好;
成分偏差计算公式为:
Figure FDA0002388577880000021
其中,Z表示生产产品的质量,m表示有m个元素约束,n表示有n种原料,xi表示第i种加入原料的用量,aij表示第i种原料含有的第j种元素的元素含量,zj表示产品中第j种元素含量最佳控制点,G表示加入原料总量。
3.根据权利要求1所述的一种基于优化小生境遗传算法的熔炼配料方法,其特征在于:所述步骤S2中,采用基于差值粒子群优化方法决定配料优化中多目标函数权值的计算,步骤如下:
1-1)已知有3个目标函数,利用粒子群算法分别求出各子目标函数的最优解,记做Xi,i=1,2,3;
1-2)将各目标函数得到的最优解代入不同的目标函数,获取相应的目标函数值fi(xj),即fi(xj)表示第i个目标函数的最优解代入第j个目标函数的函数值;
1-3)计算第i个目标函数的差值θi
Figure FDA0002388577880000022
其中,θi表示第i个目标函数的差值,j表示第j个目标函数,fi(xj)表示第i个目标函数的最优解代入第j个目标函数的函数值,fi(xi)表示第i个目标函数的最优解代入第i个目标函数的函数值;
1-4)按照公式计算第i个目标函数的平均差值;
Figure FDA0002388577880000023
其中,ui表示第i个目标函数的平均差值,j表示第j个目标函数,θi表示第i个目标函数的差值;
1-5)按照公式计算权重系数λi
Figure FDA0002388577880000031
其中,m表示m个目标函数,ui表示第i个目标函数的平均差值,λi表示权值;
1-6)为了均衡有效解的范围,将上述加权系数按大小进行排序,按照差值大的目标函数乘以较小的加权系数,差值小的目标函数乘以较大的加权系数,重新构造目标函数;
通过基于差值粒子群优化方法可以对原料用量、产品质量、原料成本的多目标函数加上权值得到单目标函数。
4.根据权利要求1所述的一种基于优化小生境遗传算法的熔炼配料方法,其特征在于:所述步骤S5中,通过引入Sigmoid函数,使得交叉概率和变异概率呈现出S型,自适应的交叉和变异算子,具体为:
Figure FDA0002388577880000032
其中,Pc(x)为第x代的交叉概率,Pc为初始交叉概率,GEN为总的进化代数,x表示进化代数;
Figure FDA0002388577880000033
其中,Pm(x)为第x代的交叉概率,Pm为初始交叉概率,GEN为总的进化代数,x表示进化代数。
CN202010106328.7A 2020-02-21 2020-02-21 一种基于优化小生境遗传算法的熔炼配料优化方法 Active CN111260157B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010106328.7A CN111260157B (zh) 2020-02-21 2020-02-21 一种基于优化小生境遗传算法的熔炼配料优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010106328.7A CN111260157B (zh) 2020-02-21 2020-02-21 一种基于优化小生境遗传算法的熔炼配料优化方法

Publications (2)

Publication Number Publication Date
CN111260157A true CN111260157A (zh) 2020-06-09
CN111260157B CN111260157B (zh) 2022-09-09

Family

ID=70952889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010106328.7A Active CN111260157B (zh) 2020-02-21 2020-02-21 一种基于优化小生境遗传算法的熔炼配料优化方法

Country Status (1)

Country Link
CN (1) CN111260157B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112001526A (zh) * 2020-07-23 2020-11-27 河北工业大学 一种基于优化小生境遗传算法的资源调度优化方法
CN112784910A (zh) * 2021-01-28 2021-05-11 武汉市博畅软件开发有限公司 一种垃圾数据深度过滤方法及系统
CN113011797A (zh) * 2021-05-24 2021-06-22 汉谷云智(武汉)科技有限公司 基于小生境列队竞争算法的罐装成品油调度方法及设备
CN113343567A (zh) * 2021-05-31 2021-09-03 江西理工大学 一种真空熔铸生产工艺参数优化方法及系统
CN113674815A (zh) * 2021-07-28 2021-11-19 中国科学院沈阳自动化研究所 一种特种合金铝锭熔炼的配料方法
CN113721462A (zh) * 2021-08-03 2021-11-30 西安交通大学 一种刀具确定条件下的多目标切削参数优化方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833607A (zh) * 2010-05-11 2010-09-15 天津大学 双馈风力发电机多目标混合粒子群优化设计方法
CN103241130A (zh) * 2013-04-10 2013-08-14 华中科技大学 一种电动公交车充换电站的能量管理方法及系统
CN108491579A (zh) * 2018-02-23 2018-09-04 天津大学 一种多目标循环性能优化筛选混合工质的方法
CN109526977A (zh) * 2018-12-26 2019-03-29 南京盈植康农业科技有限公司 一种具有强内吸传导特性和触杀作用的防治天牛的高效膏剂及其使用方法
CN109755967A (zh) * 2019-03-26 2019-05-14 安徽工程大学 一种配电网中光储系统的优化配置方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833607A (zh) * 2010-05-11 2010-09-15 天津大学 双馈风力发电机多目标混合粒子群优化设计方法
CN103241130A (zh) * 2013-04-10 2013-08-14 华中科技大学 一种电动公交车充换电站的能量管理方法及系统
CN108491579A (zh) * 2018-02-23 2018-09-04 天津大学 一种多目标循环性能优化筛选混合工质的方法
CN109526977A (zh) * 2018-12-26 2019-03-29 南京盈植康农业科技有限公司 一种具有强内吸传导特性和触杀作用的防治天牛的高效膏剂及其使用方法
CN109755967A (zh) * 2019-03-26 2019-05-14 安徽工程大学 一种配电网中光储系统的优化配置方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
商秀芹: "新型进化计算方法及其在炼铁烧结过程建模与优化中的应用", 《中国博士学位论文全文数据库工程科技I辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112001526A (zh) * 2020-07-23 2020-11-27 河北工业大学 一种基于优化小生境遗传算法的资源调度优化方法
CN112784910A (zh) * 2021-01-28 2021-05-11 武汉市博畅软件开发有限公司 一种垃圾数据深度过滤方法及系统
CN113011797A (zh) * 2021-05-24 2021-06-22 汉谷云智(武汉)科技有限公司 基于小生境列队竞争算法的罐装成品油调度方法及设备
CN113011797B (zh) * 2021-05-24 2021-07-27 汉谷云智(武汉)科技有限公司 基于小生境列队竞争算法的罐装成品油调度方法及设备
CN113343567A (zh) * 2021-05-31 2021-09-03 江西理工大学 一种真空熔铸生产工艺参数优化方法及系统
CN113674815A (zh) * 2021-07-28 2021-11-19 中国科学院沈阳自动化研究所 一种特种合金铝锭熔炼的配料方法
CN113674815B (zh) * 2021-07-28 2023-08-04 中国科学院沈阳自动化研究所 一种特种合金铝锭熔炼的配料方法
CN113721462A (zh) * 2021-08-03 2021-11-30 西安交通大学 一种刀具确定条件下的多目标切削参数优化方法及系统

Also Published As

Publication number Publication date
CN111260157B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN111260157B (zh) 一种基于优化小生境遗传算法的熔炼配料优化方法
CN111208796B (zh) 一种基于聚类小生境遗传算法的车间生产作业排程方法
CN112001526A (zh) 一种基于优化小生境遗传算法的资源调度优化方法
CN112488315B (zh) 一种基于深度强化学习和遗传算法的分批调度优化方法
CN112348168B (zh) 考虑数据缺失和特征冗余的超短期负荷预测方法及系统
CN108710970B (zh) 一种巨型梯级水电系统的多目标调度并行降维方法
Yan Research on green suppliers' evaluation based on AHP & genetic algorithm
CN112016755A (zh) 输变电工程施工图通用设计造价标准化技术模块构建方法
CN110837915A (zh) 一种基于混合集成深度学习的电力系统低压负荷点预测及概率预测方法
CN110163444A (zh) 一种基于gasa-svr的需水预测方法
CN113869616A (zh) 一种自适应的居民用户负荷预测方法
CN113139596A (zh) 低压台区线损神经网络的优化算法
CN113836786A (zh) 一种结合焦炉加热制度参数的智能冶金焦炭预测方法
CN112069656A (zh) 基于lssvm-nsgaii耐久性混凝土配合比多目标优化的方法
CN112396301A (zh) 基于能源大数据驱动的电力用户需求响应特性控制方法
CN113657678A (zh) 一种基于信息新鲜度的电网电力数据预测方法
CN111833970A (zh) 一种水泥熟料质量表征参数预测模型构建方法及其应用
CN116826745B (zh) 一种电力系统背景下的分层分区短期负荷预测方法及系统
CN111428766A (zh) 一种高维海量量测数据的用电模式分类方法
CN113762591A (zh) 一种基于gru和多核svm对抗学习的短期电量预测方法及系统
CN114021934A (zh) 基于改进spea2求解车间节能调度问题的方法
CN113705098A (zh) 一种基于pca和ga-bp网络的风道加热器建模方法
CN111310974A (zh) 一种基于ga-elm的短期需水预测方法
CN114234392A (zh) 一种基于改进pso-lstm的空调负荷精细预测方法
CN113780686A (zh) 一种面向分布式电源的虚拟电厂运行方案优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 300457 room 803, Ronghui building, No. 58, Dongting Road, economic and Technological Development Zone, Binhai New Area, Tianjin

Patentee after: Tianjin Development Zone Jingnuo Hanhai Data Technology Co.,Ltd.

Address before: Gate 1, Building 6, Science and Technology Park, Hebei University of Technology, Shuangkou Town, Beichen District, Tianjin 300401

Patentee before: Tianjin Development Zone Jingnuo Hanhai Data Technology Co.,Ltd.