CN111259098A - 一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算方法 - Google Patents

一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算方法 Download PDF

Info

Publication number
CN111259098A
CN111259098A CN202010026567.1A CN202010026567A CN111259098A CN 111259098 A CN111259098 A CN 111259098A CN 202010026567 A CN202010026567 A CN 202010026567A CN 111259098 A CN111259098 A CN 111259098A
Authority
CN
China
Prior art keywords
track
distance
equal
matrix
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010026567.1A
Other languages
English (en)
Other versions
CN111259098B (zh
Inventor
李芳�
赵文婷
蓝如师
刘忆宁
钟艳如
臧美美
郑金云
王如月
罗笑南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202010026567.1A priority Critical patent/CN111259098B/zh
Publication of CN111259098A publication Critical patent/CN111259098A/zh
Application granted granted Critical
Publication of CN111259098B publication Critical patent/CN111259098B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/28Databases characterised by their database models, e.g. relational or object models
    • G06F16/284Relational databases
    • G06F16/285Clustering or classification

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Image Analysis (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

本发明公开了一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算方法,该方法首先通过求解每条轨迹用其他轨迹稀疏表示下的各个系数大小,从而得到一个系数矩阵,再利用Fréchet距离对任意两条轨迹做空间曲线相似度计算,得到一个相似度矩阵,然后将这两种方法得到的相似度进行加权融合,求出每条轨迹相似度最高的Top‑k个轨迹邻居。本发明提出了考虑轨迹多种特征属性以及时空距离融合的方法来度量轨迹间的相似度,然后在此相似度基础上进行聚类,从而提高轨迹聚类效果。

Description

一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算 方法
技术领域
本发明涉及计算机科学与技术领域,具体是一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算方法。
背景技术
定位技术的发展以及智能移动终端的普及,催生了大量的轨迹数据。轨迹数据采集之后可直接发布供用户使用,但直接发布很可能导致移动对象的个人敏感信息被泄漏。大量数据挖掘工具的使用要求数据所有者在发布轨迹数据时保证数据中的敏感信息不被泄露,同时还要兼顾所发布轨迹数据的可用性。
大量研究表明,基于聚类的轨迹隐私保护方法在隐私保护程度上和数据可用性上取得了较好的平衡,是目前主流的轨迹隐私保护方法之一。基于聚类的轨迹隐私保护方法中聚类结果对匿名轨迹数据可用性的影响较大,而轨迹间相似性的度量方式是轨迹聚类的关键。目前大多数以欧式距离作为轨迹相似性度量标准,方法单一。考虑到轨迹多特性,需要融合多相似度计算。
发明内容
本发明的目的是要提供一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算方法,该方法通过融合两种分别针对轨迹不同属性的相似度计算方法,充分考虑了轨迹的多特征对聚类效果的影响,最终推荐相似度最高的K条轨迹进行聚类。
实现本发明目的的技术方案是:
一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算方法,包括如下步骤:
(1)稀疏表示系数求解相似度sim1,将需要求解相似邻居的轨迹表示为测试样本,数据集中除测试样本之外其他的轨迹表示为训练样本,建立用户轨迹的矩阵形式:
Figure BDA0002362689780000011
其中每一行表示的是该轨迹上等时间间隔选取的m个轨迹点,每个轨迹点有v个属性,比如经度,纬度,速度,方向等,Rm,v代表轨迹上第m个轨迹点的第v个属性值;
(2)对矩阵轨迹数据预先处理,稀疏表示形式如下:
β=a1α1++a2α2+…+anαn
其中,β为测试样本,αi为训练样本(i=1,2...n),ai为需要求解的系数;
建立用户轨迹的矩阵数据时,轨迹上的取点数m多于它的属性个数v,;因此将原用户轨迹矩阵全部做转置处理:
y=a1x1+a2x2+…anxn
xi(i=1,2...n)为转置后的轨迹矩阵t的表示;
(3)对轨迹矩阵做归一化处理,每个矩阵有n个属性,每个属性的取值范围不同,归一化后可以加快梯度下降求最优解的速度,也可能提高精度,降低计算时间复杂度;
(4)轨迹间的稀疏表示:
y=a1x1++a2x2+…+anxn
y为需要测试的轨迹样本,xi(i=1,2...n)为训练的轨迹样本,ai可理解为第i个训练样本对测试样本的贡献值,将以上公式改写为:
y=XA
其中A=[a1...an]T,X=[x1...xn],并且x1...xn和y都是n*m的矩阵(m>n);如果A是一个非奇异矩阵,可以这样得到A,
A=X-1y
否则,便这样得到A,
A=(XTX+μI)-1XTy
其中μ是一个很小的正数,I是一个单位矩阵;得到A之后,也即是求得了对应的a1...an各个系数的解,得到了第i个训练样本对测试样本的贡献值,这个值越大,也就间接说明了训练样本和测试样本相似度越高;
(5)Fréchet距离求解轨迹直接相似度sim2
任选轨迹集中;两条轨迹P和Q,P轨迹长度为M,Q轨迹长度为N,将变量t约束到区间[0,1]内,α(t)和β(t)是运动位置描述函数;那么有α(0)=0,α(1)=N,β(0)=0,β(0)=M;用P(α(t))和Q(β(t))分别表示t时刻P和Q在各自轨迹上的空间位置:
Figure BDA0002362689780000031
采用合适的离散弗雷歇距离算法来刻画两条曲线之间的距离,并作为其弗雷歇距离;
(6)基于多相似度融合的轨迹聚类:
通过以上相似度计算方法,需要测试的每条轨迹都可以得到相应的前Top-k条轨迹:
每次迭代从未聚类的轨迹集合(Sunclu)中随机选择一条轨迹作为聚类中心轨迹Tp,根据轨迹间的相似度从Sunclu中选出与Tp相似度较高的k-1条轨迹组成一个大小为k的轨迹集合Snow,并将其添加到聚类集合Sclu中,重复上述聚类操作直到Sunclu中轨迹数(Sunclu)不足k,即无法达到k聚类的条件为止。
步骤(5)所述采用合适的离散弗雷歇距离算法来刻画两条曲线之间的距离,并作为其弗雷歇距离,其实施过程如下:
1)待识别轨迹P可表示为
P={P(1),P(2),…,P(m)…,P(M)}
式中:P(m)=(xm,ym);m为轨迹P上的采样点的序号,m=1为起始采样点,m=M为末尾采样点;xm为第m个采样点的横坐标,ym为第m个采样点的纵坐标;横坐标表示的是轨迹采样点的经度,纵坐标表示的是轨迹点的纬度;
2)待识别轨迹Q可表示为
Q={Q(1),Q(2),…,Q(n)…,Q(N)}
式中:Q(n)=(x′n,y′n);n为轨迹Q上的采样点的序号,n=1为起始采样点,n=N为末尾采样点;x′n为第n个采样点的横坐标,y′n为第n个采样点的纵坐标,横坐标表示的是轨迹采样点的经度,纵坐标表示的是轨迹点的纬度;
3)计算轨迹P上各采样点到轨迹Q上的各采样点之间的距离,得到距离矩阵D
Figure BDA0002362689780000041
式中:
Figure BDA0002362689780000042
表示轨迹Q上的第n个采样点到轨迹P上的第m个采样点的距离,1≤m≤M,1≤n≤N;
4)找出距离矩阵D中的最大距离dmax=max(D)以及最小距离dmin=min(D),初始化目标距离f=dmin,并设置循环间隔
Figure BDA0002362689780000043
5)将距离矩阵D中小于或等于f的元素设置为1,大于f的元素设置为0,从而得到二值矩阵D′如下:
Figure BDA0002362689780000044
式中:
Figure BDA0002362689780000045
6)在二值矩阵D′中搜索一条满足以下条件的路径R:R的起点为d′11,终点为d′MN;路径在通过点d′mn后,其下一个通过点只能为d′(m+1)n、d′m(n+1)、d′(m+1)(n+1)中的一个;路径R中所有点的值都必须为1;用数学表达式的形式为,存在一条路径R={d'11,...,d′mn,...,d′MN},满足
d′11*...*d′mn*d'(m+k)(n+k)*...*d′MN=1
式中:1≤m≤M,1≤n≤N,1≤m+k≤M,1≤n+k≤N,k={0,1},k′={0,1}.
7)若在步骤6)中未找到满足条件的路径,则设置目标距离f=f+r,之后重复步骤5)和6);若在步骤6)中找到满足条件的路径或者目标距离f=dmax,则进入下一步;
8)待识别轨迹P和待识别轨迹Q之间的弗雷歇距离F=f;
9)通过弗雷歇距离可以得到两条轨迹点集之间的距离,距离越小,说明两条估计之间的相似度越高;距离越大,说明两条轨迹之间的相似程度越低,因此,对相似度S的定义如下:
Figure BDA0002362689780000051
式中:F为两条轨迹之间的弗雷歇距离。
本发明的有益效果:本发明充分考虑了应用稀疏表示的方法用于对轨迹数据的挖掘;同时有效地考虑了轨迹的时空特征并进行融合,获得一个最大限度地保留各个特征的有效判别信息,进而能更好地表示轨迹的内在特征,从而提高聚类效果。
附图说明
图1为本发明流程图。
图2为轨迹的弗雷歇距离示意图。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作进一步说明。
(1)稀疏表示系数求解相似度sim1,把需要求解相似邻居的轨迹称之为为测试样本,数据集中除测试样本之外其他的轨迹表示为训练样本。基于稀疏表示下,得到训练样本对测试样本的表示能力;建立用户轨迹的矩阵形式如下:
Figure BDA0002362689780000061
其中每一行表示的是该轨迹上等时间间隔选取的m个轨迹点,每个轨迹点有v个属性,比如经度,纬度,速度,方向等,Rm,v代表轨迹上第m个轨迹点的第v个属性值;
(2)矩阵轨迹数据做如下预先处理,稀疏表示形式如下:
β=a1α1++a2α2+…+anαn
β为测试样本,αi为训练样本(i=1,2...n),ai为需要求解的系数。在稀疏表示中,最常见的是训练样本是过完备的,即一个K*N的样本,K与N的关系为:K>N,这种情况在稀疏表示里面最为常见。建立用户轨迹的矩阵数据时,轨迹上的取点数m是多于它的属性个数v的,所以首先要将原用户轨迹矩阵全部做转置处理
y=a1x1+a2x2+...anxn
xi(i=1,2...n)即为转置后的轨迹矩阵t的表示;
其次,对轨迹矩阵做归一化处理,每个矩阵有n个属性,每个属性的取值范围不同,归一化后可以加快梯度下降求最优解的速度,也可能提高精度,降低计算时间复杂度。
(4)进行轨迹间的稀疏表示:
y=a1x1++a2x2+…+anxn
y为需要测试的轨迹样本,xi(i=1,2...n)为训练的轨迹样本,ai可理解为第i个训练样本对测试样本的贡献值,我们可以将以上公式改写为:
y=XA
其中A=[a1...an]T,X=[x1...xn],并且x1...xn和y都是n*m的矩阵(m>n)。如果A是一个非奇异矩阵,我们可以这样得到A,
A=X-1y
否则,我们这样得到A,
A=(XTX+μI)-1XTy
其中μ是一个很小的正数,I是一个单位矩阵。得到A之后,也即是我们求得了对应的a1...an各个系数的解,得到了第i个训练样本对测试样本的贡献值,这个值越大,也就间接说明了训练样本和测试样本相似度越高。
(5)Fréchet距离求解轨迹直接相似度sim2
任选轨迹集中;两条轨迹P和Q,P轨迹长度为M,Q轨迹长度为N,我们将变量t约束到区间[0,1]内,α(t)和β(t)是运动位置描述函数。那么有α(0)=0,α(1)=N,β(0)=0,β(0)=M。我们用P(α(t))和Q(β(t))分别表示t时刻P和Q在各自轨迹上的空间位置。
Figure BDA0002362689780000071
而Fréchet距离实际是寻找一对这样的函数最小化P和Q之间的最大距离。
基于以上弗雷歇的思想,本文采用合适的离散弗雷歇距离算法来刻画两条曲线之间的距离,并作为其弗雷歇距离,其具体实施过程如下:
1)待识别轨迹P可表示为
P={P(1),P(2),…,P(m)…,P(M)}
式中:P(m)=(xm,ym);m为轨迹P上的采样点的序号,m=1为起始采样点,m=M为末尾采样点;xm为第m个采样点的横坐标,ym为第m个采样点的纵坐标。横坐标表示的是轨迹采样点的经度,纵坐标表示的是轨迹点的纬度。
2)待识别轨迹Q可表示为
Q={Q(1),Q(2),…,Q(n)…,Q(N)}
式中:Q(n)=(x′n,y′n);n为轨迹Q上的采样点的序号,n=1为起始采样点,n=N为末尾采样点;x′n为第n个采样点的横坐标,y′n为第n个采样点的纵坐标。横坐标表示的是轨迹采样点的经度,纵坐标表示的是轨迹点的纬度。
3)计算轨迹P上各采样点到轨迹Q上的各采样点之间的距离,得到距离矩阵D
Figure BDA0002362689780000081
式中:
Figure BDA0002362689780000082
表示轨迹Q上的第n个采样点到轨迹P上的第m个采样点的距离,1≤m≤M,1≤n≤N。
4)找出距离矩阵D中的最大距离dmax=max(D)以及最小距离dmin=min(D),初始化目标距离f=dmin,并设置循环间隔
Figure BDA0002362689780000083
5)将距离矩阵D中小于或等于f的元素设置为1,大于f的元素设置为0,从而得到二值矩阵D′如下:
Figure BDA0002362689780000084
式中:
Figure BDA0002362689780000085
6)在二值矩阵D′中搜索一条满足以下条件的路径R:R的起点为d′11,终点为d′MN;路径在通过点d′mn后,其下一个通过点只能为d′(m+1)n、d′m(n+1)、d′(m+1)(n+1)中的一个;路径R中所有点的值都必须为1。
用数学表达式的形式为,存在一条路径R={d′11,...,d′mn,...,d′MN),满足
d′11*...*d′mn*d′(m+k)(n+k)*...*d′MN=1
式中:1≤m≤M,1≤n≤N,1≤m+k≤M,1≤n+k≤N,k={0,1},k′={0,1}.
7)若在步骤6)中未找到满足条件的路径,则设置目标距离f=f+r,之后重复步骤5)和6);若在步骤6)中找到满足条件的路径或者目标距离f=dmax,则进入下一步;
8)待识别轨迹P和待识别轨迹Q之间的弗雷歇距离F=f;
9)通过弗雷歇距离可以得到两条轨迹点集之间的距离,距离越小,说明两条估计之间的相似度越高;距离越大,说明两条轨迹之间的相似程度越低,因此,对相似度S的定义如下:
Figure BDA0002362689780000091
式中:F为两条轨迹之间的弗雷歇距离。
(6)基于多相似度融合的轨迹聚类:通过以上相似度计算方法,需要测试的每条轨迹都可以得到相应的前Top-k条轨迹。具体过程如下:
每次迭代从未聚类的轨迹集合(Sunclu)中随机选择一条轨迹作为聚类中心轨迹Tp,根据轨迹间的相似度从Sunclu中选出与Tp相似度较高的k-1条轨迹组成一个大小为k的轨迹集合Snow,并将其添加到聚类集合Sclu中,重复上述聚类操作直到Sunclu中轨迹数(Sunclu)不足k,即无法达到k聚类的条件为止。

Claims (2)

1.一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算方法,其特征是:包括如下步骤:
(1)稀疏表示系数求解相似度sim1,将需要求解相似邻居的轨迹表示为测试样本,数据集中除测试样本之外其他的轨迹表示为训练样本,建立用户轨迹的矩阵形式:
Figure FDA0002362689770000011
其中每一行表示的是该轨迹上等时间间隔选取的m个轨迹点,每个轨迹点有v个属性,Rm.v′代表轨迹上第m个轨迹点的第v个属性值;
(2)对矩阵轨迹数据预先处理,稀疏表示形式如下:
β=a1α1++a2α2+…+anαn
其中,β为测试样本,αi为训练样本(i=1,2…n),ai为需要求解的系数;
建立用户轨迹的矩阵数据时,轨迹上的取点数m多于它的属性个数v;因此将原用户轨迹矩阵全部做转置处理:
y=a1x1+a2x2+…anxn
xi(i=1,2…n)为转置后的轨迹矩阵t的表示;
(3)每个矩阵有n个属性,每个属性的取值范围不同,对轨迹矩阵做归一化处理;
(4)轨迹间的稀疏表示:
y=a1x1++a2x2+…+anxn
y为需要测试的轨迹样本,xi(i=1,2…n)为训练的轨迹样本,ai可理解为第i个训练样本对测试样本的贡献值,将以上公式改写为:
y=XA
其中A=[a1 … an]T,X=[x1 … xn],并且x1 … xn和y都是n*m的矩阵(m>n);如果A是一个非奇异矩阵,可以这样得到A,
A=X-1y
否则,便这样得到A,
A=(XTX+μI)-1XT y
其中μ是一个很小的正数,I是一个单位矩阵;得到A之后,也即是求得了对应的a1 … an各个系数的解,得到了第i个训练样本对测试样本的贡献值,这个值越大,也就间接说明了训练样本和测试样本相似度越高;
(5)Fréchet距离求解轨迹直接相似度sim2
任选轨迹集中;两条轨迹P和Q,P轨迹长度为M,Q轨迹长度为N,将变量t约束到区间[0,1]内,α(t)和β(t)是运动位置描述函数;那么有α(0)=0,α(1)=N,β(0)=0,β(0)=M;用P(α(t))和Q(β(t))分别表示t时刻P和Q在各自轨迹上的空间位置:
Figure FDA0002362689770000021
采用合适的离散弗雷歇距离算法来刻画两条曲线之间的距离,并作为其弗雷歇距离;
(6)基于多相似度融合的轨迹聚类:
通过以上相似度计算方法,需要测试的每条轨迹都可以得到相应的前Top-k条轨迹:
每次迭代从未聚类的轨迹集合(Sunclu)中随机选择一条轨迹作为聚类中心轨迹Tp,根据轨迹间的相似度从Sunclu中选出与Tp相似度较高的k-1条轨迹组成一个大小为k的轨迹集合Snow,并将其添加到聚类集合Sclu中,重复上述聚类操作直到Sunclu中轨迹数(Sunclu)不足k,即无法达到k聚类的条件为止。
2.根据权利要求1所述的一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算方法,其特征是:步骤(5)所述采用合适的离散弗雷歇距离算法来刻画两条曲线之间的距离,并作为其弗雷歇距离,其实施过程如下:
1)待识别轨迹P可表示为
P={P(1),P(2),…,P(m)…,P(M)}
式中:P(m)=(xm,ym);m为轨迹P上的采样点的序号,m=1为起始采样点,m=M为末尾采样点;xm为第m个采样点的横坐标,ym为第m个采样点的纵坐标;横坐标表示的是轨迹采样点的经度,纵坐标表示的是轨迹点的纬度;
2)待识别轨迹Q可表示为
Q={Q(1),Q(2),…,Q(n)…,Q(N)}
式中:Q(n)=(x′n,y′n);n为轨迹Q上的采样点的序号,n=1为起始采样点,n=N为末尾采样点;x′n为第n个采样点的横坐标,y′n为第n个采样点的纵坐标‘横坐标表示的是轨迹采样点的经度,纵坐标表示的是轨迹点的纬度;
3)计算轨迹P上各采样点到轨迹Q上的各采样点之间的距离,得到距离矩阵D
Figure FDA0002362689770000031
式中:
Figure FDA0002362689770000032
表示轨迹Q上的第n个采样点到轨迹P上的第m个采样点的距离,1≤m≤M,1≤n≤N;
4)找出距离矩阵D中的最大距离dmax=max(D)以及最小距离dmin=min(D),初始化目标距离f=dmin,并设置循环间隔
Figure FDA0002362689770000033
5)将距离矩阵D中小于或等于f的元素设置为1,大于f的元素设置为0,从而得到二值矩阵D′如下:
Figure FDA0002362689770000034
式中:
Figure FDA0002362689770000035
6)在二值矩阵D′中搜索一条满足以下条件的路径R:R的起点为d′11,终点为d′MN;路径在通过点d′mn后,其下一个通过点只能为d′(m+1)n,d′m(n+1),d'(m+1)(n+1)中的一个;路径R中所有点的值都必须为1;用数学表达式的形式为,存在一条路径R={d′11,…,d′mn,…,d′MN},满足
d′11*…*d′mn*d′(m+k)(n+k)*…*d′MN=1
式中:1≤m≤M,1≤n≤N,1≤m+k≤M,1≤n+k≤N,k={0,1},k′={0,1}.
7)若在步骤6)中未找到满足条件的路径,则设置目标距离f=f+r,之后重复步骤5)和6);若在步骤6)中找到满足条件的路径或者目标距离f=dmax,则进入下一步;
8)待识别轨迹P和待识别轨迹Q之间的弗雷歇距离F=f;
9)通过弗雷歇距离可以得到两条轨迹点集之间的距离,距离越小,说明两条估计之间的相似度越高;距离越大,说明两条轨迹之间的相似程度越低,因此,对相似度S的定义如下:
Figure FDA0002362689770000041
式中:F为两条轨迹之间的弗雷歇距离。
CN202010026567.1A 2020-01-10 2020-01-10 一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算方法 Active CN111259098B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010026567.1A CN111259098B (zh) 2020-01-10 2020-01-10 一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010026567.1A CN111259098B (zh) 2020-01-10 2020-01-10 一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算方法

Publications (2)

Publication Number Publication Date
CN111259098A true CN111259098A (zh) 2020-06-09
CN111259098B CN111259098B (zh) 2023-04-11

Family

ID=70943932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010026567.1A Active CN111259098B (zh) 2020-01-10 2020-01-10 一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算方法

Country Status (1)

Country Link
CN (1) CN111259098B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111738341A (zh) * 2020-06-24 2020-10-02 佳都新太科技股份有限公司 一种分布式大规模人脸聚类方法及装置
CN111783295A (zh) * 2020-06-28 2020-10-16 中国人民公安大学 城市社区特定人行为链动态识别与预测评估方法及系统
CN112380003A (zh) * 2020-09-18 2021-02-19 北京大学 一种gpu处理器上的k-nn的高性能并行实现装置
CN114820688A (zh) * 2021-01-21 2022-07-29 四川大学 一种基于时空轨迹的公共空间社交距离测量和分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170169297A1 (en) * 2015-12-09 2017-06-15 Xerox Corporation Computer-vision-based group identification
CN107798346A (zh) * 2017-10-23 2018-03-13 中国人民解放军国防科技大学 一种基于Fréchet距离阈值的轨迹相似性快速匹配方法
CN108596202A (zh) * 2018-03-08 2018-09-28 清华大学 基于移动终端gps定位数据计算个人通勤时间的方法
CN109444815A (zh) * 2018-10-12 2019-03-08 桂林电子科技大学 基于室内声音定位的轨迹隐私保护方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170169297A1 (en) * 2015-12-09 2017-06-15 Xerox Corporation Computer-vision-based group identification
CN107798346A (zh) * 2017-10-23 2018-03-13 中国人民解放军国防科技大学 一种基于Fréchet距离阈值的轨迹相似性快速匹配方法
CN108596202A (zh) * 2018-03-08 2018-09-28 清华大学 基于移动终端gps定位数据计算个人通勤时间的方法
CN109444815A (zh) * 2018-10-12 2019-03-08 桂林电子科技大学 基于室内声音定位的轨迹隐私保护方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOACHIM GUDMUNDSSON: ""A GPU Approach to Subtrajectory Clustering Using the Fréchet Distance"", 《IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 》 *
林邓伟: ""基于用户真实轨迹的虚假轨迹生成方法"", 《计算机工程》 *
郝志伟: ""一种基于Fréchet距离的断裂等高线内插算法"", 《测绘通报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111738341A (zh) * 2020-06-24 2020-10-02 佳都新太科技股份有限公司 一种分布式大规模人脸聚类方法及装置
CN111738341B (zh) * 2020-06-24 2022-04-26 广州佳都科技软件开发有限公司 一种分布式大规模人脸聚类方法及装置
CN111783295A (zh) * 2020-06-28 2020-10-16 中国人民公安大学 城市社区特定人行为链动态识别与预测评估方法及系统
CN111783295B (zh) * 2020-06-28 2020-12-22 中国人民公安大学 城市社区特定人行为链动态识别与预测评估方法及系统
CN112380003A (zh) * 2020-09-18 2021-02-19 北京大学 一种gpu处理器上的k-nn的高性能并行实现装置
CN112380003B (zh) * 2020-09-18 2021-09-17 北京大学 一种gpu处理器上的k-nn的高性能并行实现装置
CN114820688A (zh) * 2021-01-21 2022-07-29 四川大学 一种基于时空轨迹的公共空间社交距离测量和分析方法
CN114820688B (zh) * 2021-01-21 2023-09-26 四川大学 一种基于时空轨迹的公共空间社交距离测量和分析方法

Also Published As

Publication number Publication date
CN111259098B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
CN111259098B (zh) 一种基于稀疏表示和Fréchet距离融合的轨迹相似度计算方法
Deng et al. Variational prototype learning for deep face recognition
CN110309343B (zh) 一种基于深度哈希的声纹检索方法
CN110929848B (zh) 基于多挑战感知学习模型的训练、跟踪方法
CN111310833B (zh) 一种基于贝叶斯神经网络的出行方式识别方法
CN110188225A (zh) 一种基于排序学习和多元损失的图像检索方法
CN113704522B (zh) 基于人工智能的目标图像快速检索方法及系统
CN111564179A (zh) 一种基于三元组神经网络的物种生物学分类方法及系统
Yu et al. Deep metric learning with dynamic margin hard sampling loss for face verification
CN111914109A (zh) 一种基于深度度量学习的服装检索技术
CN111950626A (zh) 基于em的图像分类深度神经网络模型鲁棒性评估方法
JP2005515698A5 (zh)
CN105787296B (zh) 一种宏基因组和宏转录组样本相异度的比较方法
CN106646347A (zh) 基于小生境差分进化的多重信号分类谱峰搜索方法
CN116958809A (zh) 一种特征库迁移的遥感小样本目标检测方法
Weisser et al. Generative-AI methods for channel impulse response generation
CN116383656A (zh) 用于大规模mimo定位的半监督表征对比学习方法
CN113095394B (zh) 一种基于鲁棒聚类粒子群优化的欠定盲源分离方法
CN116545946A (zh) 一种基于突发流分布特征的隐藏服务流量识别方法
Kordnoori et al. PSO optimized hidden markov model performance analysis for IEEE 802.16/WiMAX standard
CN113159082B (zh) 一种增量式学习目标检测网络模型构建及权重更新方法
CN108805162A (zh) 一种基于粒子群优化的酵母菌多标记特征选择方法及装置
CN114722920A (zh) 一种基于图分类的深度图卷积模型钓鱼账户识别方法
CN109215057B (zh) 一种高性能视觉跟踪方法及装置
Li et al. Wind speed and direction measurement method based on intelligent optimization algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared